首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During sexual reproduction, Euplotes crassus precisely fragments its micronuclear chromosomes and synthesizes new telomeres onto the resulting DNA ends to generate functional macronuclear minichromosomes. In the micronuclear chromosomes, the macronuclear-destined sequences are typically separated from each other by spacer DNA segments, which are eliminated following chromosome fragmentation. Recently, in vivo chromosome fragmentation intermediates that had not yet undergone telomere addition have been characterized. The ends of both the macronuclear-destined and eliminated spacers were found to consist of six-base, 3′ overhangs. As this terminal structure on the macronuclear-destined sequences serves as the substrate for de novo telomere addition, we sought to determine if the spacer DNAs might also undergo telomere addition prior to their elimination. Using a polymerase chain reaction approach, we found that at least some spacer DNAs undergo de novo telomere addition. In contrast to macronuclear-destined sequences, heterogeneity could be observed in the position of telomeric repeat addition. The observation of spacer DNAs with telomeric repeats makes it unlikely that differential telomere addition is responsible for differentiating between retained and eliminated DNA. The heterogeneity in telomere addition sites for spacer DNA also resembles the situation found for telomeric repeat addition to macronuclear-destined sequences in other ciliate species.  相似文献   

2.
During the formation of a new macronucleus in the ciliate Euplotes crassus, micronuclear chromosomes are reproducibly broken at approximately 10 000 sites. This chromosome fragmentation process is tightly coupled with de novo telomere synthesis by the telomerase ribonucleoprotein complex, generating short linear macronuclear DNA molecules. In this study, the sequences of 58 macronuclear DNA termini and eight regions of the micronuclear genome containing chromosome fragmentation/telomere addition sites were determined. Through a statistically based analysis of these data, along with previously published sequences, we have defined a 10 bp conserved sequence element (E-Cbs, 5'-HATTGAAaHH-3', H = A, C or T) near chromosome fragmentation sites. The E-Cbs typically resides within the DNA destined to form a macronuclear DNA molecule, but can also reside within flanking micronuclear DNA that is eliminated during macronuclear development. The location of the E-Cbs in macronuclear-destined versus flanking micronuclear DNA leads us to propose a model of chromosome fragmentation that involves a 6 bp staggered cut in the chromosome. The identification of adjacent macronuclear-destined sequences that overlap by 6 bp provides support for the model. Finally, our data provide evidence that telomerase is able to differentiate between newly generated ends that contain partial telomeric repeats and those that do not in vivo.  相似文献   

3.
Telomere elongation is cell-cycle regulated and requires the coordinated activity of proteins involved in the DNA damage response. We used an assay that detects de novo telomere addition to examine the role of the cyclin-dependent kinase Cdk1 (Cdc28) in cell-cycle-specific telomere elongation. Inhibition of an ATP analog-sensitive allele of Cdk1 completely blocked the addition of telomere repeats. Mutations in Rif2 and DNA polymerase alpha that cause increased telomere elongation were unable to compensate for the loss of Cdk1 activity, suggesting Cdk1 activity is required for an early step in telomere addition. Mutations in DNA repair proteins that act with Cdk1 at double-strand breaks also prevented telomere elongation. Cdk1 activity was required for the generation of 3' single-strand overhangs at both native and de novo telomeres. We propose Cdk1 activity controls the timing of telomere elongation by regulating the single-strand overhang at chromosome ends.  相似文献   

4.
Beaucher M  Zheng XF  Amariei F  Rong YS 《Genetics》2012,191(2):407-417
Telomeres protect chromosome ends from being repaired as double-strand breaks (DSBs). Just as DSB repair is suppressed at telomeres, de novo telomere addition is suppressed at the site of DSBs. To identify factors responsible for this suppression, we developed an assay to monitor de novo telomere formation in Drosophila, an organism in which telomeres can be established on chromosome ends with essentially any sequence. Germline expression of the I-SceI endonuclease resulted in precise telomere formation at its cut site with high efficiency. Using this assay, we quantified the frequency of telomere formation in different genetic backgrounds with known or possible defects in DNA damage repair. We showed that disruption of DSB repair factors (Rad51 or DNA ligase IV) or DSB sensing factors (ATRIP or MDC1) resulted in more efficient telomere formation. Interestingly, partial disruption of factors that normally regulate telomere protection (ATM or NBS) also led to higher frequencies of telomere formation, suggesting that these proteins have opposing roles in telomere maintenance vs. establishment. In the ku70 mutant background, telomere establishment was preceded by excessive degradation of DSB ends, which were stabilized upon telomere formation. Most strikingly, the removal of ATRIP caused a dramatic increase in telomeric retrotransposon attachment to broken ends. Our study identifies several pathways that suppress telomere addition at DSBs, paving the way for future mechanistic studies.  相似文献   

5.
6.
Telomerase serves a dual role at telomeres, maintaining tracts of telomere repeats and forming telomeres de novo on broken chromosomes in a process called chromosome healing. In ciliates, both mechanisms are readily observed. Vegetatively growing cells maintain pre-existing telomeres, while cells undergoing macronuclear development fragment their chromosomes and form telomeres de novo. Here we provide the first evidence for developmentally regulated initiation of DNA synthesis by telomerase. In vitro assays were conducted with telomerase from vegetative and developing Euplotes macronuclei using chimeric primers that contained non-telomeric 3' ends and an upstream stretch of telomeric DNA. In developing macronuclei, chimeric primers had two fates: nucleotides were either polymerized directly onto the 3' terminus or residues were removed from the 3' end by endonucleolytic cleavage before polymerization began. In contrast, telomerase from vegetative macronuclei used only the cleavage pathway. Telomere repeat addition onto non-telomeric 3' ends was lost when developing macronuclei were lysed and the contents purified on glycerol gradients. However, when fractions from the glycerol gradient were added back to partially purified telomerase, telomere synthesis was restored. The data indicate that a dissociable chromosome healing factor (CHF) collaborates with telomerase to initiate developmentally programmed de novo telomere formation.  相似文献   

7.
Chromatin diminution in the parasitic nematode Ascaris suum represents an interesting case of developmentally programmed DNA rearrangement in higher eukaryotes. At the molecular level, it is a rather complex event including chromosome breakage, new telomere formation and DNA degradation. Analysis of a cloned somatic telomere (pTel1) revealed that it has been newly created during the process of chromatin diminution by the addition of telomeric repeats (TTAGGC)n to a chromosomal breakage site (Müller et al., 1991). However, telomere addition does not occur at a single chromosomal locus, but at many different sites within a short chromosomal region, termed CBR1 (chromosomal breakage region 1). Here we present the cloning and the analysis of 83 different PCR amplified telomere addition sites from the region of CBR1. The lack of any obvious sequence homology shared among them argues for a telomerase-mediated healing process, rather than for a recombinational event. This hypothesis is strongly supported by the existence of 1-6 nucleotides corresponding to and being in frame with the newly added telomeric repeats at almost all of the telomere addition sites. Furthermore, we show that telomeres are not only added to the ends of the retained chromosomal portions, but also to the eliminated part of the chromosomes, which later on become degraded in the cytoplasm. This result suggests that de novo telomere formation during the process of chromatin diminution represents a non-specific process which can heal any broken DNA end.  相似文献   

8.
Loss of heterozygosity (LOH), a causal event in tumorigenesis, frequently encompasses multiple genetic loci and whole chromosome arms. However, the mechanisms leading to such extensive LOH are poorly understood. We investigated the mechanisms of DNA double-strand break (DSB)-induced extensive LOH by screening for auxotrophic marker loss approximately 25 kb distal to an HO endonuclease break site within a nonessential minichromosome in Schizosaccharomyces pombe. Extensive break-induced LOH was infrequent, resulting from large translocations through both allelic crossovers and break-induced replication. These events required the homologous recombination (HR) genes rad32(+), rad50(+), nbs1(+), rhp51(+), rad22(+), rhp55(+), rhp54(+), and mus81(+). Surprisingly, LOH was still observed in HR mutants, which resulted predominantly from de novo telomere addition at the break site. De novo telomere addition was most frequently observed in rad22Delta and rhp55Delta backgrounds, which disrupt HR following end resection. Further, levels of de novo telomere addition, while increased in ku70Delta rhp55Delta strains, were reduced in exo1Delta rhp55Delta and an rhp55Delta strain overexpressing rhp51. These findings support a model in which HR prevents de novo telomere addition at DSBs by competing for resected ends. Together, these results suggest that the mechanisms of break-induced LOH may be predicted from the functional status of the HR machinery.  相似文献   

9.
10.
11.
Telomeres, telomerase and senescence   总被引:18,自引:0,他引:18  
Eukaryotic chromosomes end with tandem repeats of simple sequences. These GC rich repeats allow telomere replication and stabilize chromosome ends. Telomere replication involves an equilibrium of sequence loss and addition at the ends of chromosomes. Repeats are added de novo by telomerase, an unusual DNA polymerase. Telomerase is an RNP in which an essential RNA component provides the template for the added telomere repeats. Telomere length maintenance plays an essential role in cell viability.  相似文献   

12.
Programmed DNA rearrangements are important processes present in many organisms. In the ciliated protozoan Tetrahymena thermophila, DNA rearrangements occur during the sexual conjugation process and lead to the deletion of thousands of specific DNA segments and fragmentation of the chromosomes. In this study, we found that the Ku80 homologue, a conserved component of the nonhomologous end-joining process of DNA repair, was essential for these two processes. During conjugation, TKU80 was highly expressed and localized to the new macronucleus, where DNA rearrangements occur. Homokaryon TKU80-knockout mutants are unable to complete conjugation and produce progeny and are arrested at the two-micronuclei/two-macronuclei stage. Analysis of their DNA revealed failure to complete DNA deletion. However, the DNA-cutting step appeared to have occurred, as evidenced by the presence of circularized excised DNA. Moreover, chromosome breakage or de novo telomere addition was affected. The mutant appears to accumulate free DNA ends detectable by terminal deoxynucleotidyl transferase dUTP nick end labeling assays that led to the degradation of most DNA in the developing macronucleus. These findings suggest that Tku80p may serve an end-protective role after DNA cleavage has occurred. Unexpectedly, the large heterochromatin structures that normally associate with DNA rearrangements failed to form without TKU80. Together the results suggest multiple roles for Tku80p and indicate that a Ku-dependent DNA-repair pathway is involved in programmed DNA rearrangements in Tetrahymena.  相似文献   

13.
In the budding yeast Saccharomyces cerevisiae,heterochromatin structure is found at three chromosome regions,which are homothallic mating-type loci,rDNA regions and telomeres.To address how telomere heterochromatin is assembled under physiological conditions,we employed a de novo telomere addition system,and analyzed the dynamic chromatin changes of the TRP1 reporter gene during telomere elongation.We found that integrating a 255-bp,but not an 81-bp telomeric sequence near the TRP1 promoter could trigger Sir2 recruitment,active chromatin mark(s)' removal,chromatin compaction and TRP1 gene silencing,indicating that the length of the telomeric sequence inserted in the internal region of a chromosome is critical for determining the chromatin state at the proximal region.Interestingly,Rif1 but not Rif2 or yKu is indispensable for the formation of intra-chromosomal silent chromatin initiated by telomeric sequence.When an internal short telomeric sequence(e.g.,81 bp) gets exposed to become a de novo telomere,the herterochromatin features,such as Sir recruitment,active chromatin mark(s)' removal and chromatin compaction,are detected within a few hours before the de novo telomere reaches a stable length.Our results recapitulate the molecular dynamics and reveal a coherent picture of telomere heterochromatin formation.  相似文献   

14.
The chromosomes of ciliates are fragmented at reproducible sites during the development of the polyploid somatic macronucleus, but the mechanisms involved appear to be quite diverse in different species. In Paramecium aurelia, the process is imprecise and results in de novo telomere addition at locally heterogeneous positions. To search for possible determinants of chromosome fragmentation, we have studied an ~21-kb fragmentation region from the germ line genome of P. primaurelia. The mapping and sequencing of alternative macronuclear versions of the region show that two distinct multicopy elements, a minisatellite and a degenerate transposon copy, are eliminated by an imprecise mechanism leading either to chromosome fragmentation and the formation of new telomeres or to the rejoining of flanking sequences. Heterogeneous internal deletions occur between short direct repeats containing TA dinucleotides. The complex rearrangement patterns produced vary slightly among genetically identical cell lines, show non-Mendelian inheritance during sexual reproduction, and can be experimentally modified by transformation of the maternal macronucleus with homologous sequences. These results suggest that chromosome fragmentation in Paramecium is the consequence of imprecise DNA elimination events that are distinct from the precise excision of single-copy internal eliminated sequences and that target multicopy germ line sequences by homology-dependent epigenetic mechanisms.  相似文献   

15.
Fingering the ends: how to make new telomeres   总被引:1,自引:0,他引:1  
Cristofari G  Lingner J 《Cell》2003,113(5):552-554
  相似文献   

16.
To investigate the developmentally programmed telomere addition that accompanies chromosome fragmentation during macronuclear differentiation in Tetrahymena thermophila, five representative telomeric regions from the macronucleus were cloned and characterized in detail. The sequences adjacent to the telomeric (C4A2:T2G4) repeats on these five macronuclear ends had no significant sequence homology or shared secondary structure. Two developmentally independent examples of one macronuclear telomere had a 5 base pair difference in the position of the junction between the telomeric repeats and the adjacent sequences. A telomere-adjacent sequence, in the form of a synthetic oligonucleotide, was unable to prime the addition of telomeric repeats in vitro. The implications of these results for the mechanisms underlying developmentally programmed chromosome fragmentation and telomere addition in Tetrahymena are discussed.  相似文献   

17.
De novo telomere addition by Tetrahymena telomerase in vitro.   总被引:5,自引:1,他引:4  
Previous molecular genetic studies have shown that during programmed chromosomal healing, telomerase adds telomeric repeats directly to non-telomeric sequences in Tetrahymena, forming de novo telomeres. However, the biochemical mechanism underlying this process is not well understood. Here, we show for the first time that telomerase activity is capable in vitro of efficiently elongating completely non-telomeric DNA oligonucleotide primers, consisting of natural telomere-adjacent or random sequences, at low primer concentrations. Telomerase activity isolated from mated or vegetative cells had indistinguishable specificities for nontelomeric and telomeric primers. Consistent with in vivo results, the sequence GGGGT... was the predominant initial DNA sequence added by telomerase in vitro onto the 3' end of the non-telomeric primers. The 3' and 5' sequences of the primer both influenced the efficiency and pattern of de novo telomeric DNA addition. Priming of telomerase by double-stranded primers with overhangs of various lengths showed a requirement for a minimal 3' overhang of 20 nucleotides. With fully single-stranded non-telomeric primers, primer length up to approximately 30 nucleotides strongly affected the efficiency of telomeric DNA addition. We propose a model for the primer binding site of telomerase for non-telomeric primers to account for these length and structural requirements. We also propose that programmed de novo telomere addition in vivo is achieved through a hitherto undetected intrinsic ability of telomerase to elongate completely non-telomeric sequences.  相似文献   

18.
Telomeres are protective caps for chromosome ends that are essential for genome stability. Broken chromosomes missing a telomere will not be maintained unless the chromosome is ‘healed’ with the formation of a new telomere. Chromosome healing can be a programmed event following developmentally regulated chromosome fragmentation, or it may occur spontaneously when a chromosome is accidentally broken. In this article we discuss the consequences of telomere loss and the possible mechanisms that the enzyme telomerase employs to form telomeres de novo on broken chromosome ends.  相似文献   

19.
To learn more about the mechanism of de novo telomere synthesis, we have characterized the sequence and structure of newly synthesized telomeres from Euplotes crassus. E. crassus is a particularly useful organism for studying telomere synthesis because millions of telomeres are made in each cell at a well-defined time during the sexual stage of the life cycle. These newly synthesized telomeres are approximately 50 bp longer than mature macronuclear telomeres. We have investigated the structure of the newly synthesized telomeres and have found that they are much more heterogeneous in length than mature telomeres. Most of the heterogeneity is present on the G-rich strand, indicating that the length of this strand is rather loosely controlled. In contrast, the length of the C-rich strand is much less variable, suggesting that synthesis of this strand is the more precisely regulated step in telomere addition. The G-rich strand exhibits variability both in the total number of G4T4 repeats and in the identity of the terminal nucleotide. In most cases, the G-rich strnd extends beyond the C-rich strand to leave a 3' overhang. While the size of this overhang is variable, the median length is 10 nucleotides. This research provides the first detailed picture of a newly synthesized telomere and has allowed us to formulate a model to describe the various steps involved in de novo telomere synthesis.  相似文献   

20.
We have developed a strategy for the isolation of terminal deletion breakpoints from any chromosome that has been healed by de novo addition of a telomere repeat array. Breakpoints at 7q32 and 22q13.3 have been isolated and characterized in two patients (patients FB336R and AJ). Both truncated chromosomes have been healed by the addition of a novel telomere, with such an addition possibly mediated by the enzyme telomerase. The breakpoint at 7q32 in patient FB336R shows a structure similar to that of breakpoints on other chromosomes that have been healed in this way. However, the breakpoint at 22q13.3 in patient AJ has 10 nucleotides of unknown origin inserted between the sequence unique to chromosome 22q and the start of the telomere repeat array. This unusual structure is suggestive of a multistep healing event resulting in de novo telomere addition at this breakpoint, and possible mechanisms are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号