共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of two Bradyrhizobium japonicum strains (D344 and Urbana), on the frequency and intensity of infection by a VAM fungal Glomus sp. and the effect of VAM on biomass production by nodulating plants were tested in soybean growing in a soil containing low levels of accessible P and N. During the initial stage of vegetative growth, mycorrhiza frequency in roots inoculated with the two rhizobial strains did not differ. However, during flowering it was 178% higher in roots with the strain D344 than in the presence of the strain Ubrana. At final harvest (green pods) the VAM frequency did not differ in the presence of either strain. VAM positively affected biomass production, foliar concentrations of P, Zn and Cu, and number and dry matter yield of pods, but did not increase concentrations of total N and K. In nonmycorrhizal plants total nitrogenase activity (not nodule mass) and growth were higher with the rhizobial strain Urbana. The greatest nitrogenase activity, growth and yield occurred in the presence of the VAM fungus, and did not differ for plants with different strains of rhizobia. 相似文献
2.
We investigated the effect of planting density on soybean (Glycine max (L.) Merr.) yield in glasshouse and field experiments. Because net canopy photosynthesis increases with increasing plant density, we hypothesized that increasing planting density would result in increasing rates of dinitrogen fixation in soybeans and higher yields per unit land area.In glasshouse studies, Wayne variety soybeans were planted in 10-cm diameter pots, 1 plant pot-1 in matrices of 10-, 15-, 20-, 25-, or 30-cm equidistant intervals. Bradyrhizobium japonicum inoculum was added to half of the plants in each treatment. Replicate measurements of total stem height, internode lengths, leaf mass, stem mass, root mass, nodule number, nodule mass, and nitrogenase activity were obtained at 3, 6, and 9 weeks post-emergence. Fruits were harvested and counted at week 14. As planting density increased there were (1) altered morphology and growth rates, (2) increased apparent specific nodule activity (SNA), (3) decreased nodule number and mass, and (4) nearly constant fruit and seed production/plant. Expressed on a unit area basis, nitrogen influx and yield increased geometrically as planting density increased, with maximum values observed for 10-cm plantings.Field studies of Wayne, Stein, Williams, and Gold Harvest soybean varieties were made in 1985. Plots were established containing 100 plants spaced at 10-, 20-, and 30-cm distances. Measurements made during the growing season and at harvest established the same relative trends identified from the glasshouse studies. Increasing plant densities resulted in higher yields per unit land. Varietal differences were almost significant. 相似文献
3.
Summary Fast-growingRhizobium japnicum strains derived from the People's Republic of China were compared with a fast-growingRhizobium isolate from Lablab for their ability to nodulate tropical legumes grown in Leonard-jars and test tube culture. Fast-growingR. japonicum strains were all effective to varying degrees in their symbiosis withVigna unguiculata. Two strains USDA 192 and USDA 201, effectively nodulatedGlycine whightii and one strain, USDA 193, effectively nodulatedMacroptilium atropurpureum. Other nodulation responses in tropical legumes were ineffective. The fast-growing isolate from Lablab was more promiscuous,
effectively nodulating with a larger host range. The fast-growing Lablab strain was considered more akin, on a symbiotic basis,
to the slow-growing cowpea type rhizobia than the fast-growing China strains ofR. japonicum whilst maintaining physiological characteristics of other fast-growing rhizobia. 相似文献
4.
Summary The effects of temperature on growth in broth and soil and on competition for nodule formation betweenRhizobium japonicum serotypes USDA 76 and 94 compared to 6 and 110 were studied. Increasing root temperatures of Lee soybean from 20 to 35°C
increased the competitiveness of 76 and 94 relative to 6 and 110 for all inoculum ratios such that at 30 and 35°C symptoms
ofRhizobium-induced chlorosis appeared. Tolerance to elevated temperatures was exhibited by 76 and 110, but not 94 and 6 in broth and
soil which suggested that increased competitiveness of 76 and 94 at high soil temperatures was not dependent upon growth at
elevated temperatures. Nodulation and vegetative growth of Lee soybeans were at a minimum at 20°C and optimum at 30°C. Differences
in competitiveness of 6 to previous studies indicated the need to standardize temperatures of assays. Differences in growth
responses of 76 and 94 to temperature from a previous study suggested a confounding effect on different carbon sources in
growth media.
Scientific Article No. A-3721 Contribution No. 6697 of the Maryland Agric Exp Sta, Dept of Agronomy, College Park, MD 20742
and the USDA, ARS, Beltsville, MD 20705. Part of a thesis submitted by the senior author in partial fulfillment of the requirements
for the M.S. Degree. 相似文献
5.
Effect of vesicular-arbuscular mycorrhizae on the growth and yield of rice-stubble cultured soybeans
Summary Inoculation with vesicular-arbuscular (VA) mycorrhizal fungiGlomus fasciculatus, G. mosseae, G. etunicatus orAcaulospora scrobiculatus, increased plant dry weight and seed yields of pot-grown soybean plants in sterilized soil. Inoculation with a mixture ofG. fasciculatus, G. mosseae andG. etunicatus, orG. fasciculatus alone, increased seed yields and other agronomic traits of soybean plants grown in a no-tillage, rice-stubble field. 相似文献
6.
Summary Experiments were performed to measure the pH-sensitive steps in nodulation and symbiotic fixation byPisum sativum and isolate RP-212-1 ofRhizobium leguminosarum. An aeroponic system with rigorous pH control was used to obtain numerous effective nodules. After exposure to various pH levels, the following responses were measured: (1) legume root growth and development, (2) survival and growth rate of a single effective bacterial isolate, (3) degree of nodulation, (4) rate of nitrogen fixation, (5) plant biomass, and (6) nitrogen content of plants. Both bacterial growth and root development were adequate at all pH levels from 4.4 to 6.6, but efficient nodulation and nitrogen fixation did not occur at pH 4.8 and below. The processes required for symbiosis were about 10 times as sensitive to acidity as either bacterial growth or root growth alone. Nodulation was the most acid-sensitive step. 相似文献
7.
In short-season soybean production areas, low soil temperature is the major factor limiting plant growth and yield. The decreases in soybean yield at low temperatures are mainly due to nitrogen limitation. Genistein, the most effective plant-to-bacterium signal in the soybean (Glycine max (L.) Merr.) nitrogen fixation symbiosis, was used to pretreat Bradyrhizobium japonicum. We have previously reported that this increased soybean nodulation and nitrogen fixation in growth chamber studies. Two field experiments were conducted on two adjacent sites in 1994 to determine whether the incubation of B. japonicum with genistein, prior to application as an inoculant, or genistein, without B. japonicum, applied onto seeds in the furrow at the time of planting, increased soybean grain yield and protein yield in short season areas. The results of these experiments indicated that genistein-preincubated bradyrhizobia increased the grain yield and protein yield of AC Bravor, the later maturing of the two cultivars tested. Genistein without B. japonicum, applied onto seeds in the furrow at the time of planting also increased both grain and protein yield by stimulation of native soil B. japonicum. Interactions existed between genistein application and soybean cultivars, and indicated that the cultivar with the greatest yield potential responded more to genistein addition. 相似文献
8.
Nitrogen fixation activity by soybean (Glycine max (L.) Merr.) nodules has been shown to be especially sensitive to soil dehydration. Specifically, nitrogen fixation rates have been found to decrease in response to soil dehydration preceding alterations in plant gas exchange rates. The objective of this research was to investigate possible genetic variation in the sensitivity of soybean cultivars for nitrogen fixation rates in response to soil drying. Field tests showed substantial variation among cultivars with Jackson and CNS showing the least sensitivity in nitrogen accumulation to soil drying. Glasshouse experiments confirmed a large divergence among cultivars in the nitrogen fixation response to drought. Nitrogen fixation in Jackson was again found to be tolerant of soil drying, but the other five cultivars tested, including CNS, were found to be intolerant. Experiments with CNS which induced localized soil drying around the nodules did not result in decreases in nitrogen fixation rates, but rather nitrogen fixation responded to drying of the entire rooting volume. The osmotic potential of nodules was found to decrease markedly upon soil drying. However, the decrease in nodule osmotic potential occurred after significant decreases in nitrogen fixation rates had already been observed. Overall, the results of this study indicate that important genetic variations for sensitivity of nitrogen fixation to soil drying exist in soybean, and that the variation may be useful in physiology and breeding studies. 相似文献
9.
Summary The potential of peanuts for symbiotic nitrogen fixation is considerable and under optimal edaphic and climatic conditions it reached 222 kg N2/ha, which was 58% of the nitrogen accumulated in the plants. The effect of the Rhizobium inoculation on crude protein accumulation in the yield (kg/ha) was 3–4 times greater than its effect on the yield of pods and hay. There was an inverse relationship between the protein and oil content in the kernels.Seasonal changes in nitrogenase activity in the nodules were determined by the acetylene reduction method during two growing seasons. Under favorable conditions the specific activity of the nitrogenase reached a very high level (up to 975 moles C2H2 g dry wt nod/h) and the total activity (moles C2H4/plant/h) was also high in spite of the relatively poor nodulation (weight and number). The high activity was drastically reduced (to 75 moles C2H4 g dry wt nod/h) due to exceptionally hot and dry weather, which occurred in the middle of the second half of the growing season. It appears that N2-fixation (nitrogenase activity) is more sensitive to these unfavorable conditions, than is nodule growth. Maximum nitrogenase activity was observed during the podfilling stage; until 50–60 days after planting, nitrogenase activity was very low. 相似文献
10.
Summary Small plots were amended in 1976 or 1978 with four kinds of sewage sludge. The sludges represented samples considered to be
relatively free of heavy metals as well as sludges highly contaminated with heavy metals. Sludges were added to a silt loam
soil at rates of 224 or 448 Mgha−1. The soils were maintained at a high or low pH regime. In 1984, soybeans (Glycine max L. Merril. var. ‘Clark’) were planted and grown to the R4 stage. After harvest, roots were removed from the soil, washed,
and examined for VA mycorrhizal infection.
It was found that the heavy metal content of the sludge alone was generally not related to determining the extent of mycorrhizal
infection. A heat treated sludge, high in heavy metals, exhibited the highest degree of mycorrhizal infection when the soil
was maintained at a pH of 6.2. With this treatment, 52% of the root segments examined were infected by mycorrhiza. When the
same sludge was added to a soil with a slightly lower pH (5.7) none of the roots examined were infected by mycorrhiza. When
soybean roots were examined from soils that received no sludge and were maintained at either a low (5.6) or high (6.2) pH,
there was no significant difference in mycorrhizal infection between the pH regimes. These results therefore indicate that
sewage sludge may inhibit mycorrhizal infection if the sludge contains a high concentration of heavy metals and the sludge
is applied to the soil with a low pH.
Scientific Article No. A-4093 and Contribution No 7078 of the Maryland Agric. Exp. Stn., Dept. of Agronomy, University of
Maryland, College Park, MD 20742. 相似文献
11.
Many soybean [Glycine max (L.) Merr.] genotypes that are grown in solution cultures are highly sensitive to the combination of both salinity and inorganic
phosphate (Pi) in the substrate. This effect has been observed on numerous occasions on plants grown in a saline medium that
contained a substantial amount of Ca (i.e., CaCl2/NaCl=0.5 on a molar basis). Because Ca is important in regulating ion transport and membrane permeability, solution culture
experiments were designed to examine the effects of various concentrations of Pi and ratios of CaCl2/NaCl (0 to 0.5 on a molar basis) at a constant osmotic potential (−0.34 MPa) on this adverse interaction. Four soybean cultivars
(‘Lee’, ‘Lee 74’ ‘Clark’ and ‘Clark 63’) were tested.
No adverse salinity x Pi interaction was found on Lee at any ratio and leaf P and Cl were maintained below 300 and 200 mmol
kg−1 dry wt, respectively. Clark, Clark 63 and Lee 74 soybean plants, on the other hand, were severely injured by solution salinity
(−0.34 MPa osmotic potential) when substrate Pi was ≥0.12 mM. Reduced substrate Ca did not intensify the salinity x Pi interaction. On the contrary, the onset of injury was hastened
and more severe with increased CaCl2/NaCl ratios in isotonic solutions. Shoot and root growth rates decreased as injury increased. Leaf P concentrations from
these cultivars grown in saline solutions with 0.12 mM Pi were excessive (>600 mmol kg−1 dry wt) compared with concentrations commonly found in soybean leaf tissue yet they were independent of the severity of injury.
Since leaf Cl increased wiht increased CaCl2/NaCl ratio, we suspect that the severity of foliar injury was related to the combined effects of excessive P and Cl within
the tissue. Lee 74, the only injured cultivar examined that excluded Cl from its leaves, was less sensitive than either Clark
cultivar and its injury was characteristically different. Other ion interactions were reported that may have played a role
in injury susceptibility. 相似文献
12.
Soybean response to nodulation by rhizobitoxine-producing bradyrhizobia as influenced by nitrate application 总被引:1,自引:0,他引:1
Foliar chlorosis of soybean (Glycine max [L.] Merr.) resulting from nodulation by rhizobitoxine-producing (RT+) strains of Bradyrhizobium japonicum is commonly less severe in the field than under greenhouse conditions. Differences in nutritional conditions between the field and greenhouse may contribute to this phenomenon. In particular, field-grown plants obtain some N from soil sources, whereas in the greenhouse soybean is often grown in low-N rooting media to emphasize symbiotic responses. Therefore, we examined the effect of NO3
- on the expression of RT-induced symptoms. Soybean plants inoculated with RT+ bradyrhizobia were grown for 42 days in horticultural vermiculite receiving nutrient solution amended with 0.0, 2.5, or 7.5 mM KNO3. Foliar chlorosis decreased with increasing NO3
- application whereas nodule mass per plant was generally increased by NO3
- application. Total amounts of nodular RT remained constant or increased with NO3
- application, but nodular concentrations of RT decreased. Chlorosis severity was negatively correlated with shoot dry weight, chlorophyll concentration, and total shoot N content. It was concluded that application of NO3
- can reduce the negative effects of RT production on the host plant. This suggests that any NO3
- present in field soils may serve to limit chlorosis development in soybeans.Abbreviations RT
rhizobitoxine
- RT+
rhizobitoxine-producing
- Lb
leghemoglobin
Published as Miscellaneous Paper No. 1429 of the Delaware Agricultural Experiment Station. 相似文献
13.
Effects of acidic soil factors (Al, H-ion, Mo, and Mn) upon the soybean (Glycine max (L.) Merr. cv. Essex)/Bradyrhizobium japonicum symbiosis were examined in acidified soil. Plants were grown under full sunlight in pots containing N-deficient soil (pH 6.7) or similar soil amended with sufficient Al2(SO4)3 or elemental S to give soil pH values of 4.8 and 4.6, respectively, and water-extractable Al levels of 30 and 14 M, respectively. Other treatments consisted of the addition of inorganic N or inoculation with commercial or locally-isolated B. japonicum. Acidification did not reduce shoot or root weights of plants receiving inorganic N but reduced (P0.05) shoot and root dry weights, nodule dry weights and numbers, shoot N concentrations, and chlorophyll levels of inoculated plants. Shoot dry weights and nodulation of inoculated plants were greater (P0.05) in Al2(SO4)3-amended soil than in S-amended soil. Addition of Mo was not beneficial. It was concluded that reduced plant growth was caused by the effects of acidified soil on nodulation and that H-ion toxicity was probably the most limiting factor. Effects of Al, Mn, or Mo appeared less likely. 相似文献
14.
Ultrastructural specialization for ureide production in uninfected cells of soybean root nodules 总被引:1,自引:0,他引:1
Summary Ultrastructural studies were conducted on root nodules of soybean (Glycine max) inoculated as seeds withRhizobium japonicum. The development of the large peroxisomes and abundant tubular endoplasmic reticulum (ER) characteristic of the uninfected interstitial cells was followed during nodule growth and maturation. Quantitative data on differences between the uninfected and infected cells in volumes and numbers of peroxisomes, plastids and mitochondria were analyzed statistically. The peroxisomes are 60 times greater in volume per unit cytoplasm in the uninfected cells than the small presumptive peroxisomes in the infected cells. Plastids are about equal in volume in the two types of cells. Mitochondria have 4 × the volume and 3 × the number of profiles per unit cytoplasm in the infected cells than in the uninfected. The observations are discussed in relation to published evidence that several enzymes involved in ureide production are localized in organelles of the uninfected cells. The uninfected cells are viewed as essential components in the symbiotic relationship between host and bacterium.Abbreviations DAB
3,3-diaminobenzidine
- ER
endoplasmic reticulum 相似文献
15.
Summary Biological nitrogen fixation is considered an important trait of cowpeas (Vigna unguiculata (L.) Walp. var. California Blackeye No. 5) for economical production yet the process does not alone provide the quantity of nitrogen required by the plant for maximum productivity. Two experiments were undertaken to determine the potential of an increase in nodule mass and number of bacteroids resulting in increased nitrogen fixation. Cowpeas were grown in a glasshouse for 7 weeks under conditions forcing near total dependence on biological nitrogen fixation for growth. Nodule mass on the roots was varied by inoculating seeds with various ratios of effective and ineffective rhizobia that could be identified serologically and by the color of nodule formed. The results of both experiments demonstrated a linear relationship between total nodule mass formed by the effective rhizobia and quantity of nitrogen fixed. The regression coefficients were high in both experiments (r=0.99** and 0.91**). The relationship between total nitrogen fixed and total number of bacteroids of the effective strain was not consistent. In one experiment the regression coefficient was 0.93** but in the other experiment it was 0.65**. From these results it appears that there is good potential for increasing nitrogen fixation in cowpeas by increasing nodule mass. An increase in nodule mass would also result in an increase in the number of bacteroids. 相似文献
16.
The initial (in vivo) and total (activity present after preincubation with CO2 and Mg2+) activities of ribulose bisphosphate carboxylase were both assayed in extracts of leaves of soybean (Glycine max) plants which had been grown under 4 different irradiance levels. The total carboxylase activity per unit leaf area decreased with decreased irradiance during growth but was not different on a dry weight basis. The initial activity as a percentage of the total activity was unchanged (approximately 95%) except in leaves of plants grown at the lowest irradiance (74%). When the plants grown at the lowest irradiance were exposed to high irradiance, the initial activity was increased to 93% of the total. Light saturated rates of photosynthesis per unit leaf area were lower and saturated at lower irradiance for plants grown at lower irradiances. Initial carboxylase activity was correlated closely (r2=0.84) with leaf photosynthesis rate on a dry weight basis. 相似文献
17.
Nod factors (Lipo-chitooligosaccharides, or LCOs) act as bacteria-to-plant signal molecules that modulate early events of the Bradyrhizobium-soybean symbiosis. It is known that low root zone temperature inhibits the early stages of this symbiosis; however, the effect of low soil temperature on bacteria-to-plant signaling is largely uninvestigated. We evaluated the effect of low growth temperatures on the production kinetics of Nod factor (LCO) by B. japonicum. Two strains of B. japonicum, 532C and USDA110, were tested for ability to synthesize Nod Bj-V (C(18:1), MeFuc) at three growth temperatures (15, 17 and 28 degrees C). The greatest amounts of the major Nod factor, Nod Bj-V (C(18:1), MeFuc), were produced at 28 degrees C for both strains. At 17 and 15 degrees C, the Nod factor production efficiency, per cell, of B. japonicum 532C and USDA110 was markedly decreased with the lowest Nod factor concentration per cell occurring at 15 degrees C. Strain 532C was more efficient at Nod factor production per cell than strain USDA 110 at all growth temperatures. The biological activity of the extracted Nod factor was unaffected by culture temperature. This study constitutes the first demonstration of reduced Nod factor production efficiency (per cell production) under reduced temperatures, suggesting another way that lower temperatures inhibit establishment of the soybean N(2) fixing symbiosis. 相似文献
18.
Effect of abscisic acid application on root isoflavonoid concentration and nodulation of wild-type and nodulation-mutant soybean plants 总被引:1,自引:0,他引:1
Isoflavonoids (daidzein, genistein, and coumestrol) are involved in induction of nod genes in Bradyrhizobium japonicum and may be involved in nodule development as well. Abscisic acid (ABA) may also impact nodulation since ABA is reportedly
involved in isoflavonoid synthesis. The current study was conducted to evaluate whether ABA plays a role in differential nodulation
of a hypernodulated soybean (Glycine max L. Merr.) mutant and the Williams parent. Exogenous ABA application resulted in a decrease in nodule number and weight in
both lines. Isoflavonoid concentrations were also markedly decreased in response to ABA application in both inoculated and
noninoculated soybean roots. The inoculation treatment itself resulted in a marked increase in isoflavonoid concentrations
of NOD1-3, regardless of ABA levels, while only slight increases occurred in Williams. The nodule numbers of both soybean
lines across several ABA concentration treatments were highly correlated with the concentration of all three isoflavonoids.
However, differences in internal levels of ABA between lines were not detected when grown in the absence of external ABA additions.
It is concluded that differential nodule expression between the wild type and the hypernodulated mutant is not likely due
to differential ABA synthesis. 相似文献
19.
The objective of this study was to identify the sites of H-ion exudation and Fe(III) reduction along both inoculated and non-inoculated roots of A7 and T203 soybeans. A split-root system was used in which half the roots of each plant were inoculated and actively fixing nitrogen and the other half were not. Expectedly, the Fe-stress response was strong on both sides of the split-root system in the +N-Fe treatment of variety A7 (inactive nodules) but not of variety T203. The Fe-stress response of A7 was enhanced by the presence of active nodules. Variety T203 is Fe inefficient and normally fails to produce any Fe-stress response, but in the absence of nitrogen and iron (–N–Fe), inoculated roots responded to Fe stress with exudation of both H-ions and reductants. Intact split-root systems were embedded in agar to determine the location of H-ion exudation and Fe(III) reduction. On the inoculated side of the –N–Fe and –N+Fe treatments (active nodules) of both soybean varieties, H-ion production was associated mainly with the active nodules. However, quantities of H-ion release were much greater under Fe stress (–N–Fe) than with adequate Fe (–N+Fe). Reduction of Fe(III) to Fe(II) was found only on the nodulated side with T203, but on both sides with A7. In variety T203 the Fe reduction was associated with younger roots located just below the nodule clusters on the inoculated side of the –N treatments. Active nodules appear to play a key role in the Fe-deficiency stress response of T203 soybean. 相似文献
20.
Summary Root hairs have been shown to enhance P uptake by plants growing in low P soil. Little is known of the factors controlling root hair growth. The objective of this study was to investigate the influence of soil moisture and P level on root hair growth of corn (Zea mays L.). The effect of volumetric soil moistures of 22% (M0), 27% (M1), and 32% (M2) and soil (Raub silt loam, Aquic Argiudoll) P levels of, 0.81 (P0), 12.1 (P1), 21.6 (P2), 48.7 (P3), and 203.3 (P4) mol P L–1 initially in the soil solution, on shoot and root growth, P uptake, and root hair growth of corn was studied in a series of pot experiments in a controlled climate chamber. Root hair growth was affected more by soil moisture than soil P. The percentage of total root length with root hairs and the density and length of root hairs on the root sections having root hairs all increased as soil moisture was reduced from M2 to M0. No relationship was found between root hair length and soil P. Density of root hairs, however, was found to decrease with an increase in soil P. No correlation was found between root hair growth parameters and plant P content, further suggesting P plays a secondary role to moisture in regulating root hair growth in soils. The increase in root hair growth appears to be a response by the plant to stress as yield and P uptake by corn grown at M0 were only 0.47 to 0.82, and 0.34 to 0.74, respectively, of that measured at M1 across the five soil P levels. The increase in root hair growth at M0, which represents an increase of 2.76 to 4.03 in root surface area, could offset, in part, the reduced rate of root growth, which was the primary reason for reduced P uptake under limited soil moisture conditions.Journal Paper No. 10,066 Purdue Univ. Agric. Exp. Stn., W. Lafayette, IN 47907. Contribution from the Dep. of Agron. This paper was supported in part by a grant from the Tennessee Valley Authority. 相似文献