首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impedance measurements of cell-based sensors are a primary characterization route for detection and analysis of cellular responses to chemical and biological agents in real time. The detection sensitivity and limitation depend on sensor impedance characteristics and thus on cell patterning techniques. This study introduces a cell patterning approach to bind cells on microarrays of gold electrodes and demonstrates that single-cell patterning can substantially improve impedance characteristics of cell-based sensors. Mouse fibroblast cells (NIH3T3) are immobilized on electrodes through a lysine-arginine-glycine-aspartic acid (KRGD) peptide-mediated natural cell adhesion process. Electrodes are made of three sizes and immobilized with either covalently bound or physically adsorbed KRGD (c-electrodes or p-electrodes). Cells attached to c-electrodes increase the measurable electrical signal strength by 48.4%, 24.2%, and 19.0% for three electrode sizes, respectively, as compared to cells attached to p-electrodes, demonstrating that both the electrode size and surface chemistry play a key role in cell adhesion and spreading and thus the impedance characteristics of cell-based sensors. Single cells patterned on c-electrodes with dimensions comparable to cell size exhibit well-spread cell morphology and substantially outperform cells patterned on electrodes of other configurations.  相似文献   

2.
The response of cells to a chemical or biological agent in terms of their impedance changes in real-time is a useful mechanism that can be utilized for a wide variety of biomedical and environmental applications. The use of a single-cell-based analytical platform could be an effective approach to acquiring more sensitive cell impedance measurements, particularly in applications where only diminutive changes in impedance are expected. Here, we report the development of an on-chip cell impedance biosensor with two types of electrodes that host individual cells and cell populations, respectively, to study its efficacy in detecting cellular response. Human glioblastoma (U87MG) cells were patterned on single- and multi-cell electrodes through ligand-mediated natural cell adhesion. We comparatively investigated how these cancer cells on both types of electrodes respond to an ion channel inhibitor, chlorotoxin (CTX), in terms of their shape alternations and impedance changes to exploit the fine detectability of the single-cell-based system. The detecting electrodes hosting single cells exhibited a significant reduction in the real impedance signal, while electrodes hosting confluent monolayer of cells showed little to no impedance change. When single-cell electrodes were treated with CTX of different doses, a dose-dependent impedance change was observed. This enables us to identify the effective dose needed for this particular treatment. Our study demonstrated that this single-cell impedance system may potentially serve as a useful analytical tool for biomedical applications such as environmental toxin detection and drug evaluation.  相似文献   

3.
Impedimetric analysis on adherently growing cells by micro-electrodes provides information related to cell number, cell adhesion and cellular morphology. In this study, cell-based biosensor with micro-electrode arrays (MEAs) was used to monitor the culture behavior of mammalian cancer cells and evaluate the chemosensitivity of anti-cancer drugs using electrochemical impedance spectroscopy. The platinum electrode arrays were fabricated by semiconductor technology to a 10 x 10 pattern, with diameter of 80 microm of each electrode. The human oesophageal cancer cell lines (KYSE 30) were cultured on the surface of the electrodes with the pre-coated fibronectin, the connecting protein for tumor cells metastasis and adhesion in extracellular matrix. Morphology changes during cells adhesion, spreading, and proliferation can be detected by impedimetric analysis in a real time and non-invasive way. Cisplatin was added to cells for potential drug screening applications. The experimental results show that this well-known anti-cancer drug has characteristic chemosensitivity effects on KYSE 30 cells which can be detected by MEA. Thus, this cell-based chip provides a useful analytical method for cancer research.  相似文献   

4.
A new approach for an amperometric array sensor platform employing arrays of sensors in a 24-well cell culture plate format has been developed for simultaneous in vitro determination of nitric oxide (NO) and superoxide free radicals (O(2)(-)) produced by stimulated cells. The work reported focuses on the direct, real-time monitoring of extracellular production of these two analytes, as well as the effects of their interaction. The sensor platform was manufactured by a combination of sputtering gold electrodes and screen-printing carbon electrodes. The O(2)(-) sensor uses covalent immobilization of cytochrome c via a binder, DTSSP (3,3'-dithio-bis(sulphosuccinimidylpropionate) onto the surface of the Au electrodes, whereas the NO sensor system involves an NiTSPc (nickel tetrasulfonated phthalocyanine) film electrodeposited onto the surface of the carbon electrodes and subsequently covered with an external layer of Nafion. For in vitro demonstration of the platforms as a potential drug-screening system, A172 glioblastoma cells were cultured and transferred into the 24-well arrays. Simultaneous and direct monitoring of NO and O(2)(-) production as a response to chemicals of biomedical relevance was carried out. The results obtained demonstrated that it would be possible to envisage a drug screening platform for compounds designed to be inhibitors of nitric oxide synthase or to have an inhibitory effect on superoxide free radical production. By suitable modification of the electrodes employed it would also be possible to extend the platform to measure alternative species.  相似文献   

5.
The piezoelectric sensor (quartz crystal microbalance, QCM) was used to monitor cell adhesion in real time. Two cell lines, rat epithelial cells (WB F344) and lung melanoma cells (B16F10) were used. The cells were adhered and grown on the gold surface of the sensor pre-coated with adsorbed layer of extracellular matrix proteins as vitronectin and laminin. The process of cell attachment and spreading on the gold surface was continuously monitored and displayed by changes of the resonant frequency Deltaf and resistance DeltaR values of the piezoelectric resonators. The initial phase of cell attachment and spreading induced a decrease of frequency and increase of resistance relating viscoelastic properties of the cell monolayer on the sensing surface. The steady-state of both shifts was achieved after a few hours. The presence and state of cells on the surface was confirmed by fluorescent microscopy. The obtained results demonstrate that the piezoelectric sensor is suitable for studies of the cell adhesion processes. Thus obtained cell-based biosensor has potential for identification and screening of biologically active drugs and other biomolecules affecting cellular shape and attachment.  相似文献   

6.
A DNA biochip for on-the-spot multiplexed pathogen identification   总被引:4,自引:0,他引:4  
Miniaturized integrated DNA analysis systems have largely been based on a multi-chamber design with microfluidic control to process the sample sequentially from one module to another. This microchip design in connection with optics involved hinders the deployment of this technology for point-of-care applications. In this work, we demonstrate the implementation of sample preparation, DNA amplification, and electrochemical detection in a single silicon and glass-based microchamber and its application for the multiplexed detection of Escherichia coli and Bacillus subtilis cells. The microdevice has a thin-film heater and temperature sensor patterned on the silicon substrate. An array of indium tin oxide (ITO) electrodes was constructed within the microchamber as the transduction element. Oligonucleotide probes specific to the target amplicons are individually positioned at each ITO surface by electrochemical copolymerization of pyrrole and pyrrole−probe conjugate. These immobilized probes were stable to the thermal cycling process and were highly selective. The DNA-based identification of the two model pathogens involved a number of steps including a thermal lysis step, magnetic particle-based isolation of the target genomes, asymmetric PCR, and electrochemical sequence-specific detection using silver-enhanced gold nanoparticles. The microchamber platform described here offers a cost-effective and sample-to-answer technology for on-site monitoring of multiple pathogens.  相似文献   

7.
Neuroelectronic interfaces are imperative in investigating neural tissues as electrical signals are the main information carriers in the nervous system and metal microelectrodes have been widely used for recording and stimulation of nerve cells. For high performance microelectrodes, low tissue-electrode interfacial impedance and high charge injection limits are essential and nanoscale surface engineering has been utilized to meet the requirements for microelectrodes. We report a single-cell sized microelectrode, which has unique gold nanograin structures, using a simple electrochemical deposition method. The fabricated microelectrode had a sunflower shape with 1–5 (m of micropetals along the circumference of the microelectrode and 500 nm nanograins at the center. The nanograin electrodes had 69-fold decrease of impedance and 10-fold increase in electrical stimulation capability compared to unmodified flat gold microelectrodes. The recording and stimulation performance of nanograin electrodes was tested using dissociated rat hippocampal neuronal cultures. Noise levels were extremely low (2.89 μVrms) resulting in high signal-to-noise ratio for low-amplitude action potentials (18.6–315 μV). Small biphasic current pulses (20–60 μA) could evoke action potentials from neurons nearby electrodes. This new nanostructured neural electrode may be applicable for the development of cell-based biosensors or clinical neural prosthetic devices.  相似文献   

8.
A cell-based in vitro exposure system was developed to determine whether oxidative stress plays a role in the cytotoxic effects of volatile organic compounds (VOCs) such as benzene, toluene, xylene, and chlorobenzene, using human epithelial HeLa cells. Thin films based on cysteine-terminated synthetic oligopeptides were fabricated for immobilization of the HeLa cells on a gold (Au) substrate. In addition, an immobilized cell-based sensor was applied to the electrochemical detection of the VOCs. Layer formation and immobilization of the cells were investigated with surface plasmon resonance (SPR), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The adhered living cells were exposed to VOCs; this caused a change in the SPR angle and the VOC-specific electrochemical signal. In addition, VOC toxicity was found to correlate with the degree of nitric oxide (NO) generation and EIS. The primary reason for the marked increase in impedance was the change of aqueous electrolyte composition as a result of cell responses. The p53 and NF-kappaB downregulation were closely related to the magnitude of growth inhibition associated with increasing concentrations of each VOC. Therefore, the proposed cell immobilization method, using a self-assembly technique and VOC-specific electrochemical signals, can be applied to construct a cell microarray for onsite VOC monitoring.  相似文献   

9.
Cell-matrix adhesion plays a key role in controlling cell morphology and signaling. Stimuli that disrupt cell-matrix adhesion (e.g., myeloperoxidase and other matrix-modifying oxidants/enzymes released during inflammation) are implicated in triggering pathological changes in cellular function, phenotype and viability in a number of diseases. Here, we describe how cell-substrate impedance and live cell imaging approaches can be readily employed to accurately quantify real-time changes in cell adhesion and de-adhesion induced by matrix modification (using endothelial cells and myeloperoxidase as a pathophysiological matrix-modifying stimulus) with high temporal resolution and in a non-invasive manner. The xCELLigence cell-substrate impedance system continuously quantifies the area of cell-matrix adhesion by measuring the electrical impedance at the cell-substrate interface in cells grown on gold microelectrode arrays. Image analysis of time-lapse differential interference contrast movies quantifies changes in the projected area of individual cells over time, representing changes in the area of cell-matrix contact. Both techniques accurately quantify rapid changes to cellular adhesion and de-adhesion processes. Cell-substrate impedance on microelectrode biosensor arrays provides a platform for robust, high-throughput measurements. Live cell imaging analyses provide additional detail regarding the nature and dynamics of the morphological changes quantified by cell-substrate impedance measurements. These complementary approaches provide valuable new insights into how myeloperoxidase-catalyzed oxidative modification of subcellular extracellular matrix components triggers rapid changes in cell adhesion, morphology and signaling in endothelial cells. These approaches are also applicable for studying cellular adhesion dynamics in response to other matrix-modifying stimuli and in related adherent cells (e.g., epithelial cells).  相似文献   

10.
Clean silicon and gold-patterned silicon platforms were modified with methoxy-polyethylene glycol (M-PEG silane) via a self-assembly technique, which significantly improved their plasma protein resistance capability and cell patterning selectivity. Fibrinogen and IgG were used as model plasma proteins to study the efficacy of PEG layers in resisting protein adsorption. Selective cell patterning on the gold regions of a gold-patterned silicon substrate and tissue compatibility were studied with macrophage and fibroblast cells. The research also revealed how the presence of gold electrodes on a silicon substrate would influence the cell patterning selectivity. Our experimental results showed that the PEG-modified silicon surfaces had a high resistivity to protein and cell attachment and that the PEG-modified gold-patterned silicon surfaces nearly completely eliminated the protein adsorption and cell attachment on silicon. This study provides a new approach to developing biocompatible surfaces for silicon-based BioMEMS devices, particularly for biosensors where a metal-insulator format must be enforced.  相似文献   

11.
Cortisol is a member of the glucocorticoid hormone family and a key metabolic regulator. Increased intracellular cortisol levels have been implicated in type 2 diabetes, obesity, and metabolic syndrome. Cortisol is an important bio-marker of stress and its detection is also important in sports medicine. However, rapid methods for sensitive detection of cortisol are limited. Functionalized gold nanowires were used to enhance the sensitivity and selectivity of cortisol detection. Gold nanowires are used to improve the electron transfer between the electrodes. Moreover, the large surface to volume ratio, small diffusion time and high electrical conductivity and their aligned nature will enhance the sensitivity and detection limit of the biosensor several fold. The biosensor was fabricated using, aligned gold (Au) nanowires to behave as the working electrode, platinum deposited on a silicon chip to function as the counter electrode, and silver/silver chloride as reference electrode. The gold nanowires were coupled with cortisol antibodies using covalent linkage chemistry and a fixed amount of 3alpha-hydroxysteroid dehydrogenase was introduced into the reaction cell during each measurement to convert (reduce) ketosteroid into hydroxyl steroid. Furthermore, the micro-fluidic, micro-fluid part of the sensor was fabricated using micro-electro-mechanical system (MEMS) technology to have better control on liquid flow over Au nanowires to minimize the signal to noise ratio. The biosensor was characterized using SEM, AFM and FTIR technique. The response curve of the biosensor was found to be linear in the range of 10-80 microM of cortisol. Moreover, the presence of hydrocortisone is sensitively detected in the range of 5-30 microM. It is concluded that the functionalized gold nanowires with micro-fluidic device using enzyme fragment complementation technology can provide an easy and sensitive assay for cortisol detection in serum and other biological fluids.  相似文献   

12.
For the sensitive detection of amplicons derived from diagnostic PCR, a novel electrical low-density microarray is applied and compared to state-of-the-art quantitative real-time PCR. The principle of the electrochemical method and the effective use for analysis are described. Interdigitated array gold electrodes (IDA-E) embedded into a silicon chip are the core technology of the fully automated compact biosensor system, basing on enzyme coupled electrochemical detection. The biointerface is built up with thiol-modified capture oligonucleotides on gold and mediates the specific recognition of hybridised target DNA amplified with uniplex or multiplex PCR. In here we show the potential of the designed electrical microarray to function as an advanced screening method for the parallel detection of a panel of the four pathogens Bacillus anthracis, Yersinia pestis, Francisella tularensis and ortho pox viruses (genus), which are among the most relevant biowarfare agents. PCR products, generated from 10 to 50 gene equivalents, have been detected reproducibly. The experiments with varying pathogen amounts showed the good reliability and the high sensitivity of the method, equivalent to optical real-time PCR detection systems. Without PCR the total assay time amounts to 27 min. The advantage of the combination of multiplex-PCR with electrical microarray detection avoiding intensive PCR probe labelling strategies is illustrated.  相似文献   

13.
The effect of endotoxin (lipopolysacharide, LPS) exposure on luteal cells was studied using an in vitro cell culture system. Buffalo luteal cells were isolated from corpora lutea of the late luteal phase (days 14-16 post estrus) and exposed to various LPS doses (5, 10 and 100 microg/ml) for different time periods (6, 12, 18 or 24 h). The cultured cells were subsequently evaluated for oxidative stress (super oxide, nitric oxide, inducible nitric oxide synthase activity, reduced glutathione depletion and lipid peroxidation) and apoptotic markers (mitochondrial membrane potential, DNA fragmentation, apoptotic cells and cell viability). LPS exposure significantly increased the production of super oxide (P<0.05) and nitric oxide (P<0.01) and increased inducible nitric oxide synthase activity (P<0.01). LPS exposure further depleted reduced glutathione (P<0.05) levels and induced lipid peroxidation (P<0.05). LPS exposure also induced the loss of mitochondrial membrane potential (P<0.05), increased DNA fragmentation (P<0.01) and apoptosis (P<0.01) and decreased cell viability (P<0.01). LPS mediated apoptotic pathway in luteal cells was further characterized using a selected LPS dose (10 microg/ml). It was observed that LPS exposure induced mitochondrial translocation of proapoptotic protein Bax, increased the total Bad expression and down regulated the expression of antiapoptotic proteins Bcl2 and BclXL. LPS exposure further induced cytochrome c release and increased Caspase-9 (P<0.01) and Caspase-3 (P<0.01) activities. LPS exposure also inhibited luteal progesterone secretion (P<0.01). It was evident that the LPS mediated apoptotic effects could be prevented by the coincubation of luteal cells with mitochondrial permeability transition pore blocker Cyclosporine A, inducible nitric oxide synthase inhibitor N-[3-(aminomethyl)benzyl]acetamidine and oxidative stress scavenger N-acetyl cysteine. Our study clearly indicates that LPS induces oxidative stress mediated apoptosis in luteal cells through the mitochondrial pathway.  相似文献   

14.
Cell populations often display heterogeneous behavior, including cell-to-cell variations in morphology, adhesion and spreading. However, better understanding the significance of such cell variations for the function of the population as a whole requires quantitative single-cell assays. To investigate adhesion variability in a CHO cell population in detail, we measured integrin-mediated adhesion to laminin and collagen, two ubiquitous ECM components, by AFM-based single-cell force spectroscopy (SCFS). CHO cells generally adhered more strongly to laminin than collagen but population adhesion force distributions to both ECM components were broad and partially overlapped. To determine the levels of laminin and collagen binding in individual cells directly, we alternatingly measured single cells on adjacent microstripes of collagen and laminin arrayed on the same adhesion substrate. In repeated measurements (≥60) individual cells showed a stable and ECM type-specific adhesion response. All tested cells bound laminin more strongly, but the scale of laminin over collagen binding varied between cells. Together, this demonstrates that adhesion levels to different ECM components are tightly yet differently set in each cell of the population. Adhesion variability to laminin was non-genetic and cell cycle-independent but scaled with the range of α6 integrin expression on the cell surface. Adhesive cell-to-cell variations due to varying receptor expression levels thus appear to be an inherent feature of cell populations and should to be considered when fully characterizing population adhesion. In this approach, SCFS performed on multifunctional adhesion substrates can provide quantitative single-cell information not obtainable from population-averaging measurements on homogeneous adhesion substrates.  相似文献   

15.
Chinese hamster ovary (CHO · K1 · PRO) cell growth was inhibited by addition of a gram-negative bacterial lipopolysaccharide (LPS) to the cell culture medium. Growth inhibition began after three or four days of incubation, was dose-dependent up to a maximum at an LPS concentration of 500 μg/ml and was accompanied by cell shape changes and enhanced cytoplasmic vacuolization. Formation of bizarre CHO · K1 · PRO cell shapes and vacuole formation were most pronounced after seven days of incubation with LPS and could be observed by light and electron microscopy. An LPS-resistant cell population was obtained by intermittent in vitro exposure to high levels of LPS; these variant cells or clones derived from them failed to display growth inhibition in the presence of LPS. A clone from the LPS-resistant variant population showed altered cell properties compared to the parental cell line which included changes in cell morphology, adhesion, and endocytosis. Parental cells were markedly density-inhibited, whereas the variant clone exhibited considerable growth after confluency. The LPS-resistant variant cells showed a more elongated morphology than the parental line. No significant differences were observed between rates of detachment of parental and variant cells when sparse cultures of either line were removed from tissue culture dishes by ethylenediaminetetracetate (EDTA). However, at confluency approximately 100% of the variant cells versus 35% of the parental cells were removed by EDTA in one hour. Measurements of 125I-ferritin uptake by parental and variant cells showed approximately twenty-fold and twofold increases, respectively, in uptake induced by LPS when compared to untreated control cultures.  相似文献   

16.
Label-free and real-time monitoring of stem cells based on electrical impedance measurement is increasingly utilized for the quality control of the isolated stem cells to be used in stem cell-based tissue therapy or regenerative medicine. In spite of that the proliferative capacity and multipotency of stem cells are dependent on the type and age of the source tissue, however, the effect of the cell senescence on the impedance measurement of stem cells has not yet been studied. We investigated whether the senescence of adipose tissue-derived stem cells (ADSCs) can be detected by electrical impedance spectroscopy. For this, ADSCs at passage 9 and 31 were prepared and those genetic characteristics and growth kinetics were evaluated by quantitative polymerase chain reaction and cell counting. While the identified ADSCs were grown on the indium tin oxide electrodes, the impedance spectra were measured and interpreted by fitting analysis with an equivalent circuit model. ADSCs at passage 9 adhered on the electrode were small and spindle-shaped whereas the cells at passage 31 were flattened and larger than younger cells. At the beginning of culture time when the cell adhesion occurred, the resistance at 4.6 kHz of passage 31 cells was higher than passage 9 due to the larger size of older cells. Afterwards, the value of passage 9 cells increased higher than passage 31, since younger cells proliferated more than old cells. Therefore, the impedance measurement could characterize the proliferative capacity of ADSCs during expanded culture.  相似文献   

17.
An array of electrodes on which cells could be grown directly was fabricated using silicon anisotropic etching and a thick-photoresist process and employed for the detection of nitric oxide (NO) released from a population of adherently growing human umbilical vein endothelial cells (HUVEC). The electrodes are tip-shaped and are 40 microm high of which only the top 15 microm are exposed Pt-tips. After electrochemical induced modification of the exposed Pt tips using Ni phthalocyanine the individual addressable electrode tips were sensitive and selective for the detection of NO at an applied constant potential of 750 mV. The silicon nitride insulation of the lower part of the tip electrodes prevented the death of the cells upon the application of the working potential at which NO was detected. It also helped to avoid the perturbation of the integrity of the sensing chemistry imparted on the electrode surface that could have resulted from the contact of the adherently growing cells with the active electrode surface. The release of nitric oxide from HUVEC was successfully monitored with different numbers of tip electrodes simultaneously connected as combined working electrode.  相似文献   

18.
Protein microarray technology, in which a large number of capture ligands are spatially arrayed at a high density, presents an attractive method for high-throughput proteomic analysis. Toward this end, we demonstrate the first cell-based protein detection in a microsystem, wherein Escherichia coli cells are genetically engineered to express the desired capture proteins on the membrane surface and are spatially arrayed as sensing elements in a microfluidic device. An E. coli clone expressing peptide ligands with high affinity and high specificity for target molecules was isolated a priori. Then these cells were electrokinetically immobilized on gold electrodes using dielectrophoresis, thus allowing each sensor element to be electrically addressable. Flow cytometry and subsequent fluorescence analysis verified the highly specific capture and detection of target molecules by the bacteria. Finally, through the coexpression of peptide-based capture ligands on the cell surface and fluorescent protein in the cytoplasm, we demonstrate an effective means of directly linking the fluorescence intensity to the density of capture ligands.  相似文献   

19.
The paper discussed a novel design of multifunctional cell-based biosensors for simultaneously detecting cell acidification and extracellular potential. Employing living cells such as cardiac myocytes as a source for the light addressable potentiometric sensor (LAPS) array, this cell-based biosensor was able to monitor both the acidification and extracellular potential in parallel. For LAPS array fabrication, part of the silicon base was heavily doped with boron to form separate testing areas. Detecting system was built involving lock-in amplifier and digital demodulation with FFT methods. This LAPS array showed a good sensitivity of 53.9 mV/pH to H(+) with good linearity. Each testing area for extracellular potential detection was decreased to 200 microm x 200 microm in size to obtain a better sensitivity. Experiment results showed that this LAPS array could monitor the acidification of cells as well as the extracellular potential with good sensitivity. This novel integrated biosensor will be useful for multi-parameter extracellular monitoring and can possibly be a platform for drug screening.  相似文献   

20.
The prostate gland is conventionally divided into zones or regions. This morphology is of clinical significance as prostate cancer (CaP) occurs mainly in the peripheral zone (PZ). We obtained tissue sets consisting of paraffin-embedded blocks of cancer-free transition zone (TZ) and PZ and adjacent CaP from patients (n = 6) who had undergone radical retropubic prostatectomy; a seventh tissue set of snap-frozen PZ and TZ was obtained from a CaP-free gland removed after radical cystoprostatectomy. Paraffin-embedded tissue slices were sectioned (10-mum thick) and mounted on suitable windows to facilitate infrared (IR) spectra acquisition before being dewaxed and air dried; cryosections were dessicated on BaF(2) windows. Spectra were collected employing synchrotron Fourier-transform infrared (FTIR) microspectroscopy in transmission mode or attenuated total reflection-FTIR (ATR) spectroscopy. Epithelial cell and stromal IR spectra were subjected to principal component analysis to determine whether wavenumber-absorbance relationships expressed as single points in "hyperspace" might on the basis of multivariate distance reveal biophysical differences between cells in situ in different tissue regions. After spectroscopic analysis, plotted clusters and their loadings curves highlighted marked variation in the spectral region containing DNA/RNA bands ( approximately 1490-1000 cm(-1)). By interrogating the intrinsic dimensionality of IR spectra in this small cohort sample, we found that TZ epithelial cells appeared to align more closely with those of CaP while exhibiting marked structural differences compared to PZ epithelium. IR spectra of PZ stroma also suggested that these cells are structurally more different to CaP than those located in the TZ. Because the PZ exhibits a higher occurrence of CaP, other factors (e.g., hormone exposure) may modulate the growth kinetics of initiated epithelial cells in this region. The results of this pilot study surprisingly indicate that TZ epithelial cells are more likely to exhibit what may be a susceptibility-to-adenocarcinoma spectral signature. Thus, IR spectroscopy on its own may not be sufficient to identify premalignant prostate epithelial cells most likely to progress to CaP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号