首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tobamoviruses represent a well-characterized system used to examine viral infection, whereas Arabidopsis is a choice plant for most genetic experiments. It would be useful to combine both approaches into one experimental system for virus–plant interaction. Most tobamoviruses, however, are not pathogenic in Arabidopsis . Here, we describe infection of Arabidopsis by a recently discovered crucifer-infecting turnip vein clearing tobamovirus (TVCV). Using this system, we determined patterns and kinetics of viral local and systemic movement within Arabidopsis plants. Localization studies showed that the virus infects both vegetative and reproductive plant tissues. However, there may be a transport barrier between the seed coat and the embryo which virions cannot cross, preventing seed transmission of TVCV. The ability to move both locally and systemically in Arabidopsis , causing mild and fast-developing symptoms but allowing survival and fertility of the infected plants, distinguish TVCV infection of Arabidopsis as a model system to study virus–plant interaction.  相似文献   

3.
Stress-induced accumulation of five (COR47, LTI29, ERD14, LTI30 and RAB18) and tissue localization of four (LTI29, ERD14, LTI30 and RAB18) dehydrins in Arabidopsis were characterized immunologically with protein-specific antibodies. The five dehydrins exhibited clear differences in their accumulation patterns in response to low temperature, ABA and salinity. ERD14 accumulated in unstressed plants, although the protein level was up-regulated by ABA, salinity and low temperature. LTI29 mainly accumulated in response to low temperature, but was also found in ABA- and salt-treated plants. LTI30 and COR47 accumulated primarily in response to low temperature, whereas RAB18 was only found in ABA-treated plants and was the only dehydrin in this study that accumulated in dry seeds.Immunohistochemical localization of LTI29, ERD14 and RAB18 demonstrated tissue and cell type specificity in unstressed plants. ERD14 was present in the vascular tissue and bordering parenchymal cells, LTI29 and ERD14 accumulated in the root tip, and RAB18 was localized to stomatal guard cells. LTI30 was not detected in unstressed plants. The localization of LTI29, ERD14 and RAB18 in stress-treated plants was not restricted to certain tissues or cell types. Instead these proteins accumulated in most cells, although cells within and surrounding the vascular tissue showed more intense staining. LTI30 accumulated primarily in vascular tissue and anthers of cold-treated plants.This study supports a physiological function for dehydrins in certain plant cells during optimal growth conditions and in most cell types during ABA or cold treatment. The differences in stress specificity and spatial distribution of dehydrins in Arabidopsis suggest a functional specialization for the members of this protein family.  相似文献   

4.
Plant glycoproteins contain substantial amounts of paucimannosidic N-glycans lacking terminal GlcNAc residues at their nonreducing ends. It has been proposed that this is due to the action of beta-hexosaminidases during late stages of N-glycan processing or in the course of N-glycan turnover. We have now cloned the three putative beta-hexosaminidase sequences present in the Arabidopsis (Arabidopsis thaliana) genome. When heterologously expressed as soluble forms in Spodoptera frugiperda cells, the enzymes (termed HEXO1-3) could all hydrolyze the synthetic substrates p-nitrophenyl-2-acetamido-2-deoxy-beta-d-glucopyranoside, p-nitrophenyl-2-acetamido-2-deoxy-beta-d-galactopyranoside, 4-methylumbelliferyl-2-acetamido-2-deoxy-beta-d-glucopyranoside, and 4-methylumbelliferyl-6-sulfo-2-acetamido-2-deoxy-beta-d-glucopyranoside, albeit to a varying extent. HEXO1 to HEXO3 were further able to degrade pyridylaminated chitotriose, whereas pyridylaminated chitobiose was only cleaved by HEXO1. With N-glycan substrates, HEXO1 displayed a much higher specific activity than HEXO2 and HEXO3. Nevertheless, all three enzymes were capable of removing terminal GlcNAc residues from the alpha1,3- and alpha1,6-mannosyl branches of biantennary N-glycans without any strict branch preference. Subcellular localization studies with HEXO-fluorescent protein fusions transiently expressed in Nicotiana benthamiana plants showed that HEXO1 is a vacuolar protein. In contrast, HEXO2 and HEXO3 are mainly located at the plasma membrane. These results indicate that HEXO1 participates in N-glycan trimming in the vacuole, whereas HEXO2 and/or HEXO3 could be responsible for the processing of N-glycans present on secretory glycoproteins.  相似文献   

5.
We recently identified mutations in the Lpin1 (lipin) gene to be responsible for lipodystrophy in the fatty liver dystrophy (fld) mouse strain. Previous studies revealed that lipin plays a critical role in adipogenesis, explaining the adipose-deficient phenotype of the fld mouse. In the current study, we demonstrate that alternative mRNA splicing generates two lipin isoforms, lipin-alpha and lipin-beta, which are differentially expressed during adipocyte differentiation. Lipin-alpha expression peaks at day 2 of 3T3-L1 cell differentiation, after which its levels gradually decrease. In contrast, lipin-beta expression is transiently elevated at 10 h, followed by a drop to background levels at 20 h and a gradual increase between days 2 and 6 of differentiation. The two lipin isoforms also exhibit differences in subcellular localization. Lipin-alpha is predominantly nuclear, whereas lipin-beta is primarily located in the cytoplasm of 3T3-L1 adipocytes, suggesting distinct cellular functions. Using primary mouse embryonic fibroblasts expressing either lipin-alpha or lipin-beta, we demonstrate functional differences between the two isoforms. Whereas lipin-alpha is required for adipocyte differentiation, the predominant effect of lipin-beta expression is the induction of lipogenic genes. In vivo, overexpression of lipin-beta specifically in mature adipocytes leads to elevated expression of lipogenic genes and adipocyte hypertrophy, confirming a role of lipin-beta in the regulation of lipogenesis. In conclusion, our data suggest that the two lipin isoforms have distinct, but complementary, functions in adipogenesis, with lipin-alpha playing a primary role in differentiation and lipin-beta being predominantly involved in lipogenesis.  相似文献   

6.
The enzyme gamma-secretase has long been considered a potential pharmaceutical target for Alzheimer disease. Presenilin (the catalytic subunit of gamma-secretase) and signal peptide peptidase (SPP) are related transmembrane aspartyl proteases that cleave transmembrane substrates. SPP and gamma-secretase are pharmacologically similar in that they are targeted by many of the same small molecules, including transition state analogs, non-transition state inhibitors, and amyloid beta-peptide modulators. One difference between presenilin and SPP is that the proteolytic activity of presenilin functions only within a multisubunit complex, whereas SPP requires no additional protein cofactors for activity. In this study, gamma-secretase inhibitor radioligands were used to evaluate SPP and gamma-secretase inhibitor binding pharmacology. We found that the SPP enzyme exhibited distinct binding sites for transition state analogs, non-transition state inhibitors, and the nonsteroidal anti-inflammatory drug sulindac sulfide, analogous to those reported previously for gamma-secretase. In the course of this study, cultured cells were found to contain an abundance of SPP binding activity, most likely contributed by several of the SPP family proteins. The number of SPP binding sites was in excess of gamma-secretase binding sites, making it essential to use selective radioligands for evaluation of gamma-secretase binding under these conditions. This study provides further support for the idea that SPP is a useful model of inhibitory mechanisms and structure in the SPP/presenilin protein family.  相似文献   

7.
8.
9.
DNA topoisomerase (topo) I plays an important role in DNA metabolism by relieving the torsional restraints of DNA topology through ATP-independent single-strand DNA breakage. In the present study, we expressed human topo I in HeLa cells by fusing it to enhanced green fluorescent protein (EGFP). The EGFP-topo I fusion protein is functionally active in that it relaxes supercoiled plasmid DNA; forms complexes with DNA, as revealed by band depletion assays; and increases the sensitivity of cells to topo I inhibitors such as topotecan, as determined by growth inhibition assays. In contrast, a mutant form of the EGFP-topo I fusion protein, in which the active Tyr has been replaced by Phe (Y723F), has no such activities. Furthermore, the fusion protein localizes to the nucleus at interphase and completely associates with chromatids at every stage of mitosis. Of importance, the mutant fusion protein (Y723F) displays a pattern of subcellular localization identical to that of the wild-type fusion protein, although the mutant fusion protein is catalytically inactive. These results suggest that in addition to its role in DNA metabolism, topo I might also play a structural role in chromosomal organization; moreover, the association of topo I with chromosomal DNA is independent of its catalytic activity. Finally, the fusion constructs may provide a useful tool to study drug action in tumor cells, as demonstrated by nucleolar delocalization of the fusion proteins in response to treatment with the topo I inhibitor topotecan.  相似文献   

10.
Cytokinins regulate cell division and differentiation as well as a number of other processes implicated in plant development. The first step of cytokinin biosynthesis in Arabidopsis (Arabidopsis thaliana) is catalyzed by adenosine phosphate-isopentenyltransferases (AtIPT). The enzymes are localized in plastids or the cytoplasm where they utilize the intermediate dimethylallyl-diphosphate from the methylerythritolphosphate or mevalonic acid pathways. However, the regulatory mechanisms linking AtIPT activity and cytokinin biosynthesis with cytokinin homeostasis and isoprenoid synthesis are not well understood. Here, we demonstrate that expression of AtIPT3, one member of the adenosine AtIPT protein family in Arabidopsis, increased the production of specific isopentenyl-type cytokinins. Moreover, AtIPT3 is a substrate of the protein farnesyl transferase, and AtIPT3 farnesylation directed the localization of the protein in the nucleus/cytoplasm, whereas the nonfarnesylated protein was located in the plastids. AtIPT3 gain-of-function mutant analysis indicated that the different subcellular localization of the farnesylated protein and the nonfarnesylated protein was closely correlated with either isopentenyl-type or zeatin-type cytokinin biosynthesis. In addition, mutation of the farnesyl acceptor cysteine-333 of AtIPT3 abolishes cytokinin production, suggesting that cysteine-333 has a dual and essential role for AtIPT3 farnesylation and catalytic activity.  相似文献   

11.
12.
Okita C  Sato M  Schroeder T 《BioTechniques》2004,36(3):418-22, 424
Fluorescent proteins (FPs) have revolutionized many aspects of cell biology and have become indispensable research tools. Today's increasingly complex experiments aiming to understand biological systems strongly depend on the availability of combinations of multiple FPs, which allow their distinguishable simultaneous detection in the same cell or tissue. Recently, the VENUS and DsRed. T4 FPs were described as the latest generation of yellow and red FPs. To increase the combinatorial possibilities when using these optimized FPs, we have generated and successfully tested seven new forms of VENUS and DsRed. T4 proteins with distinct subcellular localization. To facilitate their use as markers in biological experiments, bicistronic expression constructs, which have been optimized for robust expression in almost all mammalian developmental stages and cell types, were produced for the new FPs. In addition, several plasmids were created, which contain all necessary elements for inserting the reading frames of these FPs into specific gene loci in knock-in experiments without disrupting the reading frame of the endogenous gene.  相似文献   

13.
One of the main challenges faced by biological applications is to predict protein subcellular localization in automatic fashion accurately. To achieve this in these applications, a wide variety of machine learning methods have been proposed in recent years. Most of them focus on finding the optimal classification scheme and less of them take the simplifying the complexity of biological systems into account. Traditionally, such bio-data are analyzed by first performing a feature selection before classification. Motivated by CS (Compressed Sensing) theory, we propose the methodology which performs compressed learning with a sparseness criterion such that feature selection and dimension reduction are merged into one analysis. The proposed methodology decreases the complexity of biological system, while increases protein subcellular localization accuracy. Experimental results are quite encouraging, indicating that the aforementioned sparse methods are quite promising in dealing with complicated biological problems, such as predicting the subcellular localization of Gram-negative bacterial proteins.  相似文献   

14.
Sato T  Nyborg AC  Iwata N  Diehl TS  Saido TC  Golde TE  Wolfe MS 《Biochemistry》2006,45(28):8649-8656
Signal peptide peptidase (SPP) is an intramembrane aspartyl protease that cleaves remnant signal peptides after their release by signal peptidase. SPP contains active site motifs also found in presenilin, the catalytic component of the gamma-secretase complex of Alzheimer's disease. However, SPP has a membrane topology opposite that of presenilin, cleaves transmembrane substrates of opposite directionality, and does not require complexation with other proteins. Here we show that, upon isolation of membranes and solubilization with detergent, the biochemical characteristics of SPP are remarkably similar to gamma-secretase. The majority of the SPP-catalyzed cleavages occurred at a single site in a synthetic substrate based on the prolactin (Prl) signal sequence. However, as seen with cleavage of substrates by gamma-secretase, additional cuts at other minor sites are also observed. Like gamma-secretase, SPP is inhibited by helical peptidomimetics and apparently contains a substrate-binding site that is distinct from the active site. Surprisingly, certain nonsteroidal antiinflammatory drugs known to shift the site of proteolysis by gamma-secretase also alter the cleavage site of Prl by SPP. Together, these findings suggest that SPP and presenilin share certain biochemical properties, including a conserved drug-binding site for allosteric modulation of substrate proteolysis.  相似文献   

15.
Directional cell-to-cell movement of auxin is mediated by asymmetrically localized PIN-FORMED (PIN) auxin efflux transporters. The polar localization of PINs has been reported to be modulated by phosphorylation. In this study, the function of the phosphorylation sites of the PIN3 central hydrophilic loop (HL) was characterized. The phosphorylation sites were located in two conserved neighboring motifs, RKSNASRRSF(/L) and TPRPSNL, where the former played a more decisive role than the latter. Mutations of these phosphorylatable residues disrupted in planta phosphorylation of PIN3 and its subcellular trafficking, and caused defects in PIN3-mediated biological processes such as auxin efflux activity, auxin maxima formation, root growth, and root gravitropism. Because the defective intracellular trafficking behaviors of phospho-mutated PIN3 varied according to cell type, phosphorylation codes in PIN3-HL are likely to operate in a cell-type-specific manner.  相似文献   

16.
Galectin-3 is a galactose/lactose-binding protein (M(r) approximately 30,000), identified as a required factor in the splicing of pre-mRNA. In the LG1 strain of human diploid fibroblasts, galectin-3 could be found in both the nucleus and the cytoplasm of young, proliferating cells. In contrast, the protein was predominantly cytoplasmic in senescent LG1 cells that have lost replicative competence through in vitro culture. Incubation of young cells with leptomycin B, a drug that disrupts the interaction between the leucine-rich nuclear export signal and its receptor, resulted in the accumulation of galectin-3 inside the nucleus. In senescent cells, galectin-3 staining remained cytoplasmic even in the presence of the drug, thus suggesting that the observed localization in the cytoplasm was due to a lack of nuclear import. In heterodikaryons derived from fusion of young and senescent LG1 cells, the predominant phenotype was galectin-3 in both nuclei. These results suggest that senescent LG1 cells might lack a factor(s) specifically required for galectin-3 nuclear import.  相似文献   

17.
18.
NOSTRIN, an NO synthase binding protein, belongs to the PCH family of proteins, exposing a typical domain structure. While its SH3 domain and the C-terminal coiled-coil region cc2 have been studied earlier, the function of the N-terminal half comprising a Cdc15 domain with an FCH (Fes/CIP homology) region followed by a coiled-coil stretch cc1 is unknown. Here, we show that the FCH region is necessary and sufficient for membrane association of NOSTRIN, whereas the Cdc15 domain further specifies subcellular distribution of the protein. Thus, the FCH region and the Cdc15 domain fulfill complementary functions in subcellular targeting of NOSTRIN.  相似文献   

19.
Two solanesyl diphosphate synthases, designated SPS1 and SPS2, which are responsible for the synthesis of the isoprenoid side chain of either plastoquinone or ubiquinone in Arabidopsis thaliana, were identified. Heterologous expression of either SPS1 or SPS2 allowed the generation of UQ-9 in a decaprenyl diphosphate synthase-defective strain of fission yeast and also in wild-type Escherichia coli. SPS1-GFP was found to localize in the ER while SPS2-GFP localized in the plastid of tobacco BY-2 cells. These two different subcellular localizations are thought to be the reflection of their roles in solanesyl diphosphate synthesis in two different parts: presumably SPS1 and SPS2 for the side chains of ubiquinone and plastoquinone, respectively.  相似文献   

20.
Administration of bleomycin (BM) produces inflammation and fibrosis of the lung in humans and experimental animals. The molecular defects by which BM induces these pathological effects have not been studied in detail. We studied the expression of Smad family proteins, key molecules involved in mediating transforming growth factor (TGF)-beta signaling from the cell membrane to the nucleus, during the early and late phases of BM-induced fibrogenesis. Pulmonary fibrosis was induced in male Sprague-Dawley rats by a single intratracheal injection (1.5 units) of BM. Control rats received saline. Rats were killed at 3, 5, 7, 14, and 28 days after BM, cytosolic and nuclear proteins were extracted and isolated from lung tissues, and Smad proteins were probed with specific antibodies. In BM-exposed lung tissue, compared with control, Smad3 decreased persistently in the cytosol and increased transiently in the nucleus. There was a persistent increase in phosphorylation and nuclear accumulation of Smad2/3. Smad4 was increased transiently in both the cytosol and nucleus. A significant and progressive decrease in the expression of Smad7, the endogenous inhibitor of TGF-beta/Smad signaling, was observed after BM instillation. Collectively, our results indicate that an imbalance between agonistic Smads2-4 and antagonistic Smad7 may result in the unchecked activation of an autocrine TGF-beta loop, which contributes to the pathogenesis of BM-induced pulmonary fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号