首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pre-dispersal seed predators can have important effects on population dynamics and trait selection in their host plants. However, the factors determining spatial variation in predation intensity are poorly known. We assessed the relative importance of host plant distribution, alternative hosts and environmental factors for among-population variation in predation in a system with three host plants, a specialist and a generalist pre-dispersal seed predator.
Effects of host plant population size were relatively more important in the specialist than in the generalist seed predator. The specialist seed predator Apion opeticum , utilizing only Lathyrus vernus occurred in less than half of the patches, and specialist seed predation was influenced only by host plant population size. The generalist Bruchus atomarius was present in nearly all patches, and generalist predation was influenced by environmental factors and availability of alternative hosts. Predation on alternative hosts was not affected by L. vernus presence.
The results suggest that a wide range of factors influences the strength of plant–seed–predator interactions, and that the relative importance of different factors depend on the degree of specialization. This will result in highly complex selection mosaics and coevolutionary trajectories.  相似文献   

2.
Feeding behaviour of the specialist Brassicae aphid, Brevicoryne brassicae (L) (cabbage aphid) and the generalist, Myzus persicae, (Sulzer) (peach potato aphid) was monitored electronically on the susceptible cauliflower, Brassica oleracea var. botrytis cv Newton Seale, and a range of 17 Brassica species, B. carinata, B. juncea, B. nigra, B. macrocarpa, and B. villosa var. drepanensis and cultivated brassica varieties, B. oleracea, B. campestris and B. napus. Aphids, monitored for 10 h on the underside of leaves, performed recognisable feeding behaviour on all brassica species. The main differences in feeding behaviour, between M. persicae and B. brassicae, on the susceptible cauliflower Newton Seale, were fewer probes, shorter times to initially reach the phloem but longer times to establish sustained phloem ingestion and the longer times spent, by M. persicae, in xylem ingestion.Feeding behaviour on the range of brassica species tested indicated that generalist and specialist aphids are influenced differently by the host plant. A longer time spent in xylem ingestion was again the major difference in the feeding behaviour of the two aphids. In addition, rejection of passive phloem ingestion, by M. persicae, was not related so closely to increased time spent in non probing activities, as for B. brassicae. This observation indicates that M. persicae does not generally accept or reject brassica species due to the presence of phagostimulants, such as glucosinolates at the leaf surface or along the stylet pathway, unless the concentration is very high. Differences in feeding strategies employed by generalist and specialist aphids on the same plants are discussed.  相似文献   

3.
In order to test whether the electroantennogram (EAG) response spectrum of an insect correlates to its degree of host specificity, we recorded EAG responses of two parasitoid species with different degrees of host specificity, Microplitis croceipes (specialist) and Cotesia marginiventris (generalist), to a wide array of odor stimuli including compounds representing green leaf volatiles (GLVs), herbivore-induced plant volatiles (HIPV), ecologically irrelevant (not used by the parasitoid species and their hosts for host location) plant volatiles, and host-specific odor stimuli (host sex pheromones, and extracts of host caterpillar body and frass). We also tested the EAG responses of female moths of the caterpillar hosts of the parasitoids, Heliothis virescens and Spodoptera exigua, to some of the odor stimuli. We hypothesized that the specialist parasitoid will have a narrower EAG response spectrum than the generalist, and that the two lepidopteran species, which are similar in their host plant use, will show similar EAG response spectra to plant volatiles. As predicted, the specialist parasitoid showed greater EAG responses than the generalist to host-specific odor and one HIPV (cis-3-hexenyl butyrate), whereas the generalist showed relatively greater EAG responses to the GLVs and unrelated plant volatiles. We detected no differences in the EAG responses of H. virescens and S. exigua to any of the tested odor.  相似文献   

4.
Many studies have paid particular attention to the role of either secondary plant compounds or amino acids as determinants of host-plant range in phytophagous insects. Here we examine the relative importance of both of these classes of compound in host acceptance by generalist and specialist morphs of the black bean aphid, Aphis fabae, that are morphologically similar and genetically identical. Eleven secondary plant compounds and six amino acids with known biological activity in aphids are presented to insects within an artificial membrane system as single compounds, mixtures of same-class compounds and combined mixtures of the two classes of compound. It is found that 1) when specific single secondary compounds and amino acids are presented to generalist and specialist morphs of A. fabae, differential responses are exclusively consistent with plant-use strategy for amino acids but not for secondary compounds, 2) neither secondary compound nor amino acid mixtures give reproductive responses entirely consistent with plant range, but the response to secondary compounds is broadly consistent with plant range whereas the response to amino acids is not, 3) when secondary compounds and amino acid mixtures are combined, the response to secondary compounds generally dominates that to amino acids. Some scenarios of plant-range determination by secondary plant compounds and amino acids, suggested by results, are discussed.  相似文献   

5.
Probing behaviour as affected by a previous infestation was studied in two aphid species on their respective host plants. Probing behaviour by Aphis fabae (reported to have beneficial effects when living in colonies) and Rhopalosiphum padi (without known beneficial effects) was studied using the electrical penetration graph (EPG) technique. In A. fabae the main effects were longer and more continuous sap ingestion, and less salivation into sieve elements before sap ingestion. These suggest phloem factors. Nevertheless, mesophyll and non-vascular tissues are likely to be involved to a lesser extent, as reflected by fewer non-probing periods before the first phloem phase on previously colonised leaves as compared to clean leaves. Total honeydew production increased on a previously colonised leaf due to the prolonged sap ingestion periods but the excretion rate was not affected, indicating that the ingestion rate remained unaltered. R. padi did not show responses to previous colonisation. It is hypothesized that the changes in probing behaviour are due to changed plant properties, chemical contents of sieve element sap and/or physiological changes induced by the saliva from the colony.  相似文献   

6.
The probing and larviposition behaviour of the bird cherry-oat aphid, Rhopalosiphum padi on summer and winter host plants were investigated using electrical penetration graph (EPG) coupled with simultaneous video recording. In this way the precise probing history prior to parturition can be monitored and the location of possible reproductive stimulants identified. On the host plant, all gynoparae (autumn winged females that give birth to sexual females on bird cherry, Prunus padus, the primary host) and 55% of winged virginoparae (summer females which produce further virginoparae on barley, Hordeum vulgare, a secondary host) initiated larviposition before phloem contact. However, 90% of wingless virginoparae (on barley) contacted the phloem before first larviposition whilst 10% did not. Thus, phloem contact does not appear to be a pre-requisite for these aphid forms to initiate reproduction.  相似文献   

7.
A generalist feeding strategy is common among eruptive insect herbivores but the ultimate reasons for a generalist strategy are not clear. Although generalist insect herbivores are able to complete their life cycle on several species of host plants, there is wide variation in the performance of individuals grown on different hosts. We examined whether different populations of Operophtera brumata are adapted to use the host species which is locally most abundant, and how the host plant affects growth and development of the insect. We reared two allopatric populations (eastern Finland, Prunus padus; south-west Finland, Quercus robur) on four species of host plants (Pr. padus, Populus tremula, Q. robur, Salix phylicifolia) from neonate larvae to the adult stage and measured the growth and development of individuals and the timing of adult hatching. The performance of both populations was best on Pr. padus, and the south-western population, originally on Q. robur, was well adapted to this host. The host affected the growth of females more than that of males. The host plant had an unexpected effect on hatching times of the adults. Individuals grown on the original host hatched in normal synchrony, i.e. males 6–7 days before females; but on alternative hosts this synchrony was disturbed. As is common in eruptive, capital-breeding generalist moths where female fecundity is linked to weight, host quality is critical for the flightless females of O. brumata. We suggest that in a heterogeneous environment the disturbing effect of alternative host plants on adult emergence may decrease the population density and growth rate compared to the potential maximum in a homogeneous environment. Received: 8 July 1999 / Accepted: 29 October 1999  相似文献   

8.
1. Both the physiological efficiency (PE) hypothesis and the preference–performance (PP) hypothesis address the complex interactions between herbivores and host plants, albeit from different perspectives. The PE hypothesis contends that specialists are better physiologically adapted to their host plants than generalists. The PP hypothesis predicts that larvae perform best on the host plant preferred by ovipositing females. 2. This study tests components of both hypotheses using the specialist checkerspot, Euphydryas anicia, the generalist salt marsh caterpillar, Estigmene acrea, and host plants in the genus Penstemon, which are defended by iridoid glycosides. 3. In laboratory experiments, the generalist preferred and performed significantly better on the less well defended host plant species. This is consistent with results from a common garden experiment where the less well defended Penstemon species received more damage from the local community of generalists. Larvae of the specialist checkerspot preferred the more chemically defended species in the laboratory, but performed equally well on both hosts. However, field experiments demonstrated that adult checkerspot females preferred to oviposit on the less well defended host plant. 4. Components of the physiological efficiency hypothesis were supported in this system, as the specialist outperformed the generalist on the more iridoid glycoside‐rich host plant species. There was no support for the PP hypothesis, however, as there was no clear relationship between female preference in the field and offspring performance in the laboratory.  相似文献   

9.
1. A host specialist parasitoid is thought to have greater efficiency in locating hosts or greater ability to overcome host defence than a generalist species. This leads to the prediction that a specialist should locate and parasitise more hosts than a generalist in a given arena. The work reported here tested these predictions by comparing the host‐searching behaviour of Diadegma semiclausum (a specialist) and Cotesia plutellae (an oligophagous species), two parasitoids of larval Plutella xylostella. 2. Both parasitoids employed antennal search and ovipositor search when seeking hosts but D. semiclausum also seemed to use visual perception in the immediate vicinity of hosts. 3. Larvae of P. xylostella avoided detection by parasitoids by moving away from damaged plant parts after short feeding bouts. When they encountered parasitoids, the larvae wriggled vigorously as they retreated and often hung from silk threads after dropping from a plant. 4. These two parasitoids differed in their responses to host defences. Diadegma semiclausum displayed a wide‐area search around feeding damage and waited near the silk thread for a suspended host to climb up to the leaf, then attacked it again. Cotesia plutellae displayed an area‐restricted search and usually pursued the host down the silk thread onto the ground. 5. Diadegma semiclausum showed a relatively fixed behavioural pattern leading to oviposition but C. plutellae exhibited a more plastic behavioural pattern. 6. The time spent by the two parasitoids on different plants increased with increasing host density, but the time spent either on all plants or a single plant by D. semiclausum was longer than that of C. plutellae. Diadegma semiclausum visited individual plants more frequently than C. plutellae before it left the patch, and stung hosts at more than twice the rate of C. plutellae. 7. The results indicated that the host‐location strategies employed by D. semiclausum were adapted better to the host's defensive behaviour, and thus it was more effective at detecting and parasitising the host than was C. plutellae.  相似文献   

10.
The interactions between herbivorous insects and their symbiotic micro-organisms can be influenced by the plant species on which the insects are reared, but the underlying mechanisms are not understood. Here, we identify plant nutrients, specifically amino acids, as a candidate factor affecting the impact of symbiotic bacteria on the performance of the phloem-feeding aphid Aphis fabae. Aphis fabae grew more slowly on the labiate plant Lamium purpureum than on an alternative host plant Vicia faba, and the negative effect of L. purpureum on aphid growth was consistently exacerbated by the bacterial secondary symbionts Regiella insecticola and Hamiltonella defensa, which attained high densities in L. purpureum-reared aphids. The amino acid content of the phloem sap of L. purpureum was very low; and A. fabae on chemically defined diets of low amino acid content also grew slowly and had elevated secondary symbiont densities. It is suggested that the phloem nutrient profile of L. purpureum promotes deleterious traits in the secondary symbionts and disturbs insect controls over bacterial abundance.  相似文献   

11.
1. Phytochemical coevolution theory, a long-standing paradigm in plant–insect interactions, predicts that specialist herbivores are less negatively affected by the allelochemicals of their host plants than are generalist herbivores. Although this theory is prevalent in plant–insect science, it is not always supported by empirical studies measuring the performance of specialist and generalist insects in response to allelochemicals. 2. The present study aimed to investigate: (i) whether there a difference between specialist and generalist performance in response to allelochemicals and (ii) whether the effect of allelochemicals on specialists and generalists depend upon allelochemical class or insect order. 3. A meta-analysis was conducted incorporating 76 effect sizes drawn from studies that directly compared the performance of specialist and generalist insects in response to treatment and control diets. Most of the effect sizes were related to the performance metric growth, the insect order Lepidoptera, and the allelochemical class nitrogen-containing compounds. 4. As predicted by phytochemical coevolution theory, specialist insects responded less negatively to allelochemicals of their hosts than generalist insects in terms of growth. There were no significant differences in terms of fecundity or survival, or among allelochemical classes or insect orders. 5. These results support the prediction of phytochemical coevolution theory that specialist insects respond less negatively to allelochemicals of their hosts than generalists, although only in terms of growth.  相似文献   

12.
Botanical preparations, usually from non-host plants, can be used to manipulate the behaviour of insect pests and their natural enemies. In this study, the effects of extracts of Chrysanthemum morifolium, a non-host plant of the diamondback moth, Plutella xylostella (Linnaeus), on the olfactory and oviposition responses of this phytophagous insect and on levels of parasitism by its specialist parasitoid Cotesia plutellae (Kurdjumov) were examined, using Chinese cabbage Brassica campestris L. ssp. pekinensis as the test host plant. Olfactometer tests showed that volatiles of chrysanthemum extract-treated host plants were less attractive to P. xylostella females than those from untreated host plants; and in contrast, volatiles of the chrysanthemum extract-treated host plants were more attractive to females of its parasitoid C. plutellae than those from untreated host plants. Oviposition preference tests showed that P. xylostella females laid only a small proportion of their eggs on chrysanthemum extract-treated host plants, while ovipositing parasitoid females parasitized a much higher proportion of host larvae feeding on the treated host plants than on untreated host plants. These results suggest that certain non-host plant compounds, when applied onto a host plant, may render the plant less attractive to a phytophagous insect but more attractive to its parasitoids. Application of such non-host plant compounds can be explored to develop push-pull systems to reduce oviposition by a pest insect and at the same time enhance parasitism by its parasitoids in crops.  相似文献   

13.
The use of general foraging kairomones in a generalist parasitoid   总被引:1,自引:0,他引:1  
Almost no comparative studies are available on the use of general and specific infochemical cues by generalist parasitoids with hosts from different families feeding on host plants also from different families. Based on literature, two hypotheses were developed and tested with host recognition cues used by the larval parasitoid Lariophagus distinguendus . This generalist parasitizes beetle species from different families developing in seeds of plant species from the Poaceae and Fabaceae. The first hypothesis predicts that for initial encounters with host species, natural enemies should innately use general cues, which are common to all hosts and their food plants. The second hypothesis predicts that natural enemies should learn specific cues from host plant and host after experience with a host species. The first hypothesis was partly confirmed. L. distinguendus innately reacted to faecal cues from several host species and chemical analyses of faeces from these hosts revealed the common occurrence of chemicals that are used for host recognition by L. distinguendus . In disagreement with the first hypothesis, parasitoids did not innately respond to cues from plant seeds. Preference experiments on the influence of experience demonstrated an increased host recognition response towards a host after experience with it. In support of the second hypothesis, L. distinguendus females learned specific cues from herbivore-damaged wheat, rice and cowpea seeds and from the faeces of the bean weevil Callosobruchus maculatus .  相似文献   

14.
Models of sympatric speciation for phytophagous insects are based on the premise that ecological specialization on different host plants can indirectly result in significant reproductive isolation. A candidate example of host plant shift is provided by the partially reproductively-isolated aphids Aphis fabae fabae and A. f. mordwilkoi , which utilize different hosts for sexual reproduction. However, unexpected isolation based on mating behaviour was found for these two aphids. In olfactometer trials, males responded to the pheromones of females of both subspecies when presented a subspecies in isolation but preferentially to females of the same subspecies in choice tests. On contact, the incidence or duration of between-subspecies copulations was significantly lower than same-subspecies copulations, and spermatozoa were transferred during 88% of the same-subspecies copulations, but only 19% of between-subspecies copulations. These data are indicative of strong pre-zygotic isolation between the subspecies. Complementary restriction analysis of mitochondrial DNA and a plasmid (pAFE/eu) in an obligate symbiotic bacterium (Buchnera) revealed a paraphyletic relationship among four subspecies of A. fabae (A. f. fabae, A. f mordwilkoi, A. f cirsiiacanthoidis and A. f. solanella). We discuss how the lack of clear genetic differentiation between A. f. fabae and A. f. mordwilkoi , despite substantial pre-zygotic isolation, may be a consequence of reinforcement.  相似文献   

15.
Parasitoids use odor cues from infested plants and herbivore hosts to locate their hosts. Specialist parasitoids of generalist herbivores are predicted to rely more on herbivorederived cues than plant-derived cues. Microplitis croceipes (Cresson)(Hymenoptera: Braconidae) is a relatively specialized larval endoparasitoid of Heliothis virescens (F.)(Lepidoptera: Noctuidae), which is a generalist herbivore on several crops including cotton and soybean. Using M. croceipes/H. virescens as a model system, we tested the following predictions about specialist parasitoids of generalist herbivores:(i) naive parasitoids will show innate responses to herbivore-emitted kairomones, regardless of host plant identity and (ii) herbivore-related experience will have a greater influence on intraspecific oviposition preference than plant-related experience. Inexperienced (naive) female M. croceipes did not discriminate between cotton-fed and soybean-fed H. virescens in oviposition choice tests, supporting our first prediction. Oviposition experience alone with either host group influenced subsequent oviposition preference while experience with infested plants alone did not elicit preference in M. croceipes, supporting our second prediction. Furthermore, associative learning of oviposition with host-damaged plants facilitated host location. I terestingly, naive parasitoids attacked more soybeathan cotton-fed host larvae in two-choice tests when a background of host-infested cotton odor was supplied, and vice versa. This suggests that plant volatiles may have created an olfactory contrast effect. We discussed ecological significance of the results and concluded that both plant- and herbivore-related experiences play important role in parasitoid host foraging.  相似文献   

16.
Abstract. 1. Nymphs of Vanduzeea arquata Say have been found to be more host-specific in nature and to show a higher degree of selectivity in host discrimination experiments than nymphs of Enchenopa binotata (Say), It was hypothesized that this differential selectivity would be reflected in the probing behaviour of individuals placed on twigs of host and non-host plants. Probing behaviour was examined by direct observation of nymphs and by sectioning and staining the probed plant tissues.
2. All nymphs probed readily and for extended periods on both host and non-host twigs. E.binotuta nymphs showed no consistent differences in probing behaviour on hosts versus non-hosts, but V.atquuta nymphs were more likely to withdraw their stylets within 60 s when on non-host twigs and produced honeydew only when on their host species. V.urquatu nymphs reached the phloem sieve elements only when on host twigs and broke many cells in peripheral plant tissue layers while probing. E.binotata nymphs broke few cells and often reached the phloem of non-host as well as host plants.
3. Nymphs of V.arquata always reject non-host plants, apparently in the course of probing and prior to encountering the phloem sap. Chemical compounds released from ruptured parenchyma cells may act as probing stimulants or inhibitors. E.binotura nymphs often feed on non-host plants in a non-choice situation; their preferential settling on host twigs in discrimination experiments may reflect a tendency to abandon non-host twigs more readily than host twigs.  相似文献   

17.
Parasite specialization on one or a few host species leads to a reduction in the total number of available host individuals, which may decrease transmission. However, specialists are thought to be able to compensate by increased prevalence in the host population and increased success in each individual host. Here, we use variation in host breadth among a community of avian Haemosporida to investigate consequences of generalist and specialist strategies on prevalence across hosts. We show that specialist parasites are more prevalent than generalist parasites in host populations that are shared between them. Moreover, the total number of infections of generalist and specialist parasites within the study area did not vary significantly with host breadth. This suggests that specialists can infect a similar number of host individuals as generalists, thus compensating for a reduction in host availability by achieving higher prevalence in a single host species. Specialist parasites also tended to infect older hosts, whereas infections by generalists were biased towards younger hosts. We suggest that this reflects different abilities of generalists and specialists to persist in hosts following infection. Higher abundance and increased persistence in hosts suggest that specialists are more effective parasites than generalists, supporting the existence of a trade‐off between host breadth and average host use among these parasites.  相似文献   

18.
Aphis fabae gynoparae occurred in the same large proportion in simultaneous collections of all aphids alighting and probing on, and taking off from, a host plant (spindle) and a non-host (peach), and behaved similarly when approaching and leaving them in the same conditions. Most alighters took off again from leaves of both kinds within a few minutes, staying longer and probing more times on the host. In atmospheric conditions favouring local 'hovering' instead of dispersal, flying and alighting aphids became concentrated around host plants, not through any specific attraction to them, but apparently because more aphids had accumulated upon them and were now taking off.
Brevicoryne brassicae occurred in the same large proportion in simultaneous collections of aphids alighting on a host plant (cabbage) and a non-host (sugar beet). No satisfactory evidence was found of preferential alightment on cabbage and there were indications of preferential alightment on the non-host. A very small minority of the A. fabae and B. brassicae that alighted on their hosts stayed there long enough to larviposit. This minority was rather larger among alighters late in the day, but in the absolute sense, more colonization occurred during earlier periods when more aphids arrived.
The intensely dispersive type of host-finding behaviour in Myzus persicae, A. fabae and B. brassicae may be common among Aphididae. It seems ideal for the dissemination of non-persistent plant viruses, more particularly among the less-favoured host plants of each aphid. The tendency to commensal association between virus and vector provides an ecological framework which may govern the incidence of virus-vector specificity and symbiosis.  相似文献   

19.
1. Colonization success of species when confronted with novel environments is of interest in ecological, evolutionary and conservation contexts. Such events may represent the first step for ecological diversification. They also play an important role in adaptive divergence and speciation. 2. A species that is able to do well across a range of environments has a higher plasticity than one whose success is restricted to a single or few environments. The breadth of environments in which a species can succeed is ultimately determined by the full pattern of its vital rates in each environment. 3. Examples of organisms colonizing novel environments are insect herbivores expanding their diets to novel host plants. One expectation for insect herbivores is that species with specialized diets may display less plasticity when faced with novel hosts than generalist species. 4. We examine this hypothesis for two generalist and two specialist neotropical beetles (genus Cephaloleia: Chrysomelidae) currently expanding their diets from native to novel plants of the order Zingiberales. Using an experimental approach, we estimated changes in vital rates, life-history traits and lifetime fitness for each beetle species when feeding on native or novel host plants. 5. We did not find evidence supporting more plasticity for generalists than for specialists. Instead, we found similar patterns of survival and fecundity for all herbivores. Larvae survived worse on novel hosts; adults survived at least as well or better, but reproduced less on the novel host than on natives. 6. Some of the novel host plants represent challenging environments where population growth was negative. However, in four novel plant-herbivore interactions, instantaneous population growth rates were positive. 7. Positive instantaneous population growth rates during initial colonization of novel host plants suggest that both generalist and specialist Cephaloleia beetles may be pre-adapted to feed on some novel hosts. This plasticity in host use is a key factor for successful colonization of novel hosts. Future success or failure in the colonization of these novel hosts will depend on the demographic rates described in this research, natural selection and the evolutionary responses of life-history traits in novel environments.  相似文献   

20.
Video recording and electrical penetration graph techniques are used simultaneously to investigate host acceptance (in terms of reproduction) and probing activities of autumn migrants (gynoparae) of the bird cherry‐oat aphid Rhopalosiphum padi (L.) on detached leaves and on leaves on intact plants of the winter host, bird cherry Prunus padus. There are no significant differences between the times taken to first parturition or the number of nymphs produced over a 6‐ or 18‐h period on intact plants or detached leaves. Stylet probing activities (i.e. total probe duration, xylem ingestion, the time to first phloem contact and phloem salivation) are also similar in the two situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号