首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of auxin and gibberellic acid on cell wall composition in various regions of epicotyls of azuki bean ( Vigna angularis Ohwi and Ohashi cv. Takara) were investigated with the following results. (1) Young segments excised from apical regions of the epicotyl elongated in response to added 10−4 M indole-3-acetic acid (IAA). When the segments were supplied with 50 m M sucrose, the IAA-induced segment growth was accompanied by enhanced overall synthesis of cell wall polysaccharides, such as xyloglucans, polyuronides and cellulose. This IAA effect on the cell wall synthesis is a consequence of extension growth induced by IAA. Gibberellic acid (GA) at 10−4 M synergistically enhanced the IAA-induced cell wall synthesis as well as IAA-induced extension growth, although GA by itself neither stimulated the cell wall synthesis nor extension growth. In the absence of sucrose, cell wall synthesis was not induced by IAA or GA. (2) In mature segments excised from basal regions of the epicotyl, no extension growth was induced by IAA or GA. GA enhanced the synthesis of xylans and cellulose when the segments were supplied with 50 m M sucrose. IAA had no effect on the cell wall synthesis. These findings indicate that synthesis of polyuronides, xyloglucans and cellulose, which occurs during extension growth of the apical region of the epicotyl, is regulated chiefly by auxin whereas synthesis of xylans and cellulose during cell maturation in the basal region of the epicotyl is regulated by GA.  相似文献   

2.
The effects of galactose on IAA-induced elongation and endogenous level of UDP-glucose (UDPG) in oat ( Avena sativa L. cv. Victory) coleoptile segments were examined under various growth conditions to see if there was a correlation between the level of UDPG and auxin-induced growth. The following results were obtained:
  • (1)

    Galactose (10 m M ) inhibited the auxin-induced cell elongation of oat coleoptile segments after a lag of ca 2 h. Determinations of cell wall polysaccharides and UDP-sugars indicated that galactose, when inhibiting the cell wall polysaccharide synthesis, decreased the level of UDPG but caused an increase in the levels of Gal-1-P and UDP-Gal.

  • (2)

    When coleoptile segments treated with IAA and galactose were transferred to galactose-free IAA-solution, the segment elongation was restored and the amounts of cell wall polysaccharides increased. During this period, the amount of UDPG increased and the levels of Gal-1-P and UDP-Gal slightly decreased or leveled off. The UDP-pentoses changed similarly as UDPG did.

  • (3)

    Addition of sucrose (30 m M ) enhanced IAA-induced cell elongation and removed growth inhibition by 1 m M galactose. Sucrose increased the amounts of the cell wall polysaccharides and the level of UDPG in the presence or absence of IAA and also counteracted the decrease in UDPG caused by galactose.


These results indicate that the level of UDPG is an important limiting factor for cell wall biosynthesis and, thus, for auxin-induced elongation.  相似文献   

3.
Konno, H., Yamasalu, Y. and Katoh, K. 1987. Fractionation andpartial characterization of pectic polysaccharides in cell wallsfrom liverwort (Marchantia polymorpha) cell cultures.—Jexp. Bot. 38: 711–722. Pectic polysaccharides were extracted from the starch-free cellwall preparation of cell suspension cultures of Marchantia polymorpha.The polysaccharides were fractionated by DEAE-Sephadex A-50ion-exchange chromatography yielding the five fractions, andthe degree of polymerization and glycosyl composition determinedfor each fraction. The neutral rich and acidic pectic polymerswere depolymerized by purified endoglucanase (l,4-ß-D-glucan4-glucanohydrolase, E.C. 3.2.1.4 [EC] .) and endopolygalacturonase(poly-l,4--Dgalacturonide glycanohydrolase, E.C. 3.2.1.15 [EC] ),respectively. The degraded pectic fractions were fractionatedby gel filtration chromatography on Bio-Gel A-5m and Bio-GelP-2, and glycosyl composition determined for each fraction.The results indicate that pectic polysaccharides contain glucose-richpolymer, rhamnogalacturonan and homogalacturonan in a ratioof 1:4:0–6. In addition, pectic polysaccharides were releasedas five pectic fragments from the cell walls by purified endopectatelyase (poly-l,4--D-galacturonide lyase, E.C. 4.2.2.2 [EC] ). Basedon the analysis of glycosyl composition of each fragment, thepectic polysaccharides of Marchantia cell walls are characterized Key words: Cell suspension culture, cell wall, liverwort, Marchantia polymorpha, pectic polysaccharides  相似文献   

4.
Pyrolysis molecular-beam mass spectrometry (PyMBMS) was tested as a high-throughput method for relative abundances of guaiacyl and syringyl lignin in lignocellulosic cell-wall materials from stems of a population of maize intermated B73?×?Mo17 (IBM) recombinant inbred lines. Variations of up to twofold across the population in phenylpropanoid abundance were observed. Several histochemical and quantitative biochemical assays were used to validate the mass spectrometric data for lignin, hydroxycinnamic acids, crystalline cellulose, non-cellulosic glucans, and xylans. We demonstrate PyMBMS to be a valid high-throughput screen suitable for analysis of lignin abundance in large populations of bioenergy grasses. Pentose from xylans and hexose from cellulosic and non-cellulosic glucans also varied substantially across the population, but abundances of diagnostic fragments for these monosaccharides were not well correlated with the abundance of cell-wall polysaccharides.  相似文献   

5.
Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.  相似文献   

6.
The composition of walls isolated from pollen grains of the seagrass Amphibolis antarctica was determined. Glucose, galactose, and rhamnose were the major neutral monosaccharides in the wall polysaccharides, and fucose, arabinose, xylose, and mannose were present in minor proportions. No apiose, a monosaccharide present in the wall polysaccharides of the vegetative parts of the seagrass Heterozostera tasmanica, was found. Large amounts of uronic acid (mainly as galacturonic acid) were found in the walls. The monosaccharides were probably present in cellulose and pectic polysaccharides, the latter comprising neutral pectic galactans, and rhamnogalacturonans containing high proportions of rhamnose. The walls contained a small amount of protein; glycine and lysine were the amino acids present in the highest proportions. Histochemical examination of isolated walls confirmed the presence of polyanionic components (pectic polysaccharides), -glucans (cellulose), and protein. The composition of the walls is discussed in relation to analyses of the walls of pollen grains and vegetative organs of other plants.  相似文献   

7.
The cell-wall composition of carrot (Daucus carota L.) cells has been studied during their growth in suspension culture. Pectic and hemicellulosic polymers were fractionated according to molecular size by a Sepharose 4B column. Polyuronides in the pectic fraction were resolved into high- and low-molecular-weight components. The low-molecular-weight polyuronides were relatively free of neutral sugars and showed a marked increase during the growth of the cell wall. Hemicellulosic polysaccharides were of disperse molecular size. As cell expansion proceeded, the contents of glucose and xylose in the high-molecular-weight region increased while those in the low-molecular-weight fraction decreased. Removal of auxin from the medium apparently caused degradation of high-molecular-weight polymers in both the pectic and hemicellulosic fractions.  相似文献   

8.
Rapid effects of indole-3-acetic acid (IAA) on the mechanical properties of cell wall, and sugar compositions, intrinsic viscosity and molecular weight distribution of cell wall polysaccharides were investigated with excised epicotyl segments of Vigna angularis Ohwi et Ohashi cv. Takara.
  • 1 IAA caused cell wall loosening as studied by stress-relaxation analysis within 15 min after the IAA application.
  • 2 IAA stimulated the decrease in the content of arabinose and galactose in the hemicellulose 1 h after its application. The amounts of other component sugars in the cell wall polysaccharides remained constant during the IAA-induced segment growth.
  • 3 The intrinsic viscocity of the pectin increased as early as 30 min after the IAA application. This effect was not prevented when elongation growth of the segment was osmotically suppressed by 0.15 M mannitol.
  • 4 Gel permeation chromatography of the pectin on a Sepharose 4 B column demonstrated that IAA caused increase in the mass-average molecular weight of the pectin. Analysis of the sugar compositions of the pectin eluted from the Sepharose 4 B column indicated that IAA increased the molecular weight of the polysaccharides composed of uronic acid, galactose, rhamnose and arabinose. This effect became apparent within 30 min after the IAA application. Furthermore, IAA increased the molecular weight of the pectin when elongation growth of the epicotyl segments was osmotically suppressed by 0.15 M mannitol.
  • 5 Hemicellulose of the cell wall chromatographed on a Sepharose CL-4 B column. Analysis of the neutral sugar compositions and the iodine staining property (specific for xyloglucans) of the polysaccharide solution eluted from the column indicated that the hemicellulose consisted of xyloglucans, arabinogalactans and polysaccharides composed of xylose and/or mannose. IAA caused a decrease in the arabinogalactan content and depolymerization of xyloglucans. These IAA effects became apparent within 30 min after the IAA application. These changes occurred even when elongation growth of the epicotyl segments was osmotically suppressed by 0.15 M mannitol.
Polymerization of the pectin, degradation of arabinogalactans and depolymerization of xyloglucans appear to be involved in the mechanism by which IAA induces cell wall loosening and therefore extension growth of cells.  相似文献   

9.
G. Franz 《Planta》1972,102(4):334-347
Summary Quantitative determinations of the cell wall constituents (pectin, hemicellulose and -cellulose) of growing Phaseolus aureus seedlings showed marked changes during early growth. The cell walls of the 2 to 4 days old seedlings were composed of approximately 30% -cellulose, 50% hemicelluloses and 20% pectin. After four weeks the proportion of the different fractions had changed to approximately 60% -cellulose, 30% hemicelluloses and 10% pectin. Quantitative sugar determinations on these polysaccharide fractions have shown that mainly the non-cellulosic fractions (hemicelluloses and pectin) underwent considerable changes in sugar composition during growth. The hemicelluloses contained non-cellulosic polysaccharides with a high glucose content, which were not starch. These were broken down in the cell walls during growth.In a series of experiments in which 14C-glucose was injected into the hypocotyls of four days old Phaseolus aureus seedlings, the transport of radioactivity to the different plant organs and its incorporation into the cell wall polysaccharides of the bean stem were studied. The major part of the radioactivity was incorporated into the cell wall of the stem tissue. Minor amounts were transported to the roots and leaves. Of the cell wall polysaccharides of the stem, the hemicellulosic fraction showed a higher rate of incorporation of the 14C-glucose than the -cellulose in the early stages of growth. With increasing age of the plant, radioactivity was transferred from the hemicellulosic fraction to the -cellulose, suggesting turnover of polysaccharides in the growing cell wall.  相似文献   

10.
Summary Cell walls of the marine Oomycete, Atkinsiella dubia were prepared and an analysis of the wall constituents was made. The walls contained approximately 80% polysaccharides and 14% proteins along with small quantities of lipid and ash. The carbohydrate fraction was composed primarily of glucan along with 1.8% glucosamine and a trace of galactosamine. An analysis of the amino acid composition of the protein fraction showed the presence of 18 identified amino acids including a surprisingly high (20% of total amino acids) hydroxyproline content. The polysaccharide fractions of the wall were mostly glucans with solubility properties similar to those reported for other Oomycetes. As anticipated, the glucans of mechanically isolated walls were virtually identical to those prepared from chemically isolated walls. The minor glucan component, cellulose, was found to occur in the form of poorly crystalline cellulose I As expected, electron microscopy of wall specimens showed microfibrillar and amorphous regions. It was stressed that Atkinsiella walls, like those of other Oomycetes, contain large quantities of -13 and -16 linked glucan along with a smaller amount of cellulose.  相似文献   

11.
Bryopsis sp. from a restricted area of the rocky shore of Mar del Plata (Argentina) on the Atlantic coast was identified as Bryopsis plumosa (Hudson) C. Agardh (Bryopsidales, Chlorophyta) based on morphological characters and rbcL and tufA DNA barcodes. To analyze the cell wall polysaccharides of this seaweed, the major room temperature (B1) and 90°C (X1) water extracts were studied. By linkage analysis and NMR spectroscopy, the structure of a sulfated galactan was determined, and putative sulfated rhamnan structures and furanosidic nonsulfated arabinan structures were also found. By anion exchange chromatography of X1, a fraction (F4), comprising a sulfated galactan as major structure was isolated. Structural analysis showed a linear backbone constituted of 3‐linked β‐d ‐galactose units, partially sulfated on C‐6 and partially substituted with pyruvic acid forming an acetal linked to O‐4 and O‐6. This galactan has common structural features with those of green seaweeds of the genus Codium (Bryopsidales, Chlorophyta), but some important differences were also found. This is the first report about the structure of the water‐soluble polysaccharides biosynthesized by seaweeds of the genus Bryopsis. These sulfated galactans and rhamnans were in situ localized mostly in two layers, one close to the plasma membrane and the other close to the apoplast, leaving a middle amorphous, unstained cell wall zone. In addition, fibrillar polysaccharides, comprising (1→3)‐β‐d ‐xylans and cellulose, were obtained by treatment of the residue from the water extractions with an LiCl/DMSO solution at high temperature. These polymers were also localized in a bilayer arrangement.  相似文献   

12.
Cell walls of tomato (Lycopersicon esculentum Mill.) fruit, prepared so as to minimize residual hydrolytic activity and autolysis, exhibit increasing solubilization of pectins as ripening proceeds, and this process is not evident in fruit from transgenic plants with the antisense gene for polygalacturonase (PG). A comparison of activities of a number of possible cell wall hydrolases indicated that antisense fruit differ from control fruit specifically in their low PG activity. The composition of cell wall fractions of mature green fruit from transgenic and control (wild-type) plants were indistinguishable except for trans-1,2-diaminocyclohexane-N,N,N[prime],N[prime]-tetraacetic acid (CDTA)-soluble pectins of transgenic fruit, which had elevated levels of arabinose and galactose. Neutral polysaccharides and polyuronides increased in the water-soluble fraction of wild-type fruit during ripening, and this was matched by a decline in Na2CO3-soluble pectins, equal in magnitude and timing. This, together with compositional analysis showing increasing galactose, arabinose, and rhamnose in the water-soluble fraction, mirrored by a decline of these same residues in the Na2CO3-soluble pectins, suggests that the polyuronides and neutral polysaccharides solubilized by PG come from the Na2CO3-soluble fraction of the tomato cell wall. In addition to the loss of galactose from the cell wall as a result of PG activity, both antisense and control fruit exhibit an independent decline in galactose in both the CDTA-soluble and Na2CO3-soluble fractions, which may play a role in fruit softening.  相似文献   

13.
Changes in cell wall polysaccharides and mechanical propertiesof the cell wall were examined during IAA-induced elongationgrowth of excised azuki bean epicotyl segments under differentgrowth conditions. Sucrose promoted IAA-induced cell elongation,but had very little effect on IAA-induced cell wall loosening.In the absence of sucrose, the amount of galactose in the cellwall decreased during the incubation period. IAA enhanced thedecrease in the galactose level. In the presence of sucrose,on the other hand, IAA induced increases in the amounts of cellulose,galactose and xylose in noncellulosic polysaccharides. TheseIAA-induced increases were not observed in the presence of mannitolat concentrations higher than 0.1 M, although cell wall looseningwas induced by IAA even in the presence of 0.2 M mannitol. (Received November 21, 1978; )  相似文献   

14.
Sulfated polysaccharides occurring in the red algae Tichocarpus crinitus cell wall were fractionated and purified. NMR and FT-IR spectroscopy analyses revealed that the non-gelling fraction contained a sulfated galactans having a new carrageenan-like structure. It is built with alternatively linked 1,3-linked β-D-galactopyranosyl-2,4-disulphates and 1,4-linked 3,6-anhydro-α-D-galactopyranosyl residues. Minor amounts of its biosynthetic precursor were detected in a water-extracted specimen. Brief analysis of rheological and biological properties of the non-gelling fraction was carried out. The carrageenan-like polysaccharide from T. crinitus displayed the properties of “random coil” polymer at high temperature, and possesses high anticoagulant activity at low concentration.  相似文献   

15.
Onion (Allium cepa) cell walls were fractionated by successive extraction with oxalate-citrate buffer and with alkali. The substantial oxalate-citrate extracted fraction comprised a range of pectic polysaccharides with varying proportions of neutral side-chains. Methylation analysis of the alkali extract indicated that (1,4′)-linked galactans and a substituted xyloglucan were probably major components. Onions thus resemble dicotyledonous plants more than the Gramineae in their cell wall composition.  相似文献   

16.
In excised stem segments of floating rice (Oryza sativa L.), as well as in intact plants, submergence greatly stimulates the elongation of internodes. The differences in the composition of cell wall polysaccharides along the highest internodes of submerged and air-grown stem segments were examined. The newly elongated parts of internodes that had been submerged for two days contained considerably less cellulosic and noncellulosic polysaccharides than air-grown internodes, an indication that the cell walls of the newly elongated parts of submerged internodes are extremely thin. In the young parts of both air-grown and submerged internodes, the relative amounts of noncellulosic polysaccharides were equal to those of -cellulose, whereas the relative amounts of -cellulose were higher than those of noncellulosic polysaccharides in the upper, old parts. In the cell-elongation zones of both air-grown and submerged internodes, glucose was predominant among the noncellulosic neutral sugars of cell wall. The relative amount of glucose in noncellulosic neutral sugars decreased toward the upper, old parts of internodes, whereas that of xylose increased.  相似文献   

17.
Concanavalin A (Con A) suppresses auxin-induced elongation ofsurface-abraded segments from both dicotyledonous and poaceousplants. In coleoptile segments of rice (Oryza sativa L.), theauxin-induced decrease in the minimum stress-relaxation timeand increase in the mechanical extensibility of the cell wallswere also inhibited by Con A, indicating that the lectin suppresseselongation by inhibiting the cell wall loosening. Auxin causeda decrease in the level of (1 3), (1 4)-ß-D-glucansin the cell walls of rice coleoptile segments, and this decreasewas also inhibited by the lectin. Con A suppressed the autolytichydrolysis of the glucans, as well as their breakdown in vitroby a protein fraction that had been extracted from the cellwalls of rice coleoptiles with 1 M NaCl. Furthermore, most ofthe glucan-hydrolyzing activity of the wall proteins bound toa Con A-Sepharose column, suggesting that glycoprotein enzymesare involved in the hydrolysis. Although Con A also affectedthe hydrolysis of other wall polysaccharides, the present data,when considered in combination with the inhibitory effects ofglucan-specific or glucanasespecific antibodies, support theview that the breakdown of (1 3),(1 4)-ß-D-glucansis associated with the cell wall loosening that is responsiblefor auxin-induced elongation in Poaceae. (Received August 17, 1994; Accepted February 15, 1995)  相似文献   

18.
Pectic polysaccharides in the cell wall of suspension-cultured carrot cells (Daucus carota L.) were fractionated into high- and low-molecular-weight components by molecular-sieve chromatography with a Sepharose 4B column. During the phase of cell-wall expansion, the relative content of low-molecular-weight polymers rapidly increased. Electrophoretic analyses of these fractions showed that the high-molecular-weight components were largely composed of neutral and weakly acidic polymers while the low-molecular-weight fraction contained, in addition to neutral polymers, strongly acidic polyuronides in which the content of neutral sugars was very small. The accumulation of a large amount of the strongly acidic polyuronides occurred in a late stage of cell-wall growth, concomitant with a marked decrease in the high-molecular-weight components.Abbreviation MW molecular weight  相似文献   

19.
Cell wall material (CWM) was prepared from sections of fresh and aerobically-stored asparagus (Asparagus officinalis, L. cv. Connovor Collossus) stems. Polymers were solubilized from the CWM by successive extraction with cyclohexane-trans-1,2-diamine-N N N' N'-tetraacetate (CDTA), Na2CO3 and KOH to leave the alpha-cellulose residue which contained a significant amount of cross-linked pectic polysaccharides. The polymers were fractionated by anion-exchange chromatography and selected fractions were subjected to methylation analysis. The storage-related decrease in (1-4)-linked Galp was detected in all the fractions rich in pectic polysaccharides, particularly in the CDTA, Na2CO3, 0.5 M KOH fractions and alpha-cellulose residue. A smaller decrease in Araf was also observed. This was mainly due to a decrease in (1-5)-linked Araf in the Na2CO3-1-soluble polymers, and terminal Araf in the alpha-cellulose residue. There was evidence for the occurrence of significant amounts of complexes containing pectic polysaccharides and xylans having a relatively low degree of polymerization in the dilute alkali-soluble polymers, and some of these contained phenolic compounds; the storage-induced increase in (1-4)-linked Xylp was confined to these polymers. Interestingly, no free acidic xylans could be detected in the 1 M and 4 M KOH-soluble polymers; instead, the bulk of the hemicellulosic polysaccharides appeared to be mixtures of xyloglucans and xylans in which the ratio of xyloglucan to xylan increased with increasing strength of alkali used for extraction of the polymers. The non-degradative extraction and fractionation procedures revealed heterogeneity in pectic polysaccharides, pectic polysaccharide-xylan complexes and xyloglucans in close association with xylans. The possible relationship between pectic polysaccharide-xylan-phenolic complexes and the onset of lignification in maturing tissues is discussed.  相似文献   

20.
Mono-divalent ion exchange in isolated cell walls of Nitella flexilis (L.) Ag. induces a marked loss of wall polymers and a decrease in the wall cationic exchange capacity. These data correlate with the replacement in the walls of adsorbed Mn2+ by Na+ ions. Boiling wall samples in methanol for 1 h or keeping the ionic solutions chilled to 4°C does not inhibit the cell wall polymer leakage but modifies the kinetics both of the ionic exchange and of the released polymers. These data are more compatible with physical rather than enzymic induced processes. The extracted polymers in the successively renewed NaCl solutions initially belong to the wall protein and pectin fractions and mainly to pectic fractions subsequently. Determination of the average degree of polymerization shows that the average molecular size of the lost acidic polysaccharides increases with extraction time up an average polymerization degree of 25. Enzyme-linked immunosorbent assay inhibition tests show the presence of homopolymer blocks equal to or higher than 10 in the released polymer fragments. Compositional analysis of released polysaccharides suggests that the pectin lost by action of monovalent ions was largely composed of rhamnogalacturonans whose acidic residue fraction is approximately 60% in association with galactose chains. Small quantities of glucuronylated xylans are also found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号