首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myofibrillar proteins, like all other intracellular proteins, are in a dynamic state of continual degradation and resynthesis. The proteolytic system responsible for degrading myofibrillar proteins in skeletal muscle is not well defined. A proteolytic activity associated to myofibrils was found in mouse skeletal muscle, as show electrophoretic patterns, and denominated by us, as protease M. During incubation of whole myofibrils at 37 degrees C, myosin heavy chain, alpha actinin, actin and troponin T suffered degradation. These effects were inhibited selectively by serine protease inhibitors (soybean trypsin inhibitor, di-isopropyl phosphofluoridate, phenylmethanesulfonyl fluoride). Using myofibrils as protease M source, azocaseinolytic activity was also detected. Endogenous inhibitor and various compounds effects on protease M activity were also quantified by trichloroacetic acid soluble products formation, using radiolabeled myofibrils. An endogenous trypsin inhibitor isolated from the muscle cytoplasmic fraction could inhibit protease M activity on myofibrillar proteins and on azocasein. While K(+) increased protease M activity, the presence of Ca(2+) did not show any effect. Data presented in this study suggest that reported protease M may be implicated in myofibrillar degradation in vivo and isolated endogenous inhibitor may provide a mechanism to control its action in mouse skeletal muscle.  相似文献   

2.
Myofibril-bound serine protease (MBSP) was purified from the myofibril fraction of white croaker (Argyrosomus argentatus) muscle and its enzymatic properties were compared with other fish MBSPs. White croaker MBSP was extracted by the heat treatment of myofibrils and then purified by a series of column chromatographies on Q-Sepharose, Sephacryl S-300, hydroxyapatite and Benzamidine Sepharose. The purified MBSP migrated as a single protein band at 67 kDa in SDS-PAGE under both reducing and non-reducing conditions. It was inhibited by Pefabloc SC, soybean trypsin inhibitor (STI), aprotinin and benzamidine, and was not affected by E-64, pepstatin A and EDTA. The enzyme was most active against Boc-Phe-Ser-Arg-MCA at pH 7.0 and 50 degrees C, and preferentially hydrolyzed Boc-Val-Pro-Arg-MCA and Boc-Asp-Pro-Arg-MCA. Unlike other marine fish MBSPs, white croaker MBSP considerably hydrolyzed Boc-Val-Leu-Lys-MCA and Boc-Glu-Lys-Lys-MCA. Some enzymatic characteristics including the molecular structure and the substrate specificity for a lysine residue at the P(1) position are quite different not only from other fish MBSPs but also from soluble serine protease obtained from white croaker muscle (MSSP). White croaker MBSP could be therefore classified into a novel type of fish muscle MBSP.  相似文献   

3.
The protein content of muscle is determined by the relative rates of synthesis and degradation. The balance between this process determines the number of functional contractile units within each muscle cell. Myofibril-bound protease, protease M previously reported in mouse skeletal muscle could be solubilized from the myofibrillar fraction by salt and acid treatment and partially purified by Mono Q and Superose 12 chromotagraphy. Isolated protease M activity in vitro on whole myofibrils resulted in myosin, actin, troponin T, α-actinin and tropomyosin degradation. Protease M is serine type and was able to hydrolyze trypsin-type synthetic substrates but not those of chymotrypsin type. In gel filtration chromatography, protease M showed Mr 120.0 kDa. The endogenous inhibitor (MHPI) is a glycoprotein (110.0 kDa) that efficiently blocks the protease M-dependent proteolysis of myofibrillar proteins in a dose-dependent way, as shown by electrophoretic analysis and synthetic substrates assays. Protease M-Inhibitor system would be implicated in myofibrillar proteins turnover.  相似文献   

4.
A Ca2+-activated proteolytic enzyme that partially degrades myofibrils was isolated from hind limb muscles of normal rabbits and rabbits undergoing rapid muscle atrophy as a result of vitamin E deficiency. Extractable Ca2+-activated protease activity was 3.6 times higher in muscle tissue from vitamin E-deficient rabbits than from muscle tissue of control rabbits. Ultrastructural studies of muscle from vitamin E-deficient rabbits showed that the Z disk was the first myofibrillar structure to show degradative changes in atrophying muscle. Myofibrils prepared from muscles from vitamin E-deficient rabbits showed partial or complete loss of Z-disk density. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that the amount of troponin-T (37 000 daltons) and alpha-actinin (96 000 daltons) was reduced in myofibrils from atrophying muscle as compared to myofibrils prepared from control muscle. In vitro treatment of purified myofibrils with purified Ca2+-activated proteolytic enzyme produced alterations in myofibrillar ultrastructure that were identical to the initial alterations occurring in myofibrils from atrophying muscle (i.e. weakening and subsequent removal of Z disks). Additonally the electrophoretic banding pattern of Ca2+-activated proteolytic enzyme-treated myofibrils is very similar to that of myofibrils prepared from muscles atrophying as a result of nutritional vitamin E deficiency. The possible role of Ca2+-activated proteolytic enzyme in disassembly and degradation of the myofibril is discussed.  相似文献   

5.
Using polyclonal antibodies against paratropomyosin, which is believed to modify the actin-myosin interaction in postrigor skeletal muscles, we studied the localization of paratropomyosin in chicken breast muscle myofibrils. Intact myofibrils stained with fluorescent antibodies showed that paratropomyosin was exclusively located at the A-I junction region of sarcomeres. In stretched myofibrils (3.7 micron in sarcomere length), the approximate width of the fluorescent stripes and their relation to the A band remained constant. Removal of the A band from myofibrils led to loss of stainability. During postmortem storage of muscles, on the other hand, paratropomyosin was translocated from its original position at the A-I junction region onto thin filaments. The translocation of paratropomyosin was successfully induced with a calcium ion concentration of 10(-4) M in the presence of protease inhibitors. We therefore conclude that in postrigor muscles, paratropomyosin is released from the A-I junction region following the increase in the sarcoplasmic calcium ion concentration to 10(-4) M, and then binds to thin filaments, which results in weakening of rigor linkages formed between actin and myosin.  相似文献   

6.
The degradation of rat cardiac myofibrils and their constituent proteins with a myosin-cleaving protease was studied. Electrophoretograms of the digestion products of myofibrils showed that myosin,M-protein, C-protein, and troponin were degraded, but actin and tropomyosin were not. Degradation of these constituents resulted in losses of the Mg2+-ATPase activity and its Ca2+-sensitivity of myofibrils. Incubation of myofibrils with the protease induced the release of alpha-actinin without degradation. Susceptibilities of myosin, actin, troponin, and alpha-actinin purified from rat and pig hearts to the protease were essentially identical to those of the assembled forms in myofibrils. Although the purified tropomyosin was readily degraded into five fragments with the protease, the tropomyosin assembled in myofibrils and actin-tropomyosin complex were insusceptible to the protease. Digestion of myosin in the filamentous state with the protease resulted in the disappearance of myosin heavy chain and light chain 2, producing two fragments having molecular weights of 130,000 and 94,000 which originated from the degradation of heavy chain. The Ca2+- and EDTA-ATPase activities of the degradation products remained unchanged during incubation for 22 h. The actin-activated ATPase activity of myosin was reduced by 30% during incubation for 6 h, and recovered to the original level on adding actin to give a ratio of actin to myosin of 2:1. The pH optima for degradation of myosin in the soluble and filamentous states were 8.5 and 7.0, respectively. The results indicate that cardiac myosin in the filamentous state was more readily degraded with the protease than the myosin in the soluble state.  相似文献   

7.
A Ca2+-activated proteolytic enzyme 1 that partially degrades myofibrials was isolated from hind limb muscles of normal rabbits and rabbits undergoing rapid muscle atrophy as a result of vitamin E deficiency. Extractable Ca2+-activated protease activity was 3.6 times higher in muscle tissue from vitamin E-deficient rabbits than from muscle tissue of control rabbits. Ultrastructural studies of muscle from vitamin E-deficient rabbits showed that the Z disk was the first myofibrillar structure to show degradative changes in atrophying muscle. Myofibris prepared from muscles vitamin E-deficient rabbits showed partial or complete loss of Z-disk density. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that the amount of troponin-T (37 000 daltons) and α-actinin (96 000 daltons) was reduced in myofibrils from atrophying muscle as compared to myofibrils prepared from control muscle. In vitro treatment of purified myofibrils with purified Ca2+-activated proteolytic enzyme produced alterations in myofibrillar ultrastructure that were identical to the initial alterations occuring in myofibrils from atrophying muscle (i.e. weakening and subsequent removal of Z disks). Additionally the electrophoretic banding pattern of Ca2+-activated proteolytic enzyme-treated myofibrils is very similar to that of myofibrils prepared from muscles atrophying as a result of nutritional vitamin E deficiency. The possible role of Ca2+-activated proteolytic enzyme in disassembly and degradation of the myofibril is discussed.  相似文献   

8.
Atomic force microscopic images of single skeletal myofibrils showed periodical broad filamentous bands interspaced with narrow rigid bands corresponding to the sarcomere structures of skeletal muscle (Yoshikawa, Y., Yasuike, T., Yagi, A., and Yamada, T. 1999. Biochem. Biophys. Res. Comm., 256: 13-19). In order to identify the narrow rigid bands, comparative studies were made for intact single myofibrils and those treated with calcium-activated neutral protease by use of atomic force microscopy. It was found that (a) the periodical narrow rigid bands present in intact myofibrils were completely absent in myofibrils treated with calcium-activated neutral protease, and that (b) myofibrils treated with calcium-activated neutral protease were very fragile compared with intact myofibrils. As calcium-activated neutral protease selectively removes Z-bands of myofibrils (Reddy, M. K., Etlinger, J. D., Rabinowitz, M., Fischman, D. A., and Zak, R. 1975. J. Biol. Chem., 250: 4278-4284), these results clearly indicate that (a) the narrow rigid bands are the Z-bands, and that (b) the Z-bands are the essential disc supporting the sarcomere structure of skeletal muscle.  相似文献   

9.
A novel fish muscle serine protease named muscle soluble serine protease (MSSP) was purified from the soluble fraction of lizard fish (Saurida undosquamis: Synodontidae) muscle by ammonium sulfate fractionation followed by four steps of column chromatographies. In native-PAGE, the purified enzyme appeared as a single band with an estimated mol. mass of approximately 380 kDa by gel filtration. In SDS-PAGE under reducing conditions, the purified enzyme migrated as two protein bands at 110 and 100 kDa, named subunits A and B, respectively. The 20 residues of N-terminal amino acid sequence of subunit B showed 70% of homology to beta-chain of carp alpha(2)-macroglobulin-1. Moreover, both subunits A and B showed immunoreactivity with anti carp alpha(2)-macroglobulin antibody. Purified MSSP was inactivated by Pefabloc SC, aprotinin, benzamidine and TLCK, but not by alpha(1)-antitrypsin. After acid treatment (pH 2, 24 h), however, the enzyme activity eluted at 14 kDa from Sephacryl S-200 carried out under acidic conditions was inhibited by alpha(1)-antitrypsin. Lizard fish MSSP most rapidly hydrolyzed Boc-Val-Pro-Arg-MCA and Boc-Gln-Arg-Arg-MCA, but did not hydrolyzed Suc-Leu-Leu-Val-Tyr-MCA and Suc-Ala-Ala-Pro-Phe-MCA, and was not suppressed either by E-64, pepstatin A and ethylenediaminetetraacetic acid (EDTA). These results indicate that the purified MSSP is a serine protease complexed with alpha(2)-macroglobulin, and the entrapped protease was dissociated by the acid treatment. Purified and free MSSPs were most active at pH 10.0 and 9.0, respectively. Purified MSSP degraded myofibrillar proteins and casein but time courses of degradation of these substrates by the enzyme differed.  相似文献   

10.
Connectin content and its post-mortem changes in fish muscle   总被引:1,自引:0,他引:1  
Connectin was isolated from fish dorsal myofibrils by an SDS-gel filtration method and estimated to account for approximately 13% of the total myofibrillar proteins. There was no significant difference in the amount of connectin among seven fish species but rabbit skeletal myofibrils contained a slightly higher content (16%) of connectin. The high molecular weight connectins from carp and rabbit both showed a doublet band, consisting of bands 1 and 2, on SDS-polyacrylamide gel electrophoresis using a large-pore gel. However, rabbit band 1 (a component of the connectin doublet) was found to migrate more slowly than carp band 1. During post-mortem ageing of the muscles, it was observed that the band 1 component rapidly disappeared with a concomitant increase in band 2 component and then the band 2 component was transformed slowly into faster migrating components. These results suggest that post-mortem ageing has qualitatively similar effects on the submolecular compositions of carp and rabbit connectins. However, the apparent rate of disappearance of the band 1 component was considerably higher in carp muscle than that in rabbit muscle.  相似文献   

11.
The mechanism and control of protein degradation in cells are quite mysterious. We investigated the change of protease activities in animals fed a vitamin E-deficient diet. The Ca2+-activated protease activity was not significantly changed in vitamin E-deficient rats during the 45 weeks of the experiment. The cathepsin B activity was increased in those animals. Electron microscopic observation on the muscle of the vitamin E-deficient rats showed destruction of myofibrils at the Z-line, narrowness of myofibrils, and dispersed myofibrils. The M-line, which is known to disappear with cathepsin L treatment, was clearly observed. The phagocytosis of muscle cells by macrophages was also observed. These results show that the abnormal myofibril protein degradation in muscle tissue of vitamin E-deficient rats is not only due to the activation of macrophages and the increment of lysosomes in muscle cells, but also due to the protease which can destroy the myofibril at the Z-line. It may be a Ca2+-activated protease.  相似文献   

12.
An extracellular thermostable alkaline protease isolated from Bacillus laterosporus-AK1 was purified by sephadex G-200 gel filtration and DEAE cellulose ion-exchange chromatography techniques. The purified protease showed a maximum relative activity of 100% on casein substrate and appeared as a single band on SDS-PAGE with the molecular mass of 86.29 kDa. The protease was purified to 11.1-folds with a yield of 34.3%. Gelatin zymogram also revealed a clear hydrolytic zone due to proteolytic activity, which corresponded to the band obtained with SDS-PAGE. The protease enzyme had on optimum pH of 9.0 and exhibited highest activity at 75°C. The enzyme activity was highly susceptible to the specific serine protease inhibitor PMSF, suggesting the presence of serine residues at the active sites. Enzyme activity strongly enhanced by the metal ions Ca2+ and Mg2+ and this enzyme compatible with aril detergent stability retained 75% even 1-h incubation. The purified protease remove bloodstain completely when used with Wheel detergent.  相似文献   

13.
The objective of this study was to investigate the potential role of the caspase protease family in meat tenderisation by examining if caspase 3 was capable of causing myofibril protein degradation. Full-length human recombinant caspase 3 (rC3) was expressed in Escherichia coli and purified. The rC3 was active in the presence of myofibrils isolated from porcine longissimus dorsi muscle (LD) and retained activity in a buffer system closely mimicking post mortem conditions. The effect of increasing concentrations of rC3, incubation temperature, as well as incubation time on the degradation of isolated myofibril proteins were all investigated in this study. Myofibril protein degradation was determined by SDS-PAGE and Western blotting. There was a visible increase in myofibril degradation with a decrease in proteins identified as desmin and troponin I and the detection of protein degradation products at approximately 32, 28 and 18 kDa with increasing concentrations of rC3. These degradation products were analysed using MALDI-TOF mass spectrometry and identified to occur from the proteolysis of actin, troponin T and myosin light chain, respectively. The production of these degradation products was not inhibited by 5 mM EDTA or semi-purified calpastatin but was inhibited by the caspase-specific inhibitor Ac-DEVD-CHO. The temperature at which isolated myofibrils were incubated with rC3 was also found to affect degradation, with increasing incubation temperatures causing increased desmin degradation and cleavage of pro-caspase 3 into its active isoform. Incubation of isolated myofibrils at 4°C for 5 days with rC3 resulted in the visible degradation of a number of myofibril proteins including desmin and troponin I. This study has shown that rC3 is capable of causing myofibril degradation, hydrolysing myofibril proteins under conditions that are similar to those found in muscle in the post mortem conditioning period.  相似文献   

14.
A calcium-activated neutral protease (CANP) was purified from monkey cardiac muscle by a method involving column chromatography on DEAE-cellulose, Sepharose CL-6B, DEAE-Sephacel, organomercurial-Sepharose 4B, and Sephadex G-150 in succession. This protease required both millimolar concentration of Ca2+ and the SH-group for activation, and it was maximally active around pH 8.0. It was strongly inhibited by thiol protease inhibitors such as iodoacetic acid, antipain, leupeptin, and epoxysuccinic acid derivatives. The molecular weight of this protease was estimated to be 110,000 by gel filtration. Upon nondenaturing electrophoresis the purified protease gave two bands, both of which were active at millimolar concentration of Ca2+, indicating the existence of two forms of the protease. The less acidic band (form I CANP) contained two components with molecular weights of 74,000 and 28,000 and the more acidic one (form II CANP) contained components with molecular weights of 74,000 and 26,000. The protease was synergistically activated by Mn2+ and Ca2+ at a concentration where Mn2+ or Ca2+ alone was not effective. In the presence of millimolar level of Ca2+, limited autolysis reduced the Ca2+-requirement of this protease. The proteolysis of myofibrils by this protease resulted in the production of a component with a molecular weight of 30,000 as well as various other higher and lower molecular weight peptide fragments.  相似文献   

15.
The action of a serine proteinase from fish skeletal muscle on myofibrils was studied. The enzyme was able to destroy the structural integrity of myofibrils, and to degrade both their major contractile and cytoskeletal constituent proteins. Proteolysis could be completely prevented by the addition of a trypsin inhibitor isolated from the same muscle.  相似文献   

16.
A trypsin proteinase inhibitor has been purified to homogeneity from the skeletal muscle of white croaker (Micropogon opercularis). Previously, we had described the occurrence in fish muscle of a serine protease (proteinase I) which showed a great capacity to degrade whole myofibrils in vitro and an endogenous inhibitor that prevented the action of the protease, both on natural and artificial substrates. In this paper, we report the purification and further biochemical characterization of the endogenous trypsin inhibitor. The purification was carried out by DEAE-Sephacel, Con A-Sepharose, Sephacryl S-300 and Mono Q. Throughout the purification procedure, trypsin inhibitory activity was assayed using azocasein as substrate. The molecular mass of the inhibitor was 65 kDa, as estimated by SDS-PAGE and gel filtration. The trypsin inhibitor is a glycoprotein, as deduced by the fact that it binds to Con A-Sepharose and stains with PAS and showed a wide range of pH stability (from 5 to 11). The thermal stability of the inhibitor considerably decreased at temperatures >60 degrees C. Assays of the inhibitor against various proteases indicated that it is highly specific for serine proteases, since it did not inhibit proteases belonging to any other groups. The inhibitor was able to inhibit the endogenous target enzyme (proteinase I) in a dose-dependent manner, with a 50% inhibition at a molar ratio close to 1. The present work contributes to improving our understanding of the physiological role of the proteinase I-inhibitor system in muscle protein breakdown, as well as its influence on post mortem proteolysis.  相似文献   

17.
《The Journal of cell biology》1984,99(4):1391-1397
Indirect immunofluorescence microscopy of highly stretched skinned frog semi-tendinous muscle fibers revealed that connectin, an elastic protein of muscle, is located in the gap between actin and myosin filaments and also in the region of myosin filaments except in their centers. Electron microscopic observations showed that there were easily recognizable filaments extending from the myosin filaments to the I band region and to Z lines in the myofibrils treated with antiserum against connectin. In thin sections prepared with tannic acid, very thin filaments connected myosin filaments to actin filaments. These filaments were also observed in myofibrils extracted with a modified Hasselbach-Schneider solution (0.6 M KCl, 0.1 M phosphate buffer, pH 6.5, 2 mM ATP, 2 mM MgCl2, and 1 mM EGTA) and with 0.6 M Kl. SDS PAGE revealed that connectin (also called titin) remained in extracted myofibrils. We suggest that connectin filaments play an important role in the generation of tension upon passive stretch. A scheme of the cytoskeletal structure of myofibrils of vertebrate skeletal muscle is presented on the basis of our present information of connectin and intermediate filaments.  相似文献   

18.
A serine protease-producing marine bacterial strain named as PT-1 was isolated and identified as a family of Marinomonas arctica, based on molecular characterization of 16S rRNA gene sequence, phylogenetic tree, and fatty acid composition analyses. Optimized culture conditions for growth of the bacterium PT-1 and production of protease (ProA) were determined to be pH 8.0 in the presence of 5 % NaCl, at 37 °C during 24 h of incubation in the presence of 1.0 % skim milk. The molecular weight of the purified ProA was estimated to be 63-kDa as a major band by SDS-PAGE. We were intrigued to find that the activity of ProA was not inhibited by pepstatin A, chymostatin, and leupeptin known as inhibitors for cysteine protease. However, phenylmethylsulfonyl fluoride (PMSF) completely inhibited protease activity, suggesting that the ProA is like a serine protease. To the best of our knowledge, this is the first report on serine protease of Marinomonas species.  相似文献   

19.
A novel fish muscle serine protease named muscle soluble serine protease (MSSP) was purified from the soluble fraction of lizard fish (Saurida undosquamis: Synodontidae) muscle by ammonium sulfate fractionation followed by four steps of column chromatographies. In native-PAGE, the purified enzyme appeared as a single band with an estimated mol. mass of approximately 380 kDa by gel filtration. In SDS-PAGE under reducing conditions, the purified enzyme migrated as two protein bands at 110 and 100 kDa, named subunits A and B, respectively. The 20 residues of N-terminal amino acid sequence of subunit B showed 70% of homology to β-chain of carp α2-macroglobulin-1. Moreover, both subunits A and B showed immunoreactivity with anti carp α2-macroglobulin antibody. Purified MSSP was inactivated by Pefabloc SC, aprotinin, benzamidine and TLCK, but not by α1-antitrypsin. After acid treatment (pH 2, 24 h), however, the enzyme activity eluted at 14 kDa from Sephacryl S-200 carried out under acidic conditions was inhibited by α1-antitrypsin. Lizard fish MSSP most rapidly hydrolyzed Boc-Val-Pro-Arg-MCA and Boc-Gln-Arg-Arg-MCA, but did not hydrolyzed Suc-Leu-Leu-Val-Tyr-MCA and Suc-Ala-Ala-Pro-Phe-MCA, and was not suppressed either by E-64, pepstatin A and ethylenediaminetetraacetic acid (EDTA). These results indicate that the purified MSSP is a serine protease complexed with α2-macroglobulin, and the entrapped protease was dissociated by the acid treatment. Purified and free MSSPs were most active at pH 10.0 and 9.0, respectively. Purified MSSP degraded myofibrillar proteins and casein but time courses of degradation of these substrates by the enzyme differed.  相似文献   

20.
The balance of serine proteases and inhibitors in nerve and muscle is altered during programmed- and injury-induced remodeling. A serpin, α1-antichymotrypsin (α1-ACT), and Kunitz-inhibitor containing forms of the β-amyloid precursor protein (βAPP) may be important components of this balance. In the present study, we analyzed their expression in primary cultures of human myogenic (satellite) cells that mimic myogenic differentiation using Western blotting and immunocytochemistry. In vitro results were compared to in vivo results from normal adult human skeletal muscle biopsies. Using an anti-α1-ACT polyclonal antibody, we detected a 62 kDa immunoreactive band both in cultured human myogenic cells (mononucleated myoblasts as well as multi-nucleated myotubes) and in extracts of human muscle biopsies. With a polyclonal anti-βAPP antibody we found two bands (105 and 120 kDa) in myoblasts and myotubes in culture. However, the same antibody recognized only a single band at 92 kDa in biopsies. By immunocytochemistry, both α1-ACT and βAPP were indistinctly present on localized to the surface of myoblasts in culture. In contrast, these inhibitors were dense on myotube surfaces, where they often formed distinct aggregates and frequently co-localized. In permeabilized muscle cells, α1-ACT and βAPP appeared to be localized to the perikarya of both myoblasts and myotubes. Confirming previous results, both α1-ACT and βAPP were present at the neuromuscular junction in human muscle sections. These developmental changes found during in vitro myogenesis for α1-ACT and βAPP, both serine protease inhibitors, reinforce the hypothesis that regulation of the serine proteases and serine protease inhibitors plays an important role in neuromuscular differentiation. © 1995 Wiley-Liss Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号