共查询到20条相似文献,搜索用时 15 毫秒
1.
cumA, a Gene Encoding a Multicopper Oxidase, Is Involved in Mn2+ Oxidation in Pseudomonas putida GB-1 下载免费PDF全文
Geert-Jan Brouwers Johannes P. M. de Vrind Paul L. A. M. Corstjens Pierre Cornelis Christine Baysse Elisabeth W. de Vrind-de Jong 《Applied microbiology》1999,65(4):1762-1768
Pseudomonas putida GB-1-002 catalyzes the oxidation of Mn2+. Nucleotide sequence analysis of the transposon insertion site of a nonoxidizing mutant revealed a gene (designated cumA) encoding a protein homologous to multicopper oxidases. Addition of Cu2+ increased the Mn2+-oxidizing activity of the P. putida wild type by a factor of approximately 5. The growth rates of the wild type and the mutant were not affected by added Cu2+. A second open reading frame (designated cumB) is located downstream from cumA. Both cumA and cumB probably are part of a single operon. The translation product of cumB was homologous (level of identity, 45%) to that of orf74 of Bradyrhizobium japonicum. A mutation in orf74 resulted in an extended lag phase and lower cell densities. Similar growth-related observations were made for the cumA mutant, suggesting that the cumA mutation may have a polar effect on cumB. This was confirmed by site-specific gene replacement in cumB. The cumB mutation did not affect the Mn2+-oxidizing ability of the organism but resulted in decreased growth. In summary, our data indicate that the multicopper oxidase CumA is involved in the oxidation of Mn2+ and that CumB is required for optimal growth of P. putida GB-1-002. 相似文献
2.
Andy Banh Valarie Chavez Julia Doi Allison Nguyen Sophia Hernandez Vu Ha Peter Jimenez Fernanda Espinoza Hope A. Johnson 《PloS one》2013,8(10)
Bacterial manganese (Mn) oxidation plays an important role in the global biogeochemical cycling of Mn and other compounds, and the diversity and prevalence of Mn oxidizers have been well established. Despite many hypotheses of why these bacteria may oxidize Mn, the physiological reasons remain elusive. Intracellular Mn levels were determined for Pseudomonas putida GB-1 grown in the presence or absence of Mn by inductively coupled plasma mass spectrometry (ICP-MS). Mn oxidizing wild type P. putida GB-1 had higher intracellular Mn than non Mn oxidizing mutants grown under the same conditions. P. putida GB-1 had a 5 fold increase in intracellular Mn compared to the non Mn oxidizing mutant P. putida GB-1-007 and a 59 fold increase in intracellular Mn compared to P. putida GB-1 ∆2665 ∆2447. The intracellular Mn is primarily associated with the less than 3 kDa fraction, suggesting it is not bound to protein. Protein oxidation levels in Mn oxidizing and non oxidizing cultures were relatively similar, yet Mn oxidation did increase survival of P. putida GB-1 when oxidatively stressed. This study is the first to link Mn oxidation to Mn homeostasis and oxidative stress protection. 相似文献
3.
A multicopper oxidase gene, cumA, required for Mn(II) oxidation was recently identified in Pseudomonas putida strain GB-1. In the present study, degenerate primers based on the putative copper-binding regions of the cumA gene product were used to PCR amplify cumA gene sequences from a variety of Pseudomonas strains, including both Mn(II)-oxidizing and non-Mn(II)-oxidizing strains. The presence of highly conserved cumA gene sequences in several apparently non-Mn(II)-oxidizing Pseudomonas strains suggests that this gene may not be expressed, may not be sufficient alone to confer the ability to oxidize Mn(II), or may have an alternative function in these organisms. Phylogenetic analysis of both CumA and 16S rRNA sequences revealed similar topologies between the respective trees, including the presence of several distinct phylogenetic clusters. Overall, our results indicate that both the cumA gene and the capacity to oxidize Mn(II) occur in phylogenetically diverse Pseudomonas strains. 相似文献
4.
Bacterial manganese(II) oxidation has a profound impact on the biogeochemical cycling of Mn and the availability of the trace metals adsorbed to the surfaces of solid Mn(III, IV) oxides. The Mn(II) oxidase enzyme was tentatively identified in Pseudomonas putida GB-1 via transposon mutagenesis: the mutant strain GB-1-007, which fails to oxidize Mn(II), harbors a transposon insertion in the gene cumA. cumA encodes a putative multicopper oxidase (MCO), a class of enzymes implicated in Mn(II) oxidation in other bacterial species. However, we show here that an in-frame deletion of cumA did not affect Mn(II) oxidation. Through complementation analysis of the oxidation defect in GB-1-007 with a cosmid library and subsequent sequencing of candidate genes we show the causative mutation to be a frameshift within the mnxS1 gene that encodes a putative sensor histidine kinase. The frameshift mutation results in a truncated protein lacking the kinase domain. Multicopy expression of mnxS1 restored Mn(II) oxidation to GB-1-007 and in-frame deletion of mnxS1 resulted in a loss of oxidation in the wild-type strain. These results clearly demonstrated that the oxidation defect of GB-1-007 is due to disruption of mnxS1, not cumA::Tn5, and that CumA is not the Mn(II) oxidase. mnxS1 is located upstream of a second sensor histidine kinase gene, mnxS2, and a response regulator gene, mnxR. In-frame deletions of each of these genes also led to the loss of Mn(II) oxidation. Therefore, we conclude that the MnxS1/MnxS2/MnxR two-component regulatory pathway is essential for Mn(II) oxidation in P. putida GB-1.In living cells, manganese (Mn) is an essential trace element, required for enzymes such as superoxide dismutase and in photosystem II (7). In the environment, Mn cycles between a soluble reduced form [Mn(II)] and an insoluble oxidized form [Mn(III, IV)] that can adsorb other trace metals from the environment and serve as potent oxidizing agents. Thus, redox cycling of Mn has a profound effect on the bioavailability and geochemical cycling of many essential or toxic elements (40). Microorganisms, particularly bacteria, are capable of catalyzing the oxidation of Mn(II), thereby increasing the rate of formation of Mn(III, IV) by several orders of magnitude (39). Since Mn(III, IV) oxides are able to bind trace metals, the bacteria that catalyze their formation are good candidates for bioremediation of heavy metal contaminated sites (26, 39).Although bacterial Mn(II) oxidation is widespread, little is known about the physiological function of oxidation (40). The oxidation of Mn(II) to Mn(III) or Mn(IV) is thermodynamically favorable; thus, bacteria may derive energy from this reaction, although this has never been unequivocally proven (40). In addition, Mn(II) oxidation could protect cells from reactive oxygen species (4) or UV irradiation (11). Since oxidation occurs on the cell surface, the bacteria become coated with the solid Mn(IV) oxides, which may also provide protection from toxic heavy metals, predation, or phage infection (40). As a strong oxidant, Mn(IV) oxides could allow the bacteria to degrade refractory organic matter to low-molecular-weight compounds that could then be used to support bacterial growth (38). Conversely, Mn(II) oxidation may be a side reaction or the result of nonspecific interactions with cellular products (15). Identifying signals or conditions that regulate oxidation could provide some insight into the role of Mn(II) oxidation in the cell. Aside from a requirement for oxygen (28) and iron (27, 30), as well as the observation that oxidation occurs in stationary phase (23), very little is known about this regulation.The enzymes responsible for Mn(II) oxidation have been tentatively identified from some species of bacteria and in several cases the enzyme is a putative multicopper oxidase (MCO). MCOs are a family of enzymes that use four Cu ion cofactors to catalyze oxidation of diverse substrates such as metals and organic compounds (33). This family of enzymes is found in plants and fungi (laccase) and humans (ceruloplasmin), as well as in bacteria (35). Some fungi have been shown to use a laccase enzyme to oxidize Mn(II) (20). In both Leptothrix discophora SS-1 and Pedomicrobium sp. strain ACM 3067, the Mn(II)-oxidizing MCO was identified genetically (mofA [10] and moxA [31], respectively). A third MCO—MnxG—was identified both biochemically and genetically as the Mn(II) oxidase in Bacillus sp. strain SG-1 and related strains (14, 43). Recent work with the Mn(II)-oxidizing alphaproteobacterium Aurantimonas manganoxydans SI85-9A1 and Erythrobacter sp. strain SD21 has identified a second class of enzyme involved in Mn(II) oxidation: the heme-binding peroxidase named MopA (3). This class of enzyme had previously been shown to be used by fungi to oxidize Mn(II) (29), in some cases in concert with an MCO (34).Pseudomonas putida GB-1 is a Mn(II)-oxidizing bacterium (9) whose genetic tractability and ease of growth under standard laboratory conditions make it an ideal model system for studying the physiology and mechanism of Mn(II) oxidation. Consequently, several random transposon mutagenesis screens have been undertaken with this organism to identify genes required for Mn(II) oxidation. These screens have identified several categories of genes as important for oxidation or the export of the oxidase to the cell surface: the ccm operon of c-type cytochrome synthesis genes (8, 13), genes encoding components of the trichloroacetic acid (TCA) cycle and the tryptophan biosynthesis pathway (8) and genes encoding a general secretory pathway (12). The Mn(II) oxidation-defective mutant GB-1-007 has a transposon insertion in the gene cumA that encodes a putative MCO (6). Therefore, P. putida GB-1 has been thought to use a similar mechanism as L. discophora SS-1, Pedomicrobium sp. strain ACM 3067, and Bacillus sp. to oxidize Mn(II).Because the available data suggested that CumA was an MCO essential for Mn(II) oxidation, we wanted to study its function in greater detail. We were hampered in this, however, by the fact that the transposon insertion in cumA resulted in a growth defect due to its polar effect on expression of the downstream cumB gene (6). In order to assess the role of CumA in Mn(II) oxidation without the complications arising from polarity, we generated an in-frame deletion of cumA and tested the ability of the resulting ΔcumA strain to form Mn(IV) oxides. Our results showed that cumA is dispensable for Mn(II) oxidation and have instead revealed a complex two-component regulatory pathway essential for Mn(II) oxidation in P. putida GB-1. 相似文献
5.
Raissa Marques Mendonca Taylor Fulton Christopher Blackwood David Costello 《Environmental microbiology》2023,25(12):3639-3654
In sediments, the bioavailability and toxicity of Ni are strongly influenced by its sorption to manganese (Mn) oxides, which largely originate from the redox metabolism of microbes. However, microbes are concurrently susceptible to the toxic effects of Ni, which establishes complex interactions between toxicity and redox processes. This study measured the effect of Ni on growth, pellicle biofilm formation and oxidation of the Mn-oxidizing bacteria Pseudomonas putida GB-1. In liquid media, Ni exposure decreased the intrinsic growth rate but allowed growth to the stationary phase in all intermediate treatments. Manganese oxidation was 67% less than control for bacteria exposed to 5 μM Ni and completely ceased in all treatments above 50 μM. Pellicle biofilm development decreased exponentially with Ni concentration (maximum 92% reduction) and was replaced by planktonic growth in higher Ni treatments. In solid media assays, growth was unaffected by Ni exposure, but Mn oxidation completely ceased in treatments above 10 μM of Ni. Our results show that sublethal Ni concentrations substantially alter Mn oxidation rates and pellicle biofilm development in P. putida GB-1, which has implications for toxic metal bioavailability to the entire benthic community and the environmental consequences of metal contamination. 相似文献
6.
Xudong Wang Sai Yin Zhihao Yang Bing Zhou 《Biochimica et Biophysica Acta (BBA)/General Subjects》2018,1862(8):1826-1834
Multicopper oxidases (MCOs) are a specific group of enzymes that contain multiple copper centers through which different substrates are oxidized. Main members of MCO family include ferroxidases, ascorbate oxidases, and laccases. MCO type of ferroxidases is key to iron transport across the plasma membrane. In Drosophila, there are four potential multicopper oxidases, MCO1–4. No convincing evidence has been presented so far to indicate any of these, or even any insect multicopper oxidase, to be a ferroxidase. Here we show Drosophila MCO3 (dMCO3) is highly likely a bona fide ferroxidase. In vitro activity assay with insect-cell-expressed dMCO3 demonstrated it has potent ferroxidase activity. Meanwhile, the ascorbate oxidase and laccase activities of dMCO3 are much less significant. dMCO3 expression in vivo, albeit at low levels, appears mostly extracellular, reminiscent of mammalian ceruloplasmin in the serum. A null dMCO3 mutant, generated by CRISPR/Cas9 technology, showed disrupted iron homeostasis, evidenced by increased iron level and reduced metal importer Mvl expression. Notably, dMCO3-null flies phenotypically are largely normal at normal or iron stressed-conditions. We speculate the likely existence of a similar iron efflux apparatus as the mammalian ferroportin/ferroxidase in Drosophila. However, its importance to fly iron homeostasis is greatly minimized, which is instead dominated by another iron efflux avenue mediated by the ZIP13-ferritin axis along the ER/Golgi secretion pathway. 相似文献
7.
Hailei Wei Liping Lei Shuo Liu Zhenyuan Xia Xingzhong Liu Peigui Liu 《International biodeterioration & biodegradation》2009,63(8):988-992
A nicotine-sensitive mutant was generated from the nicotine-degrading bacterium, Pseudomonas putida strain J5, by mini-Tn5 transposon mutagenesis. This mutant was unable to grow with nicotine as the sole carbon source but could grow with glucose. Sequence analysis showed that the Tn5 transposon inserted at the site of the ketopantoate hydroxymethyltransferase gene (panB), which had 54% identity to PanB in Escherichia coli K-12. In-frame deletion of the panB gene abolished the nicotine-degrading ability of strain J5, while complementation with panB from P. putida J5 and E. coli K-12 restored the degrading activity of the mutant to the wild-type level. These results suggest that ketopantoate hydroxymethyltransferase is a crucial enzyme in nicotine metabolism in P. putida J5. 相似文献
8.
Recently it has been observed that multicopper oxidases are present in a number of microbial genomes, raising the question of their function in prokaryotes. Here we describe the analysis of an mco mutant from the opportunistic pathogen Pseudomonas aeruginosa. Unlike wild-type Pseudomonas aeruginosa, the mco mutant was unable to grow aerobically on minimal media with Fe(II) as sole iron source. In contrast, both the wild-type and mutant strain were able to grow either anaerobically via denitrification with Fe(II) or aerobically with Fe(III). Analysis of iron uptake showed that the mco mutant was impaired in Fe(II) uptake but unaffected in Fe(III) uptake. Purification and analysis of the MCO protein confirmed ferroxidase activity. Taken together, these data show that the mco gene encodes a multicopper oxidase that is involved in the oxidation of Fe(II) to Fe(III) subsequent to its acquisition by the cell. In view of the widespread distribution of the mco gene in bacteria, it is suggested that an iron acquisition mechanism involving multicopper oxidases may be an important and hitherto unrecognized feature of bacterial pathogenicity. 相似文献
9.
10.
Segura A Duque E Rojas A Godoy P Delgado A Hurtado A Cronan J Ramos JL 《Environmental microbiology》2004,6(4):416-423
The unusual tolerance of Pseudomonas putida DOT-T1E to toluene is based on the extrusion of this solvent by constitutive and inducible efflux pumps and rigidification of its membranes via phospholipid alterations. Pseudomonas putida DOT-T1E-109 is a solvent-sensitive mutant. Mutant cells were less efficient in solvent extrusion than the wild-type cells, as shown by the limited efflux of 14C-1,2,4-trichlorobenzene from the cell membranes, despite the fact that the efflux pumps are overexpressed as a result of increased expression of the ttgDEF and ttgGHI efflux pump operons. This limitation could be the result of alterations in the outer membrane because the mutant cells released more beta-lactamase to the external medium than the wild-type cells. The mutant P. putida DOT-T1E-109 showed negligible synthesis of fatty acids in the presence of sublethal concentrations of toluene as revealed by analysis of 13CH3-13COOH incorporation into fatty acids. In contrast, the mutant strain in the absence of solvents, and the wild-type strain, both in the presence and in the absence of toluene, incorporated 13CH3-13COOH at a high rate into de novo synthesized lipids. The mutation in P. putida DOT-T1E-109 increases sensitivity to the solvent because of a limited efflux of the solvent from the cell membranes with the concomitant inhibition of fatty acid biosynthesis. 相似文献
11.
Suzuki M Eda Y Ohsawa S Kanesaki Y Yoshikawa H Tanaka K Muramatsu Y Yoshikawa J Sato I Fujii T Amachi S 《Applied and environmental microbiology》2012,78(11):3941-3949
Alphaproteobacterium strain Q-1 is able to oxidize iodide (I(-)) to molecular iodine (I(2)) by an oxidase-like enzyme. One of the two isoforms of the iodide-oxidizing enzyme (IOE-II) produced by this strain was excised from a native polyacrylamide gel, eluted, and purified. IOE-II appeared as a single band (51 kDa) and showed significant in-gel iodide-oxidizing activity in sodium dodecyl sulfate-polyacrylamide gel electrophoresis without heat treatment. However, at least two bands with much higher molecular masses (150 and 230 kDa) were observed with heat treatment (95°C, 3 min). IOE-II was inhibited by NaN(3), KCN, EDTA, and a copper chelator, o-phenanthroline. In addition to iodide, IOE-II showed significant activities toward phenolic compounds such as syringaldazine, 2,6-dimethoxy phenol, and p-phenylenediamine. IOE-II contained copper atoms as prosthetic groups and had UV/VIS absorption peaks at 320 and 590 nm. Comparison of several internal amino acid sequences obtained from trypsin-digested IOE-II with a draft genome sequence of strain Q-1 revealed that the products of two open reading frames (IoxA and IoxC), with predicted molecular masses of 62 and 71 kDa, are involved in iodide oxidation. Furthermore, subsequent tandem mass spectrometric analysis repeatedly detected peptides from IoxA and IoxC with high sequence coverage (32 to 40%). IoxA showed homology with the family of multicopper oxidases and included four copper-binding regions that are highly conserved among various multicopper oxidases. These results suggest that IOE-II is a multicopper oxidase and that it may occur as a multimeric complex in which at least two proteins (IoxA and IoxC) are associated. 相似文献
12.
13.
J. P. M. de Vrind G. J. Brouwers P. L. A. M. Corstjens J. den Dulk E. W. de Vrind-de Jong 《Applied and environmental microbiology》1998,64(10):3556-3562
A Pseudomonas putida strain, strain GB-1, oxidizes Mn2+ to Mn oxide in the early stationary growth phase. It also secretes a siderophore (identified as pyoverdine) when it is subjected to iron limitation. After transposon (Tn5) mutagenesis several classes of mutants with differences in Mn2+ oxidation and/or secretion of the Mn2+-oxidizing activity were identified. Preliminary analysis of the Tn5 insertion site in one of the nonoxidizing mutants suggested that a multicopper oxidase-related enzyme is involved in Mn2+ oxidation. The insertion site in another mutant was preliminarily identified as a gene involved in the general protein secretion pathway. Two mutants defective in Mn2+-oxidizing activity also secreted porphyrins into the medium and appeared to be derepressed for pyoverdine production. These strains were chosen for detailed analysis. Both mutants were shown to contain Tn5 insertions in the ccmF gene, which is part of the cytochrome c maturation operon. They were cytochrome oxidase negative and did not contain c-type cytochromes. Complementation with part of the ccm operon isolated from the wild type restored the phenotype of the parent strain. These results indicate that a functional ccm operon is required for Mn2+ oxidation in P. putida GB-1. A possible relationship between porphyrin secretion resulting from the ccm mutation and stimulation of pyoverdine production is discussed.In a number of studies during the last three decades it has been shown that various microbial species are able to stimulate the oxidation of Mn2+ through direct catalysis. These organisms produce proteinaceous macromolecules which catalyze the oxidation reaction. Manganese oxidations by a soil Arthrobacter species (24), Oceanospirillum and Vibrio strains (2, 3), Pseudomonas putida MnB1 (22, 30), Leptothrix discophora SS-1 (1, 11), and marine Bacillus strain SG-1 (23) are examples in which enzymes are most likely involved in the process. P. putida MnB1 produces a soluble protein which catalytically oxidizes Mn2+ in cell extracts (22). Manganese-oxidizing proteins from L. discophora SS-1 (1, 11) and from the spore coats of Bacillus strain SG-1 (43) have been identified on polyacrylamide gels. The oxidizing proteins have not been quantitatively purified or analyzed so far. In Bacillus strain SG-1, an operon containing seven genes appears to be involved in Mn2+ oxidation (46). One of these genes encodes a 137-kDa protein related to the family of multicopper oxidases (47). In a previous study we reported the isolation of a structural gene and its promoter postulated to be involved in Mn2+ oxidation in L. discophora (19). The encoded protein also contains the copper-binding signatures of multicopper oxidases. The oxidase-related proteins may represent Mn2+-oxidizing enzymes (44), but evidence supporting this hypothesis is still lacking.In this paper we describe a genetic analysis of Mn2+ oxidation in a freshwater Pseudomonas strain, strain GB-1. In a previous study (32) this strain was preliminarily identified as a Pseudomonas fluorescens strain, but more recent data (see Materials and Methods) indicate that it should be identified as a P. putida strain. When supplied with Mn2+ ions, the cells deposit manganese oxide around the outer membrane in the early stationary growth phase (32). They form brown colonies on Mn2+-containing agar. Experiments performed with cell extracts indicated that Mn2+ oxidation is catalyzed by a protein. The Mn2+-oxidizing factor was partially purified, and electrophoresis on an acrylamide gradient gel revealed oxidizing proteins with apparent molecular weights of ca. 250,000 and 180,000 (32). An additional oxidizing factor with a lower molecular weight (ca. 130,000) was identified in another study by using different isolation and electrophoretic procedures (16). It has been suggested that the Mn2+-oxidizing protein isolated is part of a larger complex which disintegrates into smaller fragments that retain activity (32). The protein is supposed to be located in the outer membrane of the bacteria. It has not been chemically characterized, and nothing is known about its cellular function or about the possible involvement of other cellular components, such as electron carriers, in Mn2+ oxidation.We used transposon mutagenesis to identify genes relevant to the Mn2+-oxidizing process in P. putida GB-1. One of these genes appeared to be part of the cytochrome c maturation operon. Transposon insertion in this gene not only abolished Mn2+ oxidation but also led to secretion of siderophores and porphyrins.An accompanying report on the involvement of the cytochrome c maturation operon in Mn2+ oxidation in P. putida MnB1 (14) supports our findings. 相似文献
14.
Vishakha Choudhary Kevin Wu Zhiyao Zhang Mark Dulchavsky Todd Barkman James C.A. Bardwell Frederick Stull 《The Journal of biological chemistry》2022,298(8)
The soil-dwelling bacterium Pseudomonas putida S16 can survive on nicotine as its sole carbon and nitrogen source. The enzymes nicotine oxidoreductase (NicA2) and pseudooxynicotine amine oxidase (Pnao), both members of the flavin-containing amine oxidase family, catalyze the first two steps in the nicotine catabolism pathway. Our laboratory has previously shown that, contrary to other members of its enzyme family, NicA2 is actually a dehydrogenase that uses a cytochrome c protein (CycN) as its electron acceptor. The natural electron acceptor for Pnao is unknown; however, within the P. putida S16 genome, pnao forms an operon with cycN and nicA2, leading us to hypothesize that Pnao may also be a dehydrogenase that uses CycN as its electron acceptor. Here we characterized the kinetic properties of Pnao and show that Pnao is poorly oxidized by O2, but can be rapidly oxidized by CycN, indicating that Pnao indeed acts as a dehydrogenase that uses CycN as its oxidant. Comparing steady-state kinetics with transient kinetic experiments revealed that product release primarily limits turnover by Pnao. We also resolved the crystal structure of Pnao at 2.60 Å, which shows that Pnao has a similar structural fold as NicA2. Furthermore, rigid-body docking of the structure of CycN with Pnao and NicA2 identified a potential conserved binding site for CycN on these two enzymes. Taken together, our results demonstrate that although Pnao and NicA2 show a high degree of similarity to flavin containing amine oxidases that use dioxygen directly, both enzymes are actually dehydrogenases. 相似文献
15.
A methyl-accepting protein is involved in benzoate taxis in Pseudomonas putida. 总被引:8,自引:5,他引:3 下载免费PDF全文
C S Harwood 《Journal of bacteriology》1989,171(9):4603-4608
Pseudomonas putida is attracted to at least two groups of aromatic acids: a benzoate group and a benzoylformate group. Members of the benzoate group of chemoattractants stimulated the methylation of a P. putida polypeptide with an apparent molecular weight of 60,000 in sodium dodecyl sulfate-polyacrylamide gels. This polypeptide is presumed to be a methyl-accepting chemotaxis protein for several reasons: its molecular weight is similar to the molecular weights of Escherichia coli methyl-accepting chemotaxis proteins, the amount of time required to attain maximal methylation correlated with the time needed for behavioral adaptation of P. putida cells to benzoate, and methylation was stimulated by benzoate only in cells induced for chemotaxis to benzoate. Also, a mutant specifically defective in benzoate taxis failed to show any stimulation of methylation upon addition of benzoate. Benzoylformate did not stimulate protein methylation in cells induced for benzoylformate chemotaxis, suggesting that sensory input from this second group of aromatic-acid attractants is processed through a different kind of chemosensory pathway. The chemotactic responses of P. putida cells to benzoate and benzoylformate were not sensitive to external pH over a range (6.2 to 7.7) which would vary the protonated forms of these weak acids by a factor of about 30. This indicates that detection of cytoplasmic pH is not the basis for aromatic-acid taxis in P. putida. 相似文献
16.
A cadmium-resistant bacterium Pseudomonas putida CD2 was isolated from sewage sludge samples. Strain CD2 exhibited high maximal tolerant concentrations (MTC) for a large spectrum of divalent metals. Screening a library obtained using Tn5-B21 insertion mutagenesis resulted in identification of 12 mutants with a substantial decrease in resistance to 3 mM cadmium. The DNA sequences of the contiguous region from the Tn5 insertion sites were determined by inverse PCR. Six genes involved in cadmium resistance were identified. These genes were from three gene clusters: czcCBA1, cadA2R and colRS. The homologs of the first two gene clusters were predicted to be metal efflux systems, whereas the products of colRS, ColR and ColS, were thought to be a two-component signal transduction (TCST) system. In this study, we have demonstrated that ColRS also function in regulating multi-metal resistance using genetic complementation. 相似文献
17.
Location and sequence of the todF gene encoding 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase in Pseudomonas putida F1 总被引:11,自引:0,他引:11
The gene (todF) encoding 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase in Pseudomonas putida F1 was shown to be located upstream of the todC1C2BADE genes. The latter form part of the tod operon and encode the enzymes responsible for the initial reactions in toluene degradation. The nucleotide (nt) sequence of todF was determined and the deduced amino acid (aa) sequence revealed that the hydrolase contains 276 aa with a Mr of 30,753. The deduced aa sequence was 63.5% homologous to that reported for 2-hydroxymuconic semialdehyde hydrolase which is involved in phenol degradation by Pseudomonas CF600. 相似文献
18.
Sequence analysis of the hutH gene encoding histidine ammonia-lyase in Pseudomonas putida. 总被引:2,自引:1,他引:2 下载免费PDF全文
The complete nucleotide sequence of the hutH gene, encoding histidine ammonia-lyase (histidase), in Pseudomonas putida ATCC 12633 has been determined from the appropriate portions of the hut region that had been cloned into Escherichia coli. The resulting DNA sequence revealed an open reading frame of 1,530 base pairs, corresponding to a protein subunit of approximate molecular weight 53,600, in the location previously identified for the histidase gene by Tn1000 mutagenesis. Translation began at a GTG codon, but direct protein sequencing revealed that the initiating amino acid was removed posttranslationally to provide an N-terminal threonine; 11 additional residues completely agreed with the predicted amino acid sequence. This sequence excluded the possibility that a dehydroalanine unit, the postulated coenzyme for histidase, is attached at the N terminus of histidase subunits. Comparison of the P. putida histidase gene sequence with that of a Bacillus subtilis region encoding histidase revealed 42% identity at the protein level. Although the hutU (urocanase) and hutH (histidase) genes are induced by urocanate and normally are transcribed as a unit beginning with hutU, analysis of the region immediately upstream of the histidase gene revealed a potential weak promoter that may possibly be used to maintain a basal level of histidase for the generation of inducer (urocanate) when histidine levels are elevated. 相似文献
19.
De Vrind J De Groot A Brouwers GJ Tommassen J De Vrind-De Jong E 《Molecular microbiology》2003,47(4):993-1006
The manganese-oxidizing factor of Pseudomonas putida strain GB-1 is associated with the outer membrane. One of the systems of protein transport across the outer membrane is the general secretory pathway (Gsp). The gsp genes are called xcp in Pseudomonas species. In a previous study, it was shown that mutation of the prepilin peptidase XcpA and of a homologue of the pseudopilin XcpT inhibited transport of the factor. In the present study, we describe the genomic region flanking the xcpT homologue (designated xcmT1). We show that xcmT1 is part of a two-gene operon that includes an xcpS homologue (designated xcmS). No other xcp-like genes are present in the regions flanking the xcmT1/xcmS cluster. We also characterized the site of transposon insertion of another transport mutant of P. putida GB-1. This insertion appeared to be located in a gene (designated xcmX) possibly encoding another pseudopilin-related protein. This xcmX is clustered with two other xcpT-related genes (designated xcmT2 and xcmT3) on one side and homologues of three csg genes (designated csmE, csmF and csmG) on the other side. The csg genes are involved in production of aggregative fibres in Escherichia coli and Salmonella typhimurium. A search for XcmX homologues revealed that the recently published genome of Ralstonia solanacearum and the unannotated genome of P. putida KT2440 contain comparable gene clusters with xcmX and xcp homologues that are different from the well-described 'regular'xcp/gsp clusters. They do contain xcpR and xcpQ homologues but, for example, homologues of xcpP, Y and Z are lacking. The results suggest a novel Xcp-related system for the transport of manganese-oxidizing enzymes to the cell surface. 相似文献
20.
Characterization of the OCT plasmid encoding alkane oxidation and mercury resistance in Pseudomonas putida. 总被引:1,自引:1,他引:0 下载免费PDF全文
Transformation of Pseudomonas putida and analysis for plasmid DNA revealed that both n-alkane oxidation and mercury resistance are encoded on a single 220-megadalton OCT plasmid molecule. Derivatives of OCT having lost the mercury resistance function could be readily isolated and contained a smaller plasmid estimated to be 170 megadaltons. The results show that segregation of the mercury resistance property occurs not by loss of a separate MER plasmid as previously thought but by a deletion in the OCT plasmid. 相似文献