首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoclonal antibody 4F4, which was raised against a cell suspension of embryonic rat forebrain, reacts with acidic glycolipids and several high-molecular-weight glycoproteins in rodent brain. The major reactive glycolipid is maximally expressed at Embryonic Day 15 (E15) and is no longer detectable at Postnatal Day 14 (P14) in the rat. 4F4 antibody reacts with a glucuronic acid- and sulfate-containing lipid isolated from human sciatic nerve as well as with lipids from mouse and rat embryonic brain tissue. Although the glycolipid disappears postnatally, the immunoreactive glycoproteins continue to be expressed in brain until adulthood. Both sciatic nerve and embryonic brain glycolipids are hydrolyzed by glucuronidase/sulfatase treatment but are insensitive to all other glycosidases tested. In addition, the observed 4F4 reactivity with extracted glycolipids, glycoproteins, and tissue sections of embryonic brain is identical to the reactivity demonstrated by HNK-1 antibodies. Immunocytochemical studies in developing brain showed stage-specific distribution of this carbohydrate antigen. At E10 in the mouse, immunoreactivity is associated with the mantle layer of the neural tube. At E15 in the cortex, the most intense staining is associated with the molecular layer and the subplate, and weaker staining is seen in the intermediate zone and cortical plate, suggesting that the antigen is highly concentrated on postmigratory cells in the embryonic nervous system.  相似文献   

2.
Neutral glycolipids from the brain of a patient with Fucosidosis were analyzed and two complex glycolipids containing five and eight sugars were isolated from the cortical grey matter. These two glycolipids reacted with antibodies recognizing the SSEA-1 [Lex(X)] carbohydrate determinant. SSEA-1 glycolipids are normally expressed in human embryonic brain but are found in only small amounts in postnatal human brain. The accumulation of the two SSEA-1 glycolipids in Fucosidosis brain thus represents a defect which affects the normal developmentally regulated decrease in postnatal, expression of these glycolipids, and may be a contributing factor in the abnormal brain development associated with the disease. Chemical characterization of the two isolated glycolipids by gas chromatographic and mass spectrometric analyses has identified the two glycolipids as lacto-N-fucopentaosylceramide (III) and difucosyl-neolactonorhexaosylceramide.Abbreviations DCl direct chemical ionization - FAB tastatiom bombardment - GC gas chromatography - GSLs glycosphingolipids - MS mass spectrometry - SSEA-1 stage specific embryonic antigen-1 - TLC thin layer chromatographys  相似文献   

3.
Summary Synaptogenesis has been studied in the electric organ of embryonic Torpedo marmorata by use of two antisera directed against components of synaptic vesicles (anti-SV) and presynaptic plasma membranes (ap-anti-TSM), respectively. The anti-SV serum was previously shown to recognize a proteoglycan specific for synaptic vesicles. The ap-anti-TSM serum was raised to plasma membranes of synaptosomes derived from the electromotor nerve terminals and affinity-purified on electric-organ gangliosides. The vesicular antigen was first detectable at the 81-mm stage of development, which is 1–2 weeks earlier than the formation of morphologically mature presynaptic terminals, but is coincident with a rise in choline acetyltransferase levels and the ability of the electric organ to generate discharges. The gangliosidic antigen recognized by the ap-anti-TSM was first detectable on the ventral electrocyte surface at the 93-mm stage of development. This indicates that specific carbohydrate epitopes, not present on the growth cones, are expressed during maturation of the nerve terminal. The nerve terminal components recognized by these sera arose pari passu with neurite coverage of the ventral surface of the electrocyte, reaching a maximum in the adult. In contrast, postsynaptic aggregates of acetylcholine receptor, rendered visible with rhodamine-labeled -bungarotoxin, arose previous to the presynaptic antigens, reaching a maximum surface density at 110 mm and then declining in the adult.  相似文献   

4.
The L2/HNK-1 carbohydrate epitope has been shown to carry an unusual 3-sulfoglucuronic acid linkedO-glycosidically through a neolactosyl-type back bone to a ceramide residue. Using monoclonal antibodies, the same or a closely related epitope has also been detectedN-glycosidically linked to glycoproteins, amongst them several neural cell adhesion molecules. We used synthetic glycolipids carrying sulfated or non-sulfated glucuronic acid attached to ceramide through glycans of different length to show that not only the sulfated glucuronic acid but also the neolactosyl-type backbone is essential for the recognition of the L2/HNK-1 carbohydrate by a monoclonal antibody, its binding to laminin and its role in neural cell migration and outgrowth of processes from neurons and astrocytes.Abbreviations mab monoclonal antibody - TLC thin layer chromatography - HRP horseradish peroxidase - glcA glucuronic acid - gal galactose - glcNAc N-acetyl-glucosamine - man mannose  相似文献   

5.
Ependymins, a family of extracellular glycoproteins of goldfish and mammalian brain, were shown to contain N-linked complex glycan chains. These glycoproteins reacted with a monoclonal antibody, HNK-1 which recognizes a membrane antigen on a subset of human lymphocytes, myelin-associated glycoprotein glycoprotein epitope reacting with HNK-1 antibody was previously shown to include a terminal 3-sulfoglucuronosyl residue present in certain glycolipids of the nervous tissue (Chou et al., Biochem. Biophys. Res. Commun. 1985, 128, 383-388). In this report, the presence of glucuronic acid in ependymins was demonstrated by gas-liquid chromatography and mass spectrometry. We suggest that a 3-sulfoglucuronosyl residue may be the common epitope on HNK-1-reactive glycoproteins.  相似文献   

6.
Malate dehydrogenase (MDH) band relative mobility (R m) and activity were examined in leaf extracts of Durrant's flax genotrophs, L and S, and flax genotypes, R and M. MDH activity in leaves from just below the inflorescence was higher in the two smaller, sparsely branched plant types, S and M, than in the larger, more branched plant types, L and R. The MDH electrophoretic banding pattern in flax leaf extracts consisted of three major anionic bands, MDH-1, MDH-2, and MDH-3. NoR m differences were detected between corresponding isozymes of genotypes R and M. For the genotrophs, however, all three bands of S migrated faster than the corresponding bands of L. Codominance was absent in F1 hybrids; SR m was dominant for MDH-2 and MDH-3 and LR m was dominant for MDH-1. The observations suggest that MDHR m in L and S may be controlled by a modifier locus (or loci). Previous studies indicate that a modifier locus may also control heritable genotrophic differences in peroxidase (PER) and acid phosphates (AP)R m. The three enzyme systems are compared.The financial assistance of the Natural Sciences and Engineering Research Council of Canada is acknowledged with thanks.  相似文献   

7.
The same or a very similar carbohydrate determinant, as represented by some sulfated, glucuronic acid-containing glycosphingolipids of human peripheral nerve, occurs on several adhesion molecules in the mammalian nervous system. In the present study, the occurrence of this epitope on glycoproteins and glycolipids of the fly, Calliphora vicina, was investigated by Western blot analysis and thin-layer chromatogram immunostaining. Several monoclonal antibodies recognizing an epitope on various neural cell adhesion molecules, designated L2 (334, 336, 349, and 412); the monoclonal antibody HNK-1 (recognizing an epitope on human natural killer cells); and a human IgM M-protein were found to react by Western blot analysis with various glycoproteins from larval and adult brains, although the intensity of staining of bands recognized by each antibody varied. Acidic glycolipids from pupae were also recognized, but only by the L2 antibody 334 and IgM M-protein. After desulfation of the acidic glycolipid fraction, the immunostaining pattern remained the same, an observation suggesting that the L2/HNK-1 epitope on insect acidic glycolipids contains a nonsulfated, glucuronic acid moiety. These observations indicate that the L2/HNK-1 carbohydrate structure occurs not only in vertebrates but also in insects on both glycoproteins and glycolipids, a finding suggesting a high degree of phylogenetic stability of this functionally important carbohydrate.  相似文献   

8.
Summary A proteoglycan-specific antiserum has been used to monitor the effects of denervation in the electric organ of Torpedo marmorata. The antiserum was produced by injecting a highly purified synaptic vesicle fraction prepared from the electric organs of Torpedo marmorata. Following absorption the serum appears to be specific towards synaptic vesicles. The ultrastructural localization of the antigen determined by immuno-electron microscopy confirmed the specificity of the antiserum and showed that it did not crossreact with the proteoglycans of the basal lamina. The rate of disappearance of the vesicle proteoglycans following denervation was evaluated by means of the antiserum and was compared to the rate of disappearance of other vesicular and nerve terminal-associated markers. The results suggest that degeneration affects the vesicular constituents at varying rates resulting in a progressive disappearance of the entire functional capacity of the synaptic vesicles.  相似文献   

9.
ATP synthases, widely distributed in bacteria, eukaryotic mitochondria and chloroplasts, are highly conserved multi-subunit complexes. Although the conserved acidic residue in the transmembrane helix of the c subunit functions in H+ transport, the surrounding residues differ among species. Such divergence could lead to different regulatory modes since pH-dependent H+ transport has been demonstrated in E. coli with a c subunit carrying an additional acidic residue in the helix. There is further divergence in the number of c subunits that form the ring structure which is determined by the higher ordered structure. Recently, it was suggested that certain chemicals recognize the a and c subunits of pathogenic bacterial F0. Since there may be structural divergence even in well-conserved ATP synthases, the c subunit-ring as well as the a subunit in F0 could be targets for drugs for specific bacterial species.  相似文献   

10.
Excision of a DNA segment can occur in Arabidopsis thaliana by reciprocal recombination between two specific recombination sites (RSs) when the recombinase gene (R) from Zygosaccharomyces rouxii is expressed in the plant. To monitor recombination events, we generated several lines of transgenic Arabidopsis plants that carried a cryptic -glucuronidase (GUS) reporter gene which was designed in such a way that expression of the reporter gene could be induced by R gene-mediated recombination. We also made several transgenic lines with an R gene linked to the 35S promoter of cauliflower mosaic virus. Each transgenic line carrying the cryptic reporter gene was crossed with each line carrying the R gene. Activity of GUS in F1 and F2 progeny was examined histochemically and recombination between two RSs was analyzed by Southern blotting and the polymerase chain reaction. In seedlings and plantlets of F1 progeny and most of the F2 progeny, a variety of patterns of activity of GUS, including sectorial chimerism in leaves, was observed. A small percentage of F2 individuals exhibited GUS activity in the entire plant. This pattern of expression was ascribed to germinal recombination in the F1 generation on the basis of an analysis of DNA structure by Southern blotting. These results indicate that R gene-mediated recombination can be induced in both somatic and germ cells of A. thaliana by cross-pollination of parental transgenic lines.  相似文献   

11.
Auxins and auxin inhibitors from tissue extracts of normal Nicotiana plants, Nicotiana glauca, N. langsdorffii and their hybrid (which spontaneously produces tumors) were separated by ascending paper chromatography with n-butanol-distilled water. An Avena curvature test was used for demonstrating growth-promoting and growth-inhibiting substances. IAA could be found in extracts of the parents and the hybrid (RF 0.75). Hybrid tissue yielded the highest amount (37.1°), N. glauca tissue less (30.8°), and N. langsdorffii tissue the least amount (8.5°) of IAA. A second growth promoter (RF 0.35) could be separated from the tissue extracts of the parents and the hybrid, but it showed only low activity in the Avena test. Three inhibitors were present in extracts from N. langsdorffii and the hybrid at RF 0.25, 0.45, and 0.85, whereas N. glauca showed only two of them (RF 0.25 and 0.85). The inhibitor with an RF of 0.45 seemed to be identical with the acidic, benzene-insoluble “inhibitor β” of Bennet-Clark and Kefford (1953). The inhibitor (neutral, benzene-soluble) at RF 0.85 could be found in some tissue extracts of the parents and the hybrid, but showed only little activity in the curvature tests. From neutral and from acidic plant extracts within a pH range of 4.4 to 5.8 a third inhibitor with an RF of 0.25 could be separated. It seems that the high concentration of natural IAA in the hybrid is regulated by a variety of inhibitors with different specificities in the growth-regulating process. Nicotiana langsdorffii tissue has much less auxin but the same variety of inhibitors as the hybrid, whereas N. glauca tissue contains less auxin than the hybrid and only two of the three inhibitors found in N. langsdorffii and hybrid extracts.  相似文献   

12.
Proteoglycans of developing chick brain were distinguished on the basis of reactivity with four well characterized antibody reagents (S103L, to the CS-rich domain; HNK-1, to 6-sulfated glucuronic acid; 1-C-3, to the HABr region and 5-D-4, to KS chains). One chondroitin sulfate proteoglycan reacted exclusively with S103L and 1-C-3 and not with the other two antibodies, hence is designated the S103L reactive brain CSPG. The other proteoglycan reacted exclusively with HNK-1 and 5-D-4 and not with S103L and 1-C-3, hence it is designated the HNK-1 reactive brain CSPG. In addition to these immunological distinctions, the S103L and HNK-1 CSPGs exhibited significant biochemical differences at both the protein and carbohydrate levels. Most interestingly, both CSPGs were found in all regions of the brain, and were expressed in a developmentally regulated pattern. The S103L CSPG was not detectable prior to embryonic day 7, increased to a maximum at day 13-15 and declined by day 20 in most brain regions examined. In contrast, the HNK-1 CSPG was present as early as embryonic day 4 and remained constant through hatching. Neuronal cultures established from embryonic day 6 (E6) cerebral hemispheres represent an in vitro paradigm that mimics in vivo neuronal development and differentiation. In this culture system we found that the expression of the S103L and HNK-1 CSPG followed a pattern similar to that observed in developing brain and further, that neurons are probably the sole source of S103L CSPG in cerebral cortex during neuroembryogenesis.  相似文献   

13.
Summary The carbohydrate epitopes L2/HNK-1 and L3 belong to two overlapping families of adhesion molecules in the vertebrate, and probably the invertebrate nervous systems. To investigate their pattern of expression during the development of insects, cryosections of late third instar larvae and imagoes of Drosophila melanogaster and Calliphora vicina were studied by indirect immunofluorescence using several monoclonal antibodies to the L2/HNK-1 and one monoclonal antibody to the L3 epitope. Each monoclonal antibody to the L2/HNK-1 epitope showed a different immunohistological staining pattern, which differed from that of the L3 monoclonal antibody. In both insect species the immunohistological staining patterns for the two carbohydrate epitopes were similar at the two developmental stages, with immunoreactivity not confined to the nervous system. In larvae, immunoreactivities of the monoclonal antibodies L2.334 and L3.492 were predominantly associated with the extracellular matrix as indicated by co-localization with laminin, particularly in the imaginal discs, while L2.349 revealed a more cell surface-associated distribution. In imagoes, immunoreactivities were detectable in most organs studied.  相似文献   

14.
Protein kinase FA (an activating factor of ATP·Mg-dependent protein phosphatase) has been characterized to exist in two forms in the purified brain myelin. One form of kinase FA is spontaneously active and trypsin-labile, whereas the other form of kinase FA is inactive and trypsin-resistant, suggesting a different membrane topography with active FA exposed on the outer face of the myelin membrane and inactivu FQ buried within the myelin membrane. When myelin was solubilized in 1% Triton X-100, all kinase FA became active and trypsin-labile. Phospholipid reconstitution studies further indicated that when kinase FA was reconstituted in acidic phospholipids, such as phosphatidylinositol and phosphatidylserine, the enzyme activity was inhibited in a dose-dependent manner, suggesting that kinase FA interacts with acidic phospholipids which inhibit its activity. Furthermore, when myelin was incubated with exogenous phospholipase C, the inactive/trypsin-resistant FA could be converted to the active/trypsin-labile FA in a time- and dose-dependent manner. Taken together, it is concluded that membrane phospholipids play an important role in modulating the activity of kinase FA in the brain myelin. It is suggested that phospholipase C may mediate the activation-sequestration of inactive/trypsin-resistant kinase FA in the brain myelin through the phospholipase C-katalyzed degradation of acidic membrane phospholipids. The activation-sequestration of protein Kinase FA may represent one mode of control modulating the activity of kinase FA in the central nervous system myelin.  相似文献   

15.
Reproductive abnormalities reduced the percent stainable pollen, and fruit and seed set in interspecific F2 populations derived from crosses of Lycopersicon esculentum and L. pennellii but were not observed in parental lines and interspecific F1 populations. The degree to which these reproductive abnormalities were expressed in the interspecific F2 populations was affected by cytoplasm. Reproduction was impeded in interspecific F2 populations containing L. esculentum cytoplasm (F 2 Le ) by reduction in pollen production, the lack of fruit set and a high proportion of parthenocarpic fruit among plants capable of fruit set. The F2 populations containing L. pennellii cytoplasm (F 2 Lp4 ) showed a reduced frequency of reproductive abnormalities at all stages of reproductive development, resulting in higher values for percent stainable pollen, fruit and seed set and higher proportions of the F 2 Lp4 populations being capable of setting fruit or seed than F 2 Le populations. The major barrier remaining in F 2 Lp4 populations was reduced fruit set compared to parental lines. The barrier to fruit and seed set observed in the F 2 Le populations, and to a lesser extent in the F 2 Lp4 populations, occurs around the time of fertilization or early embryonic development. The effect of L. pennellii cytoplasm on barriers in the F 2 Lp4 populations is proposed to be due to an interaction between cytoplasmic and nuclear genes during fertilization of the F1 plants to produce F2 populations and may also affect subsequent generations.  相似文献   

16.
Neural crest-like cells (NCLC) that express the HNK-1 antigen and form body pigment cells were previously identified in diverse ascidian species. Here we investigate the embryonic origin, migratory activity, and neural crest related gene expression patterns of NCLC in the ascidian Ciona intestinalis. HNK-1 expression first appeared at about the time of larval hatching in dorsal cells of the posterior trunk. In swimming tadpoles, HNK-1 positive cells began to migrate, and after metamorphosis they were localized in the oral and atrial siphons, branchial gill slits, endostyle, and gut. Cleavage arrest experiments showed that NCLC are derived from the A7.6 cells, the precursors of trunk lateral cells (TLC), one of the three types of migratory mesenchymal cells in ascidian embryos. In cleavage arrested embryos, HNK-1 positive TLC were present on the lateral margins of the neural plate and later became localized adjacent to the posterior sensory vesicle, a staging zone for their migration after larval hatching. The Ciona orthologues of seven of sixteen genes that function in the vertebrate neural crest gene regulatory network are expressed in the A7.6/TLC lineage. The vertebrate counterparts of these genes function downstream of neural plate border specification in the regulatory network leading to neural crest development. The results suggest that NCLC and neural crest cells may be homologous cell types originating in the common ancestor of tunicates and vertebrates and support the possibility that a putative regulatory network governing NCLC development was co-opted to produce neural crest cells during vertebrate evolution.  相似文献   

17.
Fermenting Escherichia coli is able to produce formate and molecular hydrogen (H2) when grown on glucose. H2 formation is possessed by two hydrogenases, 3 (Hyd-3) and 4 (Hyd-4), those, in conjunction with formate dehydrogenase H (Fdh-H), constitute distinct membrane-associated formate hydrogenylases. At slightly alkaline pH (pH 7.5), the production of H2 was found to be dependent on Hyd-4 and the F0F1-adenosine triphosphate (ATPase), whereas external formate increased the activity of Hyd-3. In this study with cells grown without and with external formate H2 production dependent on pH was investigated. In both types of cells, H2 production was increased after lowering of pH. At acidic pH (pH 5.5), this production became insensitive either to N,N′-dicyclohexylcarbodiimide or to osmotic shock and it became largely dependent on Fdh-H and Hyd-3 but not Hyd-4 and the F0F1-ATPase. The results indicate that Hyd-3 has a major role in H2 production at acidic pH independently on the F0F1-ATPase.  相似文献   

18.
This paper describes the embryonic development of some parts of the sensory peripheral nervous system in the leg anlagen of the cricket Teleogryllus commodus in normal and heat shocked embryos. The first peripheral neurons appear at the 30% stage of embryogenesis. These tibial pioneer neurons grow on a stereotyped path to the central nervous system and form a nerve which is joined by the growth cones of axons that arise later, including those from the femoral chordotonal organ, subgenual organ and tympanal organ. The development of these organs is described with respect to the increase in number of sensory receptor cells and the shape and position of the organs. At the 100% stage of embryogenesis all three organs have completed their development in terms of the number of sense cells and have achieved an adult shape. To study the function of the tibial pioneer neurons during embryogenesis a heat shock was used to prevent their development. Absence of these neurons has no effect on the development of other neurons and organs proximal to them. However, the development of distal neurons and organs guided by them is impaired. The tibial pioneer neurons grow across the segmental boundary between femur and tibia early in development, and the path they form seems to be essential for establishing the correct connections of the distal sense organs with the central nervous system.  相似文献   

19.
α- and γ-Glutamylaspartic acids were detected in acidic fraction of soybean seedling. RF values of both peptides were consistent with those of authentic samples with several solvent systems.  相似文献   

20.
Phytophthora infestans (Mont.) de Bary is the most important fungal pathogen of the potato (Solanum tuberosum). The introduction of major genes for resistance from the wild species S. demissum into potato cultivars is the earliest example of breeding for resistance using wild germplasm in this crop. Eleven resistance alleles (R genes) are known, differing in the recognition of corresponding avirulence alleles of the fungus. The number of R loci, their positions on the genetic map and the allelic relationships between different R variants are not known, except that the R1 locus has been mapped to potato chromosome V The objective of this work was the further genetic analysis of different R alleles in potato. Tetraploid potato cultivars carrying R alleles were reduced to the diploid level by inducing haploid parthenogenetic development of 2n female gametes. Of the 157 isolated primary dihaploids, 7 set seeds and carried the resistance alleles R1, R3 and R10 either individually or in combinations. Independent segregation of the dominant R1 and R3 alleles was demonstrated in two F1 populations of crosses among a dihaploid clone carrying R1 plus R3 and susceptible pollinators. Distorted segregation in favour of susceptibility was found for the R3 allele in 15 of 18 F1 populations analysed, whereas the RI allele segregated with a 1:1 ratio as expected in five F1 populations. The mode of inheritance of the R10 allele could not be deduced as only very few F1 hybrids bearing R10 were obtained. Linkage analysis in two F1 populations between R1, R3 and RFLP markers of known position on the potato RFLP maps confirmed the position of the R1 locus on chromosome V and localized the second locus, R3, to a distal position on chromdsome XI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号