首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Cryopreservation of African violet via encapsulation-dehydration, vitrification, and encapsulation-vitrification of shoot tips was evaluated. Encapsulation-dehydration, pretreatment of shoot tips with 0.3 M sucrose for 2 d followed by air dehydration for 2 and 4 h resulted in complete survival and 75% regrowth, respectively. Dehydration of encapsulated shoot tips with silica gel for 1 h resulted in 80% survival but only 30% regrowth. Higher viability of shoot tips was obtained when using a step-wise dehydration of the material rather than direct exposure to 100% plant vitrification solution (PVS2). Complete survival and 90% regrowth were achieved with a four-step dehydration with PVS2 at 25°C for 20 min prior to freezing. The use of 2M glycerol plus 0.4M sucrose or 10% dimethyl sulfoxide (DMSO) plus 0.5M sucrose as a cryoprotectant resulted in 55% survival of shoots. The greatest survival (80–100%) and regrowth (80%) was obtained when shoot tips were cryoprotected with 10% DMSO plus 0.5M sucrose or 5% DMSO plus 0.75M sucrose followed by dehydration with 100% PVS2. Shoot tips cryoprotected with 2M glycerol plus 0.4M sucrose for 20 min exhibited complete survival (100%) and the highest regrowth (55%). In encapsulation-vitrification, dehydration of encapsulated and cryoprotected shoot tips with 100% PVS2 at 25°C for 5 min resulted in 85% survival and 80% regrowth.  相似文献   

2.
Artemisia herba-alba, called Shih is a medicinal herbal plant found in the wilds. The biodiversity of this plant is heavily subjected to loss because of heavy grazing, land cultivation and collection by people to be used in folk medicine. In the current study, two cryopreservation dependent techniques to conserve the shoot-tips of in vitro grown Shih were evaluated: encapsulation- dehydration and encapsulation- vitrification. Shoot-tips of Shih were encapsulated into sodium-alginate beads. In encapsulation- dehydration, the effect of sucrose concentration (0.5, 0.75 or 1.0 M) and dehydration period (0, 2, 4 or 6 h) under sterile air-flow on survival and regrowth of encapsulated shoot tips were studied. Maximum survival (100%) and regrowth (27%) rates were obtained when encapsulated unfrozen Artemisia herba-alba shoot tips were pretreated with 0.5 M sucrose for 3 days without further air dehydration. After cryopreservation the highest survival (40%) and regrowth (6%) rates were achieved when Artemisia herba-alba shoot tips were pretreated with 1.0 M sucrose for 3 days without further air dehydration. Viability of Artemisia herba-alba shoot tips decreased with increased dehydration period. In encapsulation-vitrification, the effect of dehydration of encapsulated Artemisia herba-alba shoot tips with 100% PVS2 for various dehydration durations (10, 20, 30, 60 or 90 min) prior to freezing was studied. After cryopreservation the dehydration of encapsulated and vitrified shoot tips with 100% PVS2 for 30 min resulted in 68% survival and 12% regrowth rates. Further conservation techniques must be evaluated to increase both survival and regrowth percentages.  相似文献   

3.
In vitro-grown shoot tips of five tetraploid potato (SolanumtuberosumL.) clones were cryopreserved by vitrification. Excisedshoot tips (0.5–0.7 mm) were pre-cultured on filter paperdiscs over half strength liquid Murashige and Skoog (MS) mediumsupplemented with 8.7 µMGA3and different combinationsof sucrose (0.3, 0.5 and 0.7M) plus mannitol (0, 0.2 and 0.4M)for 2 d under a 16 h photoperiod at 24 °C. The pre-culturedshoot tips were either successively loaded with 20 and 60% PVS2 solutions or directly exposed to concentrated vitrificationsolution before physical vitrification during liquid nitrogentreatment. The vitrified shoot tips were warmed rapidly andtreated with dilution mixture (MS+1.2Msucrose) for 30 min beforeplating on regrowth medium. Addition of mannitol to the pre-culturemedium improved survival of vitrified shoot tips. Direct dehydrationof pre-cultured shoot tips with concentrated PVS 2 was detrimentalto survival of vitrified shoot tips. Shoot tips pre-culturedon medium containing 0.3Msucrose plus 0.2Mmannitol, and loadedwith 20% PVS 2 for 30 min followed by 15 min incubation in 60%PVS 2 and 5 min incubation in 100% PVS 2 at 0 °C resultedin up to 54% survival after vitrification. About 50% of vitrifiedand warmed shoot tips formed shoots directly. Post-thaw culturingof vitrified shoot tips on medium containing an elevated levelof sucrose (0.2M) under diffuse light for the first week enhancedthe survival rate. Continuous culturing of vitrified shoot tipson high-sucrose medium induced multiple shoot formation.Copyright1998 Annals of Botany Company Solanum tuberosumL., potato, cryopreservation, germplasm conservation,in vitroconservation, meristems, shoot tips, tissue culture, vitrification.  相似文献   

4.
In this work, we compared the efficiency of encapsulation-dehydration and droplet-vitrification techniques for cryopreserving grapevine (Vitis vinifera L.) cv. Portan shoot tips. Recovery of cryopreserved samples was achieved with both techniques; however, droplet-vitrification, which was used for the first time with grapevine shoot tips, produced higher regrowth. With encapsulationdehydration, encapsulated shoot tips were precultured in liquid medium with progressively increasing sucrose concentrations over a 2-day period (12 h in medium with 0.25, 0.5, 0.75 and 1.0 M sucrose), then dehydrated to 22.28% moisture content (fresh weight). After liquid nitrogen exposure 37.1% regrowth was achieved using 1 mm-long shoot tips and only 16.0% with 2 mm-long shoot tips. With droplet-vitrification, 50% regrowth was obtained following treatment of shoot tips with a loading solution containing 2 M glycerol + 0.4 M sucrose for 20 min, dehydration with half-strength PVS2 vitrification solution (30% (w/v) glycerol, 15% (w/v) ethylene glycol, 15% dimethylsulfoxide and 0.4 M sucrose in basal medium) at room temperature, then with full strength PVS2 solution at 0°C for 50 min before direct immersion in liquid nitrogen. No regrowth was achieved after cryopreservation when shoot tips were dehydrated with PVS3 vitrification solution (50% (w/v) glycerol and 50% (w/v) sucrose in basal medium).  相似文献   

5.
Invitro-grown shoot tips of taro (Colocasia esculenta (L.) Schott.) were successfully cryopreserved by vitrification. Excised shoot tips precultured on solidified MS supplemented with 0.3M sucrose and maintained under a 16 h phtoperiod at 25°C for 16 h were loaded with a mixture of 2M glycerol plus 0.4M sucrose for 20 min at 25°C. The shoot tips were then sufficiently dehydrated with a highly concentrated vitrification solution (PVS2) for 20 min at 25°C prior to immersion into liquid nitrogen. Successfully vitrified and warmed shoot tips resumed growth within 7 days and developed shoots directly without intermediate callus formation. The average rate of shoot recovery amounted to around 80%, and the vitrification protocol appeared to be very promising for the cryopreservation of taro germplasm.Abbreviations DMSO Dimethylsulfoxide - EG ethylene glycol - LN liquid nitrogen - MS Murashige & Skoog medium (1962) - TDZ thidiazuron  相似文献   

6.
 Routine cryopreservation of shoot tips from sweet potato [Ipomoea batatas (L.) Lam] has been hampered by their survival variability after cryogenic exposure. We examined the effects of light conditions on stock plants, sucrose preculture and cryoprotectant loading on survival after vitrification using PVS2 solution. The survival of vitrified sweet potato shoot tips cooled to approximately –208  °C was increased by preculturing with 0.3 M sucrose for 24 h at 22  °C. Survival was also enhanced by excising shoot tips immediately after the 8-h dark photoperiod. The best survival after cryogenic exposure was obtained using 2 M glycerol +0.4 M sucrose for 1 h at 22  °C followed by dehydration with PVS2 for 16 min at 22  °C. Rapid cooling was used and achieved by the immersion of foil strips into partially solidified nitrogen. Successfully vitrified and warmed shoot tips directly developed shoots on a medium containing 1 μM NAA, 0.5 μM BA and 0.1 μM kinetin with only minimum callus formation. Shoot formation occurred in all surviving shoot tips. This procedure shows promise for cryopreserving sweet potato shoot tips. Received: 2 March 1999 / Revision received: 21 September 1999 / Accepted: 29 September 1999  相似文献   

7.
The cryostoring of embryogenic tissue of the date palm (Phoenix dactylifera L. cv. Sagai) was examined through dehydrated-encapsulation, vitrification, and vitrification-encapsulation. The most extreme regeneration rate (53.33%) of epitomized, cryostored liquid nitrogen (+LN) treated embryos was observed when pre-embryonic masses were hatched with 0.5 M sucrose for 48 h pursued by 6 h air drying out. The most noteworthy survival rate (80.0%) of epitomized, cryopreserved embryonic cluster came about when calli were hatched with 0.3 or 0.7 M sucrose for 48 h pursued by four hours of lack of hydration, or with 0.5 M sucrose for 48 h without air drying out or with 2 h of air drying out. Following cryopreservation utilizing the embodiment vitrification convention, the most astounding survival (86.7%) as well as the greatest growth (46.7%) was accomplished when the typified vitrified, cryopreserved calli were treated with Vitrification Solution 2 for plants (PVS2) for 60 min at 25 °C. Cryopreservation utilizing the vitrification convention brought about the most extreme recuperation of 53.3%, when vitrified-cryopreserved calli were subjected to PVS2 solution for 30 min at 25 °C. Most extreme (40%) regeneration of vitrified, cryopreserved embryonic calli was seen when these calli were treated with PVS2 solution for 60 min at 25 °C. The outcome got amid this investigation of regrowth after cryopreservation of the cv. Sagai was over the base suitable for a cryo-germplasm bank. Recovery and regrowth were above 30% for all the techniques developed for the cv. Sagai.  相似文献   

8.
Axillary shoot tips of apple cv. Golden Delicious isolated from shoot cultures were successfully cryopreserved using the encapsulation-dehydration technique. After encapsulation in alginate gel, embedded shoot tips were dehydrated by exposure to a sterile air flow before being frozen in liquid nitrogen and subsequent slow thawing. A preculture on modified MS medium containing 0.75 M sucrose followed by 6 h of dehydration (21% residual water) led to the highest shoot regrowth of frozen, coated shoot tips (83.7%). Among the sugars tested, sucrose and sorbitol presented the best cryoprotective effect. Four other scion apple varieties and rootstocks were also successfully cryopreserved. Axillary shoot tips of five apple (Malus×domestica Borkh.) scion and rootstock cultivars were cryopreserved using the encapsulation-vitrification technique. Using a one-step freezing method, we successfully cryopreserved axillary shoot tips without the requirement of a cold hardening pretreatment of the shoot cultures. Cryopreserved shoot tips treated with aqueous cryoprotective mixture IV containing 180% (w/v) sucrose and 120% (v/v) ethylene glycol showed the highest shoot regrowth rates, which varied from 64% to 77%, depending on the cultivar. Received: 29 July 1999 / Revision received: 24 September 1999 / Accepted: 26 November 1999  相似文献   

9.
The objective of the present study was the cryopreservation of monotypic endemic Hladnikia pastinacifolia Rchb. shoot tips from an in vitro culture, via encapsulation-dehydration (ED) or encapsulation-vitrification (EV). For all tested genotypes, the highest rates of shoot regrowth and multiplication were obtained after overnight preculture in 0.4 M sucrose, encapsulation in Murashige and Skoog (MS) medium with 0.4 M sucrose and 1 M glycerol, followed by polymerization in 3% (w/v) Na-alginate in MS with 0.4 M sucrose. Optimal osmoprotection was achieved for ED with 0.4 M sucrose plus 1 M glycerol and for EV with 0.4 M sucrose plus 2 M glycerol. The best dehydration time for ED was 150 min in a desiccation chamber with silica gel, and the best vitrification time for EV was 85 min in plant vitrification solution 2 (PVS2). For ED, dehydration for 150 min resulted in explant water content of 22%. When the encapsulation method was combined with ED, 53% regrowth was achieved, and when it was combined with EV, 64% regrowth was achieved. Both methods could become applicable for the long-term cryopreservation of H. pastinacifolia germplasm, although EV was faster and resulted in better final regrowth success. Genetic stability analysis of cryopreserved plant samples was carried out for two genotypes, using random amplified polymorphic DNA (RAPD) markers to compare the two different cryopreservation protocols. Significant genetic differences between the genotypes were detected and a low level of genomic variation was observed.  相似文献   

10.
In vitro grown shoot tips of transgenic papaya lines (Carica papaya L.) were successfully cryopreserved by vitrification. Shoot tips were excised from stock shoots that were preconditioned in vitro for 45–50-day-old and placed on hormone-free MS medium with 0.09 M sucrose. After loading for 60 min with a mixture of 2 M glycerol and 0.4 M sucrose at 25°C, shoot tips were dehydrated with a highly concentrated vitrification solution (PVS2) for 80 min at 0°C and plunged directly into liquid nitrogen. The regeneration rate was approximately 90% after 2 months post-thawing. Successfully vitrified and warmed shoot tips of three non-transgenic varieties and 13 transgenic lines resumed growth within 2 months and developed shoots in the absence of intermediate callus formation. Dehydration with PVS2 was important for the cryopreservation of transgenic papaya lines. This vitrification procedure for cryopreservation appears to be promising as a routine method for cryopreserving shoot tips of transgenic papaya line germplasm.  相似文献   

11.
Shoot tips excised from dormant axillary buds of persimmon (Diospyros kaki Thunb.) were cryopreserved by vitrification. These excised shoot tips were dehydrated in a highly concentrated vitrification solution for 20 min at 25°C and then plunged directly into liquid nitrogen. After rapid warming in water at 40°C, the shoot tips were rinsed in a 1.2 M sucrose solution for 20 min and then plated on a solidified culture medium. Successfully vitrified shoot tips resumed growth within 10 days of plating and developed shoots within 3 weeks without intermediary callus formation. This simple protocol was successfully applied to the 16 cultivars found in the temperate zone. The average rate of shoot formation was 89%. Even the subtropical species of Diospyros demonstrated a very high recovery growth when the shoot tips had been previously osmoprotected with a mixture of 2 M glycerol plus 0.4 M sucrose for 20 min following sucrose preculture. Little or no contamination occurred in the cryopreserved shoot tips excised from sterilized winter axillary buds. Thus, this simple and reliable vitrification protocol using dormant shoot tips appears to be promising as a routine method for the long-term conservation of Diospyros germplasm of both temperate and subtropical origins.  相似文献   

12.
Summary Plants of European chestnut (Castanea sativa) have been consistently recovered from cryopreserved in vitro-grown shoot apices by using the vitrification procedure. Factors found to influence the success of cryopreservation include the source of the shoot tips (terminal buds or axillary buds), their size, the duration of exposure to the cryoprotectant solution, and the composition of the post-cryostorage recovery medium. The most efficient protocol for shoot regrowth employed 0.5–1.0 mm shoot tips isolated from 1 cm-long terminal buds that had been excised from 3–5-wk shoot cultures and cold hardened at 4°C for 2 wk. The isolated shoot tips were precultured for 2d at 4°C on solidified Gresshoff and Doy medium (GD) supplemented with 0.2M sucrose, and were then treated for 20 min at room temperature with a loading solution (2M glycerol+0.4M sucrose) and for 120 min at 0°C with a modified PVS2 solution before rapid immersion in liquid nitrogen (LN). After 1 d in LN, rapid rewarming and unloading in 1.2M sucrose solution for 20 min, the shoot tips were plated on recovery medium consisting of GD supplemented with 2.2 μM benzyladenine, 2.9 μM 3-indoleacetic acid, and 0.9 μM zeatin. This protocol achieved 38–54% shoot recovery rates among five chestnut clones (three of juvenile origin and two of mature origin), and in all cases plant regeneration was also obtained.  相似文献   

13.
In vitro-grown shoot tips of apples (Malus domestica Borkh. cv. Fuji) were successfully cryopreserved by vitrification. Three-week-old in vitro apple plantlets were cold-hardened at 5°C for 3 weeks. Excised shoot tips from hardened plantlets were precultured on a solidified Murashige & Skoog agar medium (MS) supplemented with 0.7 M sucrose for 1 day at 5°C. Following preculture shoot tips were transferred to a 2 ml plastic cryotube and a highly concentrated cryoprotective solution (designated PVS2) was then added at 25°C. The PVS2 contains (W/V) 30% glycerol, 15% ethylene glycol and 15% dimethylsulfoxide in medium containing 0.4 M sucrose. After dehydration at 25°C for 80 min, the shoot tips were directly plunged into liquid nitrogen. After rapid warming, the shoot tips were expelled into 2 ml of MS medium containing 1.2 M sucrose and then plated on agar MS medium. Direct shoot elongation was observed in approximately 3 weeks. The average rate of shoot formation was about 80%. This vitrification method was successfully applied to five apple species or cultivars and eight pear cultivars. This method appears to be a promising technique for cryopreserving shoot tips from in vitro-grown plantlets of fruit trees.Abbreviations DMSO dimethylsulfoxide - EG ethylene glycol - PVS2 vitrification solution - LN liquid nitrogen - BA 6-benzylaminopurine - NAA -naphthaleneacetic acid - SE standard error - ABA abscisic acid  相似文献   

14.
 Shoot tips from in vitro-grown, cold-hardened stock plants of white poplar (Populus alba L.) were successfully cryopreserved at –196  °C by one-step vitrification. After preculturing at 5  °C for 2 days on hormone-free MS medium containing different sucrose concentrations, and loading for 20 min with 2 m glycerol and 0.4 m sucrose, shoot tips were treated with the PVS2 vitrification solution and plunged directly into liquid nitrogen. Best survival rate (90%) was obtained when shoot tips were precultured on 0.09 m sucrose, hormone-free MS medium, vitrified by exposure to PVS2 solution for 60 min at 0  °C and, following cryopreservation, rewarmed at 40  °C and washed in 1.2 m sucrose solution for 20 min. Regrowth was improved by plating shoot tips on a gelled MS medium containing 1.5 μm N6-benzyladenine plus 0.5 μm gibberellic acid, while shoot rooting was achieved on MS medium containing 3 μm indole-3-butyric acid. Following this procedure, almost 60% rooted shoots were obtained from cryopreserved shoot tips. Received: 1 February 1999 / Revision received: 3 May 1999 · Accepted: 21 May 1999  相似文献   

15.
 Sugar beet shoot tips from cold-acclimated plants were successfully cryopreserved using a vitrification technique. Dissected shoot tips were precultured for 1 day at 5  °C on solidified DGJ0 medium with 0.3 M sucrose. After loading for 20 min with a mixture of 2 M glycerol and 0.4 M sucrose (20  °C), shoot tips were dehydrated with PVS2 (0  °C) for 20 min prior to immersion in liquid nitrogen. Both cold acclimation and loading enhanced the dehydration tolerance of shoot tips to PVS2. After thawing, shoot tips were deloaded for 15 min in liquid DGJ0 medium with 1.2 M sucrose (20  °C). The optimal exposure time to both loading solution and PVS2 depended on the in vitro morphology of the clone. With tetraploid clones a higher sucrose concentration during cold acclimation and preculture further enhanced survival after cryopreservation. Survival rates ranged between 60% and 100% depending on the clone. Since only 10–50% of the surviving shoot tips developed into non-hyperhydric shoots, regrowth was optimized. Received: 13 September 1999 / Revision received: 2 March 2000 / Accepted: 16 March 2000  相似文献   

16.
This study was carried out on Kober 5BB (Vitis Berlandieri × V. riparia) grape rootstock shoot tips during the preparatory steps preceding the direct immersion in liquid nitrogen, in order to overcome until now unsuccessful cryopreservation with this species. The exposure of shoot tips to 0.3–0.4 M sucrose leads to a high cell solute concentration. The treatment with plant vitrification solution (PVS2) alone, i.e., not followed by storage in liquid nitrogen, markedly affected shoot tip survival. After a 30 min exposure, regrowth percentage of shoot tips decreased from 94 % (control) to 57 %, and dropped to 15 % when the treatment was prolonged up to 60 min. After a 90 min exposure, no regrowth occurred. In addition, plantlets regenerated from shoot tips which underwent 60 min or more exposure to PVS2 showed signs of malformation. Microscope observations of shoot tips treated with 0.3 or 0.4 M sucrose and 30 min PVS2 showed the presence of cells starting to plasmolyze, localized in the area surrounding the apical meristem. A limited presence of starch grains in meristem and bract cells was also noted. However, the most conspicuous consequence of prolonged PVS2 treatment was convex plasmolysis. The phenomenon was dependent on the time of PVS2 exposure. Indeed, after a 30 min treatment, plasmolysis was minimal or absent, but it increased with longer exposure to PVS2 at 4 °C.  相似文献   

17.
Teucrium polium L. with the common name of Felty Germander is one of the plants flora that is widely used in folk medicine in many Middle East countries, it is an endangered plant species and must be highly considered for preservation. Cryopreservation of T. polium by vitrification and encapsulation-dehydration was successfully achieved in this study. Shoot-tips were excised aseptically from in vitro grown plants and incubated for 3?days on solid hormone free-Murashige and Skoog (HF-MS) media supplemented with 0.3?M sucrose under complete darkness at 24?±?1?°C. In vitrification, shoot-tips were loaded in 0.4?M sucrose and 2?M glycerol for 20?min followed by desiccation with different combinations and concentrations of plant vittrification solution 2 (PVS2), before immersion in Liquid Nitrogen (LN). Whereas for the encapsulation-dehydration; shoot-tips were encapsulated in calcium alginate and dehydrated under laminar air flow cabinet for 0, 3, 6, or 9?h. A total of 60?% of the cryopreserved vitrified shoot-tips survived when desiccated in concentrated PVS2 solution for 20?min, whereas, 28?% of the cryopreserved vitrified shoot-tips were regrown after 20?min of desiccation by two step increase in PVS2 concentration. Complete survival were obtained for the non-cryopreserved encapsulated shoot-tips treated for 3?days in 0.5?M sucrose with MS media without or with 3?h of dehydration, whereas, only 20?% of the cryopreserved encapsulated shoot-tips were regrown. The procedures developed in this study are easy to handle and produced a high levels of shoot formation.  相似文献   

18.
Shoot primordia induced inArmoracia rusticana Gaertn. Mey. et Scherb. (horseradish) hairy root cultures were successfully cryopreserved by two cryogenic procedures. Encapsulated shoot primordia were precultured on solidified Murashige-Skoog medium supplemented with 0.5M sucrose for 1 day and then dehydrated with a highly concentrated vitrification solution (PVS2) for 4 h at 0°C prior to a plunge into liquid nitrogen. The survival rate of encapsulated vitrified primordia amounted to 69%. In a revised encapsulation-dehydration technique, the encapsulated shoot primordia were precultured with a mixture of 0.5M sucrose and 1M or 1.5M glycerol for 1 day to induce dehydration tolerance and then subjected to air-drying prior to a plunge into liquid nitrogen. The survival rate of encapsulated dried primordia was more than 90%, and the revived primordia produced shoots within 2 weeks after plating. A long-term preservation of shoot primordia was also achieved by the technique. Thus, this revised encapsulation-dehydration technique appears promising as a routine method for the cryopreservation of shoot primordia of hairy roots.Abbreviations PVS2 Vitrification solution - LN liquid nitrogen - BA 6-benzyladenine - NAA -naphthalene-acetic acid - MS Murashige and Skoog (1962) medium  相似文献   

19.
. In vitro-grown shoot tips excised from preconditioned stock shoots of 'Troyer' citrange were successfully cryopreserved by encapsulation-dehydration. Optimal survival of cryopreserved shoot tips was achieved when encapsulated shoot tips were dehydrated to 17.1% water content. The sucrose concentration in the preconditioning medium significantly influenced the growth and dry matter percentage of the stock shoots as well as subsequent survival of the cryopreserved shoot tips. Maximal growth of stock shoots was obtained in sucrose concentrations in the range of 0.15 M to 0.29 M, while the dry matter percentage increased as sucrose concentration increased up to 0.44 M. The survival of cryopreserved shoot tips increased from 40% to approximately 80% as the sucrose concentration for stock shoots increased from 0.09 M to 0.22 M or 0.29 M. The benzyladenine concentration in the post-culture medium significantly affected the survival and regrowth of the cryopreserved shoot tips. Survival of the shoot tips was lowest when they were post-cultured on benzyladenine-free medium. However, high benzyladenine concentrations (3-4 µM) induced callus formation. Optimal recovery was obtained in post-culture medium containing 2 µM benzyladenine and 0.05 µM !-naphthalene acetic acid. The extraction of shoot tips from alginate beads greatly improved the regrowth of cryopreserved shoot tips.  相似文献   

20.
Summary In vitro-grown apical meristems of wasabi (Wasabia japonica Matsumura) were successfully cryopreserved by vitrification. Excised apical meristems precultured on solidified M S medium containing 0.3M sucrose at 20°C for 1 day were loaded with a mixture of 2M glycerol and 0.4M sucrose for 20 min at 25°C. Cryoprotected meristems were then sufficiently dehydrated with a highly concentrated vitrification solution (designated PVS2) for 10 min at 25°C prior to a plunge into liquid nitrogen. After rapid warming, the meristems were expelled into 2 ml of 1.2M sucrose for 20 min and then plated on solidified culture medium. Successfully vitrified and warmed meristems remained green after plating, resumed growth within 3 days, and directly developed shoots within two weeks. The average rate of normal shoot formation amounted to about 80 to 90% in the cryopreserved meristems. This method was successfully applied to three other cultivars of wasabi. This vitrification procedure promises to become a routine method for cryopreserving meristems of wasabi.Abbreviations BA 6-benzylaminopurine - DMSO dimethylsulfoxide - EG ethylene glycol - LN liquid nitrogen - MS medium Murashige and Skoog medium (1962) - PVS2 vitrification solution  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号