首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The toxicity of synergism of and resistance to insecticides in four strains of German cockroach, Blattella germanica (L.), were investigated. Toxicity of nine insecticides by topical application to the susceptible strain varied greater than 2,000-fold, with deltamethrin (LD50 = 0.004 micrograms per cockroach) and malathion (LD50 = 8.4 micrograms per cockroach) being the most and least toxic, respectively. Resistance to pyrethrins (9.5-fold) in the Kenly strain was unaffected by the synergists piperonyl butoxide (PBO) or S,S,S-tributylphosphorotrithioate (DEF), suggesting that the metabolism is not involved in this case. Malathion resistance in the Rutgers strain was suppressible with PBO, implicating oxidative metabolism as a resistance mechanism. The Ectiban-R strain was resistant to all the pyrethroids tested, and cypermethrin resistance was not suppressible with PBO or DEF. These findings support results of previous studies that indicated this train has a kdr-like mechanism. Bendiocarb resistance in both the Kenly and Rutgers strains was partially suppressed by either PBO or DEF, suggesting that oxidative and hydrolytic metabolism are involved in the resistance. Trends between the effects of the synergists on the susceptible versus resistant strains are discussed.  相似文献   

2.
Of fifteen compounds tested as synergists for chlorpyrifos against susceptible and resistant strains of Blattella germanica, the German cockroach, eleven were active against the resistant strain but only seven were synergistic against the susceptible strain. Overall, the most effective synergist was S,S,S-tributyl phosphorotrithioate (DEF) followed by phenyl saligenin cyclic phosphonate (PSCP) and two substituted N,N-dimethylcarbamates: SK-102 and SK-37. The most effective synergist for overcoming chlorpyrifos resistance was SK-37 which reduced the resistance ratio by 3.2-fold. Four other synergists which reduced chlorpyrifos resistance, in order of their effectiveness, were: SK-102 > PSCP > DEF > tridiphane. The potential usefulness of these synergists for German cockroach control is discussed.  相似文献   

3.
A field-collected strain of the German cockroach, Blattella germanica (L.), was highly resistant to 10 pyrethroid insecticides (cyfluthrin, cyhalothrin, cypermethrin, fenvalerate, esfenvalerate, fluvalinate, permethrin, resmethrin, sumithrin, tralomethrin) based on topical applications and comparison with a known susceptible strain. Resistance ratios ranged from 29 to 337. In general, pyrethroid compounds with an alpha-cyano functional group were more toxic than those lacking this moiety, but resistance ratios were similar for both classes of compound. The metabolic inhibitors DEF and PBO were tested for synergism in conjunction with cypermethrin (alpha-cyano) and permethrin (non alpha-cyano). Application of synergists resulted in partial elimination of resistance, suggesting that the basis of resistance involves enhanced metabolism as well as target site insensitivity. These results suggest that pyrethroid insecticides may have a very short functional life in German cockroach control unless they are used judiciously.  相似文献   

4.
Mushtaq AHMAD 《昆虫学报》2009,52(6):631-639
采用浸液生测法研究了斜纹夜蛾Spodoptera litura巴基斯坦抗性种群中酶抑制剂[胡椒基丁醚(PBO)和脱叶膦(DEF)]对丙溴磷、灭多威、硫双灭多威、氯氰菊酯、氯氟氰菊酯、联苯菊酯、茚虫威和多杀菌素等杀虫剂的增效作用。结果表明:PPO和DEF对氨基甲酸酯杀虫剂灭多威和硫双灭多威均具有增效作用,但对有机磷杀虫剂丙溴磷不具有增效作用。两种抑制剂对氯氰菊酯均产生增效作用,但对联苯菊酯没有增效作用。PPO 和DEF增加了氯氟氰菊酯对Multan种群的毒性,但没有增加其对Mailsi种群的毒性。DEF对多杀菌素具有增效作用,但PBO对其没有增效作用。PBO和DEF对氨基甲酸酯杀虫剂、拟除虫菊酯杀虫剂、茚虫威和多杀菌素具有明显的增效作用,这说明细胞色素P450单加氧酶和酯酶的解毒作用至少部分参与了斜纹夜蛾对这些杀虫剂的抗性过程。不过,两种增效剂对杀虫剂增效作用范围有限,暗示对于斜纹夜蛾巴基斯坦种群而言,其他的机制(如靶位点不敏感、表皮穿透作用降低)可能是更重要的抗性机制。  相似文献   

5.

Background

Permethrin is the active component of topical creams widely used to treat human scabies. Recent evidence has demonstrated that scabies mites are becoming increasingly tolerant to topical permethrin and oral ivermectin. An effective approach to manage pesticide resistance is the addition of synergists to counteract metabolic resistance. Synergists are also useful for laboratory investigation of resistance mechanisms through their ability to inhibit specific metabolic pathways.

Methodology/Principal Findings

To determine the role of metabolic degradation as a mechanism for acaricide resistance in scabies mites, PBO (piperonyl butoxide), DEF (S,S,S-tributyl phosphorotrithioate) and DEM (diethyl maleate) were first tested for synergistic activity with permethrin in a bioassay of mite killing. Then, to investigate the relative role of specific metabolic pathways inhibited by these synergists, enzyme assays were developed to measure esterase, glutathione S-transferase (GST) and cytochrome P450 monooxygenase (cytochrome P450) activity in mite extracts. A statistically significant difference in median survival time of permethrin-resistant Sarcoptes scabiei variety canis was noted when any of the three synergists were used in combination with permethrin compared to median survival time of mites exposed to permethrin alone (p<0.0001). Incubation of mite homogenates with DEF showed inhibition of esterase activity (37%); inhibition of GST activity (73%) with DEM and inhibition of cytochrome P450 monooxygenase activity (81%) with PBO. A 7-fold increase in esterase activity, a 4-fold increase in GST activity and a 2-fold increase in cytochrome P450 monooxygenase activity were observed in resistant mites compared to sensitive mites.

Conclusions

These findings indicate the potential utility of synergists in reversing resistance to pyrethroid-based acaricides and suggest a significant role of metabolic mechanisms in mediating pyrethroid resistance in scabies mites.  相似文献   

6.
In 1991, the first losses of efficacy of tau-fluvalinate against the honeybee ectoparasite Varroa jacobsoni Oud. were recorded in Sicily. Since then, diminished efficacy with available pyrethroid treatments has been encountered in many regions of Italy. The aim of this study was to investigate the type of resistance in V. jacobsoni to the pyrethroid tau-fluvalinate by focusing on metabolic resistance mechanisms (detoxication). After developing a suitable application method, two synergists were used: piperonyl butoxide (PBO), as an inhibitor of the microsomal monooxygenases of the cytochrome P450 complex and S,S,S-tributylphosphorotrithioate (DEF), which blocks esterases. A significant decrease in the LC50 values of the susceptible and of the resistant mite strains after the application of PBO was observed. A slight decrease of the LC50 values was also observed after the application of DEF. However, this decrease was not significant. These results indicate that the resistance of Varroa mites to tau-fluvalinate can partly be explained by an increased detoxication due to the monooxygenases in the P450 system, which is blocked by PBO. Esterases seems to play a negligible role. Whether glutathione-S-transferases are involved, is still unknown, but other mechanisms, such as the modification of the binding sites and/or reduced uptake might be involved as well.  相似文献   

7.
A house fly strain, ALHF, was collected from a poultry farm in Alabama after a control failure with permethrin, and further selected in the laboratory with permethrin for five generations. The level of resistance to permethrin in ALHF was increased rapidly from an initial 260-fold to 1,800-fold after selection. Incomplete suppression of permethrin resistance by piperonyl butoxide (PBO) and S,S,S,-tributylphosphorotrithioate (DEF) reveals that P450 monooxygenase- and hydrolase-mediated detoxication, and one or more additional mechanisms are involved in resistance to permethrin. The ALHF strain showed a great ability to develop resistance or cross-resistance to different insecticides within and outside the pyrethroid group including some relatively new insecticides. Resistance to beta-cypermethrin, cypermethrin, deltamethrin, and propoxur (2,400-4,200-, 10,000-, and > 290-fold, respectively, compared with a susceptible strain, aabys) in ALHF house flies was partially or mostly suppressed by PBO and DEF, indicating that P450 monooxygenases and hydrolases are involved in resistance to these insecticides. Partial reduction in resistance with PBO and DEF implies that multiresistance mechanisms are responsible for resistance. Fifteen- and more than fourfold resistance and cross-resistance to chlorpyrifos and imidacloprid, respectively, were not effected by PBO or DEF, indicating that P450 monooxygenases and hydrolases are not involved in resistance to these two insecticides. Forty-nine-fold cross-resistance to fipronil was mostly suppressed by PBO and DEF, revealing that monooxygenases are a major mechanism of cross-resistance to fipronil. Multiresistance mechanisms in the ALHF house fly strain, however, do not confer cross-resistance to spinosad, a novel insecticide derived from the bacterium Saccharopolyspora spinosa. Thus, we propose that spinosad be used as a potential insecticide against house fly pests, especially resistant flies.  相似文献   

8.
Abstract: The toxicity of fenitrothion and fenitrothion plus synergists was determined by topical application to adults of fenitrothion-resistant (571ab) and -susceptible (Cooper) strains of Musca domestica L. The strain 571ab was 232-fold resistant to fenitrothion when compared with the Cooper strain. Co-administration of fenitrothion with three synergists, namely piperonyl butoxide (PBO), tributylphosphorotrithioate (DEF) and diethyl maleate (DEM) was investigated, respectively, at 1 : 5, 1 : 5 and 1 : 10 ratio. This co-administration of fenitrothion with PBO, DEF and DEM caused a decrease in the doses which produced 50% lethality (LD50s) in 571ab but had no synergistic effect on fenitrothion toxicity was observed in the Cooper strain. The effect of topical application of fenitrothion alone and in combination with PBO, DEF and DEM at the LD50 level on some enzyme activities in 571ab and Cooper strains was examined. The application of fenitrothion alone and in combination with DEF and DEM at LD50 level caused a significant decrease in activities of total esterases, acetylcholinesterase (AChE) and glutathione S-transferase (GST) in the 571ab strain. The decrease in GST activity was not significant in treated flies of the Cooper strain when compared with GST activity of control flies. A non-significant effect on total cytochrome P450 level was observed with fenitrothion alone and the fenitrothion + PBO treatment. No increase in activity level of total esterases, AChE and GST was found, which might suggest that changes in activity level of these enzymes are not related to fenitrothion resistance in the 571ab strain.  相似文献   

9.
《Mutation Research Letters》1993,301(2):113-119
The ability of the mussel postmitochondrial fraction (S9) to activate benzo[a]pyrene (BaP) and 2-aminoanthracene (2AA) to mutagenic metabolites towards Salmonella typhimurium strain TA98 was tested. The mechanisms involved in this activation were investigated and mussel cytochrome P-450-dependent monooxygenases and its NADPH cytochrome c reductase were found to contribute to the activation of BaP. This activation was improved by treating the mussel with 4,5,4′,5′-tetrachlorobiphenyl (TCB) (a 3-methylcholanthrene-type inducer of cytochrome P-450-dependent monooxygenase in marine fish) and was inhibited by α-naphthoflavone (ANF), a cytochrome P-450 inhibitor. However, both BaP activation and cytchrome P-450-related metabolic activities are much weaker in mussels than in vertebrates. Mussel S9 activates aromatic amines more effectively than BaP. Pretreatment of mussels with TCB or addition of ANF in the incubation medium has no effect on 2AA activation. As suggested by Kurelec (1985), aromatic amine metabolism may be supported by a flavoprotein mixed-function amine oxidase which is NADPH-dependent.  相似文献   

10.
The presence of cytochrome P450 and P450-mediated phenanthrene oxidation in the white rot fungus Phanerochaete chrysosporium under ligninolytic condition was first demonstrated in this study. The carbon monoxide difference spectra indicated induction of P450 (130 pmol mg−1 in the microsomal fraction) by phenanthrene. The microsomal P450 degraded phenanthrene with a NADPH-dependent activity of 0.44 ± 0.02 min−1. One of major detectable metabolites of phenanthrene in the ligninolytic cultures and microsomal fractions was identified as phenanthrene trans-9,10-dihydrodiol. Piperonyl butoxide, a P450 inhibitor which had no effect on manganese peroxidase activity, significantly inhibited phenanthrene degradation and the trans-9,10-dihydrodiol formation in both intact cultures and microsomal fractions. Furthermore, phenanthrene was also efficiently degraded by the extracellular fraction with high manganese peroxidase activity. These results indicate important roles of both manganese peroxidase and cytochrome P450 in phenanthrene metabolism by ligninolytic P. chrysosporium.  相似文献   

11.
The role of S-oxidation in the toxic bioactivation of alpha-naphthylisothiocyanate (ANIT) was investigated. The effects of several thione compounds, inhibitors and an inducer of the cytochrome P-450-dependent mixed function oxidase systems on the in vitro metabolism of ANIT and aminopyrine were determined. Ethionamide, sodium diethyldithiocarbamate (Na-DDTC) and S-methyl diethyldithiocarbamate (Me-DDTC), three agents known to undergo metabolism by an S-oxidative pathway and diminish ANIT's toxicity, inhibited the in vitro enzymatic metabolism of ANIT by rat liver microsomes. Methimazole failed to alter either the hyperbilirubinemic response of ANIT or the in vitro metabolism of ANIT. All four thione compounds (i.e., ethionamide, Me-DDTC, Na-DDTC and methimazole) inhibited the enzymatic metabolism of aminopyrine by rat liver microsomes. Me-DDTC was the most potent, whereas methimazole was the least potent inhibitor of aminopyrine metabolism. Phenobarbital, which potentiates, and SKF-525A, which inhibits the hepatotoxicity of ANIT in vivo, correspondingly stimulated or inhibited the NADPH-dependent metabolism of ANIT and aminopyrine by liver microsomes. N-Decylimidazole (NDI), another classical inhibitor of cytochrome P-450-dependent monooxygenase system, inhibited both the in vivo toxicity and in vitro metabolism of ANIT. NDI also diminished the enzymatic metabolism of aminopyrine by liver microsomes. Thus the results of this study indicate that metabolism of ANIT is intimately related to its toxicity and that ANIT probably undergoes its toxic bioactivation via a cytochrome P-450-dependent S-oxidative pathway.  相似文献   

12.
在增效醚(PBO)对棉铃虫Helicoverpa armigera 3龄幼虫处理后的不同时段,细胞色素P450的含量受到不同程度的抑制:在处理后1 h,细胞色素P450的含量仅为对照的43.9%,至处理后12 h,细胞色素P450的含量下降到最低点,仅为对照的23.4%;而处理后18~24 h,细胞色素P450被抑制的程度有所减弱,其含量分别为对照的85.8%和70.0%。生物测定结果表明,PBO对所测定的7种拟除虫菊酯均有不同程度的增效作用,对氰戊菊酯的增效比最高(119.3),对氯菊酯的增效比最低(2.1)。由于细胞色素P450是拟除虫菊酯的重要解毒酶系,PBO的处理可使棉铃虫细胞色素P450的含量大幅度下降,使其对杀虫剂的解毒能力减弱,从而对杀虫剂产生增效作用。  相似文献   

13.
Inhibition studies were used to investigate the identity of the microsomal enzyme(s) responsible for the NADPH-dependent N-hydroxylation of 2-amino-6-nitrotoluene. The N-hydroxylation reaction was inhibited by several cytochrome P-450 inhibitors as well as by methimazole, a substrate for flavin-containing monooxygenase. Heat inactivation of flavin-containing monooxygenase had no effect on the rate of the reaction but abolished the inhibition by methimazole. These results indicate that the flavin-containing monooxygenase-mediated metabolism of methimazole produced an inhibitor of the cytochrome P-450-catalyzed N-hydroxylation reaction. When glutathione was included in the incubation the inhibition by methimazole was abolished, presumably due to the reduction of oxygenated metabolites of methimazole. These results show that methimazole inhibition does not necessarily implicate flavin-containing monooxygenase in microsomal N-hydroxylation reactions.  相似文献   

14.
Approximately 90% of the NADPH- and NADH-dependent O-demethylation of p-nitroanisole (PNA) in the hepatic microsomal fraction from phenobarbital (PB)-treated rabbits and in the pulmonary microsomal fraction from untreated rabbits is catalyzed by the same isozyme of cytochrome P-450. This isozyme of cytochrome P-450 catalyzes less than 60% of this reaction in the hepatic microsomal fraction from untreated rabbits. Antibodies to NADPH-cytochrome P-450 reductase inhibit NADPH-dependent metabolism of p-nitroanisole by about 90% but have no effect on NADH-dependent metabolism. Hepatic NADPH-dependent metabolism of pNA and reduction of cytochrome c are inhibited to the same extent with varying amounts of antibodies to NADPH cytochrome P-450 reductase. The same relationship between inhibition of monooxygenase and reductase activities is observed for the hepatic and pulmonary metabolism of benzphetamine and 7-ethoxycoumarin. In contrast, the relationship between inhibition of the pulmonary NADPH-dependent metabolism of pNA and reductase activity is biphasic; at 75% inhibition of reductase activity, metabolism of pNA is inhibited by less than 25%. For NADH-dependent metabolism of pNA, our results indicate that both electrons are transferred to cytochrome P-450 from cytochrome b5.  相似文献   

15.
Incubation of rat liver microsomal fractions with arachidonic acid in the presence of NADPH results in the formation of three novel monohydroxylated fatty acid metabolites. Utilizing chromatographic and mass spectral techniques, these metabolites have been identified as 16-, 17-, and 18-hydroxyeicosatetraenoic acids. The NADPH-dependent microsomal metabolism of arachidonic acid to 16-, 17-, 18-, and 19-hydroxyeicosatetraenoic acids is induced after animal treatment with beta-naphthoflavone. Reconstitution of the arachidonic acid oxygenase utilizing individual purified cytochrome P-450 enzymes demonstrates regioselectivity, controlled by the protein catalyst, for the hydroxylation of the sp3 carbon atoms adjacent to the methyl end of the fatty acid.  相似文献   

16.
The mechanism of benzene oxygenation in liver microsomes and in reconstituted enzyme systems from rabbit liver was investigated. It was found that the NADPH-dependent transformation of benzene to water-soluble metabolites and to phenol catalyzed by cytochrome P-450 LM2 in membrane vesicles was inhibited by catalase, horseradish peroxidase, superoxide dismutase, and hydroxyl radical scavengers such as mannitol, dimethyl sulfoxide, and catechol, indicating the participation of hydrogen peroxide, superoxide anions, and hydroxyl radicals in the process. The cytochrome P-450 LM2-dependent, hydroxyl radical-mediated destruction of deoxyribose was inhibited concomitantly to the benzene oxidation. Also the microsomal benzene metabolism, which did not exhibit Michaelis-Menten kinetics, was effectively inhibited by six different hydroxyl radical scavengers. Biphenyl was formed in the reconstituted system, indicating the cytochrome P-450-dependent production of a hydroxycyclohexadienyl radical as a consequence of interactions between hydroxyl radicals and benzene. The formation of benzene metabolites covalently bound to protein was efficiently inhibited by radical scavengers but not by epoxide hydrolase. The results indicate that the microsomal cytochrome P-450-dependent oxidation of benzene is mediated by hydroxyl radicals formed in a modified Haber-Weiss reaction between hydrogen peroxide and superoxide anions and suggest that any cellular superoxide-generating system may be sufficient for the metabolic activation of benzene and structurally related compounds.  相似文献   

17.
We have identified resistance mechanisms in the German cockroach, Blattella germanica (L.), for propoxur and chlorpyrifos in strains of cockroaches that display multiresistance to several organophosphate and carbamate insecticides. The resistance mechanisms involve the combined effects of increased oxidative and hydrolytic metabolism and both strains are resistant to chlorpyrifos and propoxur. Experiments designed to test for similarity in metabolic enzymes suggest that, although the mechanisms involve similar processes, the enzymes responsible for insecticide detoxification are different in the two strains. Both resistant strains exhibited enhanced activity toward alpha-naphtholic esters relative to a standard susceptible strain; however, analysis of the progeny from resistant X susceptible crosses suggests that this general esterase activity is inherited differently than propoxur or chlorpyrifos resistance. Hybrids of the propoxur-resistant strain displayed the highest activity of all cockroaches tested, in contrast to hybrids of the chlorpyrifos-resistant strain, which were similar to the susceptible strain. Native gel electrophoresis of cytosolic preparations provided further evidence for differences in the pattern of hydrolytic enzymes and inheritance of resistance in the two strains. Analysis of components of the cytochrome P450-dependent monooxygenase system and activities toward model substrates indicate that the two resistance mechanisms also involve different oxidative processes. The propoxur-resistant strain displayed significantly higher levels of total cytochrome P450, but no other components were correlated with resistance. In contrast with the chlopyrifos-resistant strain, which was similar to the susceptible strain in all parameters measured, activity toward model substrates was higher in the propoxur-resistant strain than in any of the other strains and hybrids tested.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Isolated rat liver cells convert [14C]vinyl chloride into non-volatile metabolites. The metabolism is not increased by in vivo pretreatment with phenobarbital. It is sensitive to inhibition by ethanol, which at a concentration of 4 mM inhibits vinyl chloride metabolism to 50% in hepatocyte suspensions. The metabolic activity is NADPH-dependent and is localized in the microsomal fraction of the liver. The enzyme is also strongly inhibited by tetrahydrofuran, indicating that it could be identical to an ethanol-inducible cytochrome P-450 described in the literature [1].  相似文献   

19.
The cytochrome P450 monooxygenases are an important metabolic system whose level of activity can be influenced by several dietary constituents. We examined the effects of six known P450 inducers on the levels of total cytochromes P450, cytochrome b(5), and six monooxygenase activities in adult German cockroaches. In addition, the levels of CYP6L1 and CYP9E2 mRNA were also investigated. Phenobarbital treatment resulted in increases in total cytochromes P450 and metabolism of three resorufin analogues, but not CYP6L1 nor CYP9E2 mRNA. There was no significant effect of the other five inducers on any of the monooxygenase parameters we measured. In comparison with other insects, the German cockroach seems unusually refractory to most inducing agents.  相似文献   

20.
Honey bees, Apis mellifera L., often thought to be extremely susceptible to insecticides in general, exhibit considerable variation in tolerance to pyrethroid insecticides. Although some pyrethroids, such as cyfluthrin and lambda-cyhalothrin, are highly toxic to honey bees, the toxicity of tau-fluvalinate is low enough to warrant its use to control parasitic mites inside honey bee colonies. Metabolic insecticide resistance in other insects is mediated by three major groups of detoxifying enzymes: the cytochrome P450 monooxygenases (P450s), the carboxylesterases (COEs), and the glutathione S-transferases (GSTs). To test the role of metabolic detoxification in mediating the relatively low toxicity of tau-fluvalinate compared with more toxic pyrethroid insecticides, we examined the effects of piperonyl butoxide (PBO), S,S,S-tributylphosphorotrithioate (DEF), and diethyl maleate (DEM) on the toxicity of these pyrethroids. The toxicity of the three pyrethroids to bees was greatly synergized by the P450 inhibitor PBO and synergized at low levels by the carboxylesterase inhibitor DEF. Little synergism was observed with DEM. These results suggest that metabolic detoxification, especially that mediated by P450s, contributes significantly to honey bee tolerance of pyrethroid insecticides. The potent synergism between tau-fluvalinate and PBO suggests that P450s are especially important in the detoxification of this pyrethroid and explains the ability of honey bees to tolerate its presence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号