首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Solubilization of barley (Hordeum vulgare L.) thylakoid membranes with sodium dodecylsulphate plus sodium deoxycholate with or without Triton X-100 and subsequent fractionation in the polyacrylamide gel electrophoresis system described in this paper resulted: (1) in the resolution of the chlorophyll-proteins and chlorophyll-protein complexes commonly known as CP1a, CP1, LHCP1, LHCP2, CPa and LHCP3; (2) in the highly increased stability of CP1 and CP1a, as judged by their chlorophyll content, (3) at the expense of the free pigment concentration (4) which could be reduced to a negligible amount. Some 40% of the total chlorophyll contained in the mature higher plant thylakoid membrane is associated with CP1 and CP1a and as already suggested before [19] no significant amount of free chlorophyll occurs in vivo.  相似文献   

2.
Low temperature sodium dodecyl sulfate polyacrylamide gel electrophoresis following mild solubilization of Euglena thylakoid components allowed to resolve, in addition to the main CP1, CPa and LHCP chlorophyll-protein complexes, the additional CP1a and LHCP green bands. A carotenoid enriched band CPc can be separated from CPa using high acrylamide concentration. Pigment and polypeptide composition of these complexes were analyzed by absorption and fluorescence measurements and two dimensional gel electrophoresis. Spectral properties of CP1 and CP1a indicate an heterogenous organization of chlorophyll and the presence of significant amount of chlorophyll b in these complexes. They both contain a major 68 kilodalton polypeptide associated with three minor low molecular weight polypeptides in CP1a. CPa and CPc exhibit a characteristic fluorescence emission at 687 nm and they each contain one polypeptide of 54 and 41 Kda respectively. LHCP and LHCP are less abundant than in higher plant thylakoids and they contain a lower proportion of chl b (chl a: chl b=3). They include two polypeptides of 26 and 29 Kda.Abbreviations chl chlorophyll - SDS Sodium Dodecyl Sulfate - EDTA Ethylene Diamine Tetraacetic Acid - DTT Dithiothreitol  相似文献   

3.
Bean thylakoid membranes treated with various lipolytic enzymes (bean galactolipase, phospholipases A2, C, D) showed marked changes in their acyl lipid composition. As a consequence of acyl lipids hydrolysis, destruction of some chlorophyll a-protein complexes (CP1a, CP1, CPa) or monomerization of the oligomeric of light harvesting chlorophyll a/b protein complex (LHCP) was observed. It is concluded that galactolipids and phosphatidylcholine are responsible for the stability of CP1a, CP1 and CPa, respectively. Phosphatidylglycerol and to some extent monogalactosyldiacylglycerol are essential for the stabilization of oligomeric structures of light harvesting chlorophyll a/b protein complex.Abbreviations chl chlorophyll - CP1a, CP1 chl a-protein complexes, of PSI - CPa chl a-protein complex of PSII - DGDG diagalactosyldiacylglycerol - FC free chl - GL galactolipase - LHCP1–3 light harvesting chl a/b protein complex - MGDG monogalactosyldiacylglycerol - PAGE polyacrylamide gel electrophoresis - PC phosphatidylcholine - PG phosphatidylglycerol - PLA2 phospholipase A2 - PL phospholipase C - PLD phospholipase D - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulphate - SQDG sulfoquinovosyl-diacylglycerol - TCA trichloroacetic acid - Tricine N-tris-(hydroxymethyl)-methylglycine - Tris Tris-(hydroxymethyl)-aminomethan  相似文献   

4.
The chlorophyll-protein and polypeptide composition of manganese deficient and control sugar beet thylakoids was examined using three different detergent-electrophoresis systems. On a per chlorophyll basis, manganese deficiency reduced the amounts of CPa complex (separated by sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis), and CP 47 and CP 43 complexes (separated by octylglucoside/SDS-polyacrylamide gel electrophoresis) without decreasing the amounts of light harvesting complexes. Lithium dodecylsulfate/Triton X-100 polyacrylamide gel electrophoresis showed that manganese deficiency decreased several thylakoid polypeptides, including a chlorophyll b containing 30 kilodalton chlorophyll-protein complex, but did not decrease the amounts of 28 and 29 kilodalton light-harvesting chlorophyll b-containing polypeptides.  相似文献   

5.
Pigment-protein-complexes of two chlorophyll b deficient mutants of Arabidopsis and from the wild type were separated electrophoretically. Light-harvesting proteins were absent in the chlorophyll b free mutant ch1 and their amount was reduced in the mutant ch2 which has a reduced content of chlorophyll b. The ratio of CPa:CP I increased with decreasing chlorophyll b content which indicated that the stoichiometry of photosystem II to photosystem I is not constant.Abbreviations Chl chlorophyll - CPa chlorophyll a-protein - CP I P-700 chlorophyll a-protein - LHCP light-harvesting chlorophyll a/b-protein - PAGE polyacrylamide gel electrophoresis - PAR photosynthetically active radiation - SDS sodium dodecyl sulfate  相似文献   

6.
Pigment-protein-complexes of two chlorophyll b deficient mutants of Arabidopsis and from the wild type were separated electrophoretically. Light-harvesting proteins were absent in the chlorophyll b free mutant ch1 and their amount was reduced in the mutant ch2 which has a reduced content of chlorophyll b. The ratio of CPa:CP I increased with decreasing chlorophyll b content which indicated that the stoichiometry of photosystem II to photosystem I is not constant.Abbreviations Chl chlorophyll - CPa chlorophyll a-protein - CP I P-700 chlorophyll a-protein - LHCP light-harvesting chlorophyll a/b-protein - PAGE polyacrylamide gel electrophoresis - PAR photosynthetically active radiation - SDS sodium dodecyl sulfate  相似文献   

7.
Thylakoid membranes obtained from bean chloroplasts treated with bean galactolipase or phospholipase A2 (from Crotalus terr. terr.) showed marked changes in their polypeptide patterns when separated on SDS-PAGE. The obtained results have been discussed with regard to the relationship between chloroplast lipids and polypeptides originating from chlorophyll-protein complexes of bean thylakoids. A coexistence between galactolipids and the peripheral antennae in PS I complex and LHCP3 as well as a conspicuous role of phospholipids in PSI and PSII centre chlorophyll-protein complexes has to be underlined.Abbreviations CP1 chlorophyll a-protein complex of PSI - CPa chlorophyll a-protein complex of PSII - D10 digitonin subchloroplast particles enriched in PSII - D144 digitonin subchloroplast particles enriched in PSI - DCMU 3-(3,4-dichlorophenyl)-1, 1-dimethylurea - LHCP1-3 light harvesting chlorophyll a/b protein complexes - PAGE polyacrylamide gel electrophoresis - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulphate - TCA trichloroacetic acid - Tricine N-Tris-(hydroxymethyl)-methylglycine - Tris Tris-(hydroxymethyl)-aminomethan  相似文献   

8.
Thylakoid membranes obtained from bean chloroplasts treated with bean galactolipase or phospholipase A2 (from Crotalus terr. terr.) showed marked changes in their polypeptide patterns when separated on SDS-PAGE. The obtained results have been discussed with regard to the relationship between chloroplast lipids and polypeptides originating from chlorophyll-protein complexes of bean thylakoids. A coexistence between galactolipids and the peripheral antennae in PS I complex and LHCP3 as well as a conspicuous role of phospholipids in PSI and PSII centre chlorophyll-protein complexes has to be underlined.Abbreviations CP1 chlorophyll a-protein complex of PSI - CPa chlorophyll a-protein complex of PSII - D10 digitonin subchloroplast particles enriched in PSII - D144 digitonin subchloroplast particles enriched in PSI - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - LHCP1–3 light harvesting chlorophyll a/b protein complexes - PAGE polyacrylamide gel electrophoresis - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulphate - TCA trichloroacetic acid - Tricine N-Tris-(hydroxymethyl)-methylglycine - Tris Tris-(hydroxymethyl)-aminomethan  相似文献   

9.
A relative decrease of the high temperature part (above 60°C) of the chlorophyll fluorescence temperature curve during 3 h to 10 h greening period of barley (Hordeum vulgare L.) leaves was found to be concomitant to a decrease of Chl alb ratio and to a gradual increase of LHCP/core ratio found by electrophoresis and the ratio of granal to total length of thylakoid membranes. It is suggested that the high temperature part of the fluorescence temperature curve depends inversely on the relative amount of LHC II in thylakoid membranes.Abbreviations Chl a(b) chlorophyll a(b) - CPa chlorophyll a protein complex of PS II - CP1 P700 chlorophyll a protein complex of PS I - FP free pigments - FTC fluorescence temperature curve - F(T30) fluorescence intensity at 30°C - LHC II light harvesting complex II - LHCP light harvesting chlorophyll protein - LHCP3 (LHCPm) monomeric form of LHC II - LHCPo oligomeric form of LHC II complex - M1 first maximum of FTC - M2 second maximum (region) of FTC - PAA polyacrylamide - PAR photosynthetically active radiation - PS I(II) Photosystem I(II) - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

10.
Triton X-100, a detergent commonly used to solubilize higher plant thylakoid membranes, was found to be deleterious to Dunaliella LHC II. It disrupted the transfer of excitation energy from chlorophyll b to chlorophyll a. Based on analysis of pigments and immunoassays of LHC II apoproteins from sucrose density gradient fractions, Triton X-100 caused aggregation of the complex, but apparently did not remove chlorophyll b from the apoprotein. Following solubilization with Triton X-100 only CPI could be resolved by electrophoresis. In contrast, solubilization of Dunaliella thylakoids with octyl--D-glucopyranoside preserved energy transfer from chlorophyll b to chlorophyll a. This detergent also effectively prevented aggregation on sucrose gradients and preserved CPI oligomers, as well as LHCP1 and LHCP3 on non-denaturing gels. Solubilization with Deriphat gave similar results. We propose that room temperature fluorescence excitation and emission spectroscopy be used in conjunction with other biophysical and biochemical probes to establish the effects of detergents on the integrity of light harvesting chlorophyll protein complexes. Methods used here may be applicable to other chlorophytes which prove refractory to protocols developed for higher plants.Abbreviations LHC II light harvesting chlorophyll protein complex associated with photosystem II - LHCP1 and LHCP3 monomeric and oligomeric forms of LHC II, respectively, observed on non-denaturing gels - LiDS lithium dodecylsulphate - PMSF phenylmethylsulfonyl fluoride  相似文献   

11.
E. Rhiel  K. Krupinska  W. Wehrmeyer 《Planta》1986,169(3):361-369
Nitrogen deficiency affects both photosystems and the antennae pigment systems in the photosynthetic apparatus of the marine alga, Cryptomonas maculata. Under increasing energy fluence rates, O2 evolution in nitrogen-deficient (-N) cell suspensions never reached a positive value; in control cultures (+N), O2 evolution increased and was saturated at about 6.4 W·m-2 with about 100 mol O2·mg chlorophyll-1·h-1. During fluorescence-induction experiments at room temperature, Fo and Fmax were significantly increased in-N cells whereas the Fvar/Fmax ratio decreased from 0.6 to 0.1. These observations can be correlated with a significantly decreased population of 12.5-nm-size particles in the exoplasmic-fracture (EF) faces of freeze-cleaved thylakoid membranes in-N cells (Rhiel et al., 1985, Protoplasma 129, 62–73). The EF particles are suggested to represent photosystem II associated with chlorophyll a/c-protein complexes (LHCP). The banding pattern of isolated and Triton X-100-solubilized thylakoid membranes of both +N and-N cells in sucrose gradients showed that the LHCP is still present in-N cells. The same applies to sodium dodecyl sulfate-polyacrylamide gel electrophoresis of these membrane fractions. The reduced number of the 12.5-nm particles in the EF faces of-N cells may be a result of decoupling of the LHCP constituents of the photosystem-II complex rather than their degradation. This is supported by high values for the initial fluorescence Fo in fluorescence-induction experiments and, in part, is indicated by the shift of the maximal fluorescence emission from 693 nm in +N to 684 nm in-N cells. The lack of the CP1 band in the gels of sodium dodecyl sulfate-solubilized thylakoid membranes from-N cells after electrophoresis demonstrates that photosystem I is also severely affected.Abbreviations Chl chlorophyll - CP1 chlorophyll-protein complex of PSI - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - LHCP light-harvesting chlorophyll a/c protein complex - +N/-N control/nitrogen-deficient cell suspension cultures - PSI (II) photosystem I (II) - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol Dedicated to Prof. Wilhelm Nultsch on the occasion of his 60th birthday  相似文献   

12.
Six chlorophyll–protein complexes are isolated from thylakoid membranes of Bryopsis corticulans by dodecyl-β-d-maltoside polyacrylamide gel electrophoresis. Unlike that of higher plants, the 77 K fluorescence emission spectrum of the CP1 band, the PSI core complexes of B. corticulans, presents two peaks, one at 675 nm and the other at 715–717 nm. The emission peak at 715–717 nm is slightly higher than that at 675 nm in the CP1 band when excited at 438 or 540 nm. However, the peak at 715 nm is obviously lower than that at 675 nm when excited at 480 nm. The excitation spectra of CP1 demonstrate that the peak at 675 nm is mainly attributed to energy from Chl b while it is the energy from Chl a that plays an important role in exciting the peak at 715–717 nm. Siphonaxanthin is found to contribute to both the 675 nm and 715–717 nm peaks. We propose from the above results that chlorophyll a and siphonaxanthin are mainly responsible for the transfer of energy to the far-red region of PSI while it is Chl b that contributes most of the transfer of energy to the red region of PSI. The analysis of chlorophyll composition and spectral characteristics of LHCP1 and LHCP3 also indicate that higher content of Chl b and siphonaxanthin, mainly presented in LHCP1, the trimeric form of LHCII, are evolved by B. corticulans to absorb an appropriate amount of light energy so as to adapt to their natural habitats.  相似文献   

13.
The time course for the observation of intact chlorophyll-protein (CP) complexes during barley chloroplast development was measured by mild sodium dodecyl sulfate polyacrylamide gel electrophoresis. The procedure required extraction of thylakoid membranes with sodium bromide to remove extrinsic proteins. During the early stages of greening, the proteins extracted with sodium bromide included polypeptides from the cell nucleus that associate with developing thylakoid membranes during isolation and interfere with the separation of CP complexes by electrophoresis. Photosystem I CP complexes were observed before the photosystem II and light-harvesting CP complexes during the initial stages of barley chloroplast development. Photosystem I activity was observed before the photosystem I CP complex was detected whereas photosystem II activity coincided with the appearance of the CP complex associated with photosystem II. Throughout chloroplast development, the percentage of the total chlorophyll associated with photosystem I remained constant whereas the amount of chlorophyll associated with photosystem II and the light-harvesting complex increased. The CP composition of thylakoid membranes from the early stages of greening was difficult to quantitate because a large amount of chlorophyll was released from the CP complexes during detergent extraction. As chloroplast development proceeded, a decrease was observed in the amount of chlorophyll released from the CP complexes by detergent action. The decrease suggested that the CP complexes were stabilized during the later stages of development.Abbreviations Chl chlorophyll - CP chlorophyll-protein - CPI P700 chlorophyll-a protein complex of photosystem I - CPa electrophoretic band that contains the photosystem II reaction center complexes and a variable amount of the photosystem I light-harvesting complex - CP A/B the major light-harvesting complex associated with photosystem II - DCIP 2,6-dichlorophenolindophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DPC diphenyl carbazide - MV methyl viologen - PAR photosynthetically active radiation - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulfate - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - TEMED N,N,N,N-tetramethylethylenediamine - TMPD N,N,N,N-tetramethyl-p-phenylenediamine Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC 27695-7601. Paper No. 9949 of the Journal Series of the North Carolina Agricultural Research Service, Raleight, NC 27695-7601.  相似文献   

14.
Summary The effects produced by the detergents Triton X-100, sodium dodecylsulphate and sodium cholate on sarcoplasmic reticulum vesicles have been comparatively studied. In all cases, maximal effects are found 5 min after detergent addition. Triton X-100 and SDS are approximately ten times more effective than cholate in protein and phospholipid solubilization. Both Triton X-100 and SDS maintain Ca++ accumulation in SR vesicles at detergent concentrations below 10–3 M; higher concentrations cause a strong inhibition. On the other hand, cholate produces a gradual inhibition of Ca++ accumulation in the concentration range between 10–4 M and 2.5 × 10–2 M. Triton X-100 and SDS produce a gradual solubilization of the specific Ca++-ATPase activity up to a 10–3 M detergent concentration, above which a strong inactivation occurs, while the enzyme solubilization increases with the presence of cholate in the whole concentration range under study. The different behaviour of sodium cholate, when compared to SDS or Triton X-100, is discussed in relation to the surfactant molecular structures. The possibility of membrane lysis and reassembly in the presence of some detergents is also considered.Abbreviations SR sarcoplasmic reticulum - SDS sodium dodecylsulphate - DTT dithiothreitol - EGTA ethyleneglycoltetraacetate - PEP phosphoenolpyruvate  相似文献   

15.
The precursor to the nuclear-coded 17 kDa early light-inducible protein (ELIP) of pea has been transported into isolated intact chloroplasts. The location of the mature protein in the thylakoid membranes was investigated after using cleavable crosslinkers such as DSP and SAND in conjunction with immuno-fractionation methods and by application of mild detergent fractionation. We show that ELIP is integrated into the membranes via the unstacked stroma thylakoids. After isolation of protein complexes by solubilization of membranes with Triton X-100 and sucrose density-gradient centrifugation the crosslinked ELIP comigrates with the PS II core complex. Using SAND we identified ELIP as a 41–51 kDa crosslinked product while with DSP four products of 80 kDa, 70 kDa, 50–42 kDa and 23–21 kDa were found. The immunoprecipitation data suggested that the D1-protein of the PS II complex is one of the ELIP partners in crosslinked products.Abbreviations chl chlorophyll - D1 herbicide-binding protein - DSP dithiobis-(succinimidylpropionate) - ELIP early light-inducible protein - LHC I and LHC II light-harvesting chlorophyll a/b complex associated with photosystem I or II - PAGE polyacrylamide gel electrophoresis - poly(A)-rich RNA polyadenyd mRNA - PS I and PS II photosystems I and II - SAND sulfosuccinimidyl 2-(m-azido-o-nitro-benzamido)-ethyl-1,3-dithiopropionate - Triton X-100 octylphenoxypolyethoxyethanol  相似文献   

16.
W. A. W. Moll  D. Stegwee 《Planta》1978,140(1):75-80
Chlorophyllase (chlorophyll-chlorophyllidohydrolase, EC 3.1.1.14) was isolated and purified from Phaseolus vulgaris L. chloroplasts and etioplasts dissolved in 1% Triton X-100 and 10% glycerol. A 100 and 40-fold purification, respectively, was achieved. Enzyme preparations from both sources had similar affinities for chlorophyll a when assayed in a Triton X-100 medium. When electrophoresed in sodium dodecyl sulphate polyacrylamide gels the major band in both preparations migrated as a peptide of 30,000 daltons. Chlorophyll containing liposomes were also used as a substrate for chlorophyllase. The rate of hydrolysis did not follow Michaelis-Menten kinetics. When chlorophyllide a or methyl chlorophyllide a was incorporated in the liposomes, then in the presence of phytol dissolved in methanol, methylchlorophyllide a and chlorophyll a were shown to be synthesized. Apparently the purified enzyme in the presence of lipids, is endowed with both synthetic and hydrolytic activity.Abbreviations DEAE diethylaminoethyl - MeOH methanol - SDS sodium dodecyl sulphate  相似文献   

17.
The structure and heterogeneity of LHC II were studied by in vitro reconstitution of apoproteins with pigments (Plumley and Schmidt 1987, Proc Natl Acad Sci 84: 146–150). Reconstituted CP 2 complexes purified by LDS-PAGE were subsequently characterized and shown to have spectroscopic properties and pigment-protein compositions and stoichiometries similar to those of authentic complexes. Heterologous reconstitutions utilizing pigments and light-harvesting proteins from spinach, pea and Chlamydomonas reinhardtii reveal no evidence of specialized binding sites for the unique C. reinhardtii xanthophyll loroxanthin: lutein and loroxanthin are interchangeable for in vitro reconstitution. Proteins modified by the presence of a transit peptide, phosphorylation, or proteolytic removal of the NH2-terminus could be reconstituted. Evidence suggests that post-translational modification are not responsible for the presence of six electrophoretic variants of C. reinhardtii CP 2. Reconstitution is blocked by iodoacetamide pre-treatment of the apoproteins suggesting a role for cysteine in pigment ligation and/or proper folding of the pigment-protein complex. Finally, no effect of divalent cations on pigment reassembly could be detected.Abbreviations cab chlorophyll a/b-binding protein genes - Chl chlorophyll - CP2 light-harvesting chlorophyll A+b-protein complex fractionated by mildly denaturing LDS-PAGE from Photosystem II in thylakoids - CP 43 and CP 47 chlorophyll a-antenna complexes fractionated from Photosystem II in thylakoids by mildly denaturing LDS-PAGE at 4°C - IgG gamma immunoglobulin - LDS lithium dodecyl sulfate - LDS-PAGE lithium dodecyl sulfate polyacrylamide gel electrophoresis at 4°C - LHC I and LHC II thylakoid light-harvesting chlorophyll a+b-protein holocomplexes associated with Photosystems I and II, respectively - PS II Photosystem II - TX100 Triton X-100 - TX100-derived LHC light-harvesting complexes enriched in LHC II following fractionation of thylakoids by TX100  相似文献   

18.
PS II membrane fragments produced from higher plant thylakoids by Triton X-100 treatment exhibit strong photoinhibition and concomitant fast degradation of the D1 protein. Involvement of (molecular) oxygen is necessary for degradation of the D1 protein.The herbicides atrazine and diuron, but not ioxynil, partly protect the D1 protein against degradation. Binding of atrazine to the D1 protein is necessary to protect the D1 polypeptide, as shown with PS II membrane fragments from an atrazine-resistant biotype of Chenopodium album which are protected by diuron not by atrazine.Abbreviations atrazine 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine - Chl chlorophyll, diuron - (DCMU) 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMBQ 2,5-dimethyl-p-benzoquinone - DCIP 2,6-dichlorophenol indophenol - DPC diphenylcarbazide - ioxynil 4-cyano-2,6-diiodophenol - kb binding constant - Mes 4-morpholinoethanesulfonic acid - P-680 reaction-center chlorophyll a of photosystem-II - PAGE polyacrylamide gel electrophoresis - PS II photosystem-II - QA and QB primary and secondary quinone electron acceptors - Z electron donor to the photosystem-II reaction center - SDS sodium dodecylsulfate - Tricine N-2-hydroxy-1,1-bis(hydroxymethyl)ethylglycine  相似文献   

19.
The outer membrane of Pseudomonas aeruginosa PA01 is permeable to saccharides of molecular weights lower than about 6000. Triton X-100/EDTA-soluble outer membrane proteins were fractionated by ion-exchange chromatography in the presence of Triton X-100 and EDTA, and the protein contents of the various fractions analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Each of the major protein bands present in the Triton X-100/EDTA soluble outer membrane was separated from one another. Adjacent fractions were pooled, concentrated and extensively dialyzed to reduce the Triton X-100 concentration. Vesicles were reconstituted from lipopolysaccharide, phospholipids and each of these dialyzed fractions, and examined for their ability to retain [14C]sucrose. Control experiments indicated that the residual levels of Triton X-100 remaining in the dialyzed fractions had no effect on the formation or permeability to saccharides of the reconstituted vesicles. It was concluded that a major outer membrane polypeptide with an apparent weight of 35 000 is a porin, responsible for the size-dependent permeability of the outer membrane.  相似文献   

20.
Barley, maize, pea, soybean, and wheat exhibited differences in chlorophyll a/b ratio and chlorophyll-protein (CP) complex composition during the initial stages of chloroplast development. During the first hours of greening, the chlorophyll a/b ratios of barley, pea, and wheat were high (a/b8) and these species contained only the CP complex of photosystem I as measured by mild sodium dodecyl sulfate polyacrylamide gel electrophoresis. A decrease in chlorophyll a/b ratio and the observation of the CP complexes associated with photosystem II and the light-harvesting apparatus occurred at later times in barley, pea, and wheat. In contrast, maize and soybean exhibited low chlorophyll a/b ratios (a/b<8) and contained the CP complexes of both photosytem I and the light-harvesting apparatus at early times during chloroplast development. The species differences were not apparent after 8 h of greening. In all species, the CP complexes were stabilized during the later stages of chloroplast development as indicated by a decrease in the percentage of chlorophyll released from the CP complexes during detergent extraction. The results demonstrate that CP complex synthesis and accumulation during chloroplast development may not be regulated in the same way in all higher plant species.Abbreviations Chl chlorophyll - CP chlorophyll-protein - CPI P700 chlorophyll-a protein complex of photosystem I - CPa electrophoretic band that contains the photosystem II reaction center complexes and a variable amount of the photosystem I light-harvesting complex - LHC the major light-harvesting complex associated with photosystem II - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulfate - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC 27695-7601. Paper No. 10335 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7601.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号