首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have characterised a series of C-terminal fragments of barnase by different biophysical techniques to find out when they acquire secondary and tertiary native-like structure. Fragments B96-110 (which comprises the last 15 residues of the intact protein) up to B37-110 (which involves most of the protein except the two first helices and a loop) were mainly disordered. Only fragment B23-110, which lacks alpha-helix1, showed native-like near and far-UV CD and fluorescence spectra. The intensities of these spectra were lower than those of the full-length protein, which suggests the absence of complete side-chain packing. Urea denaturation followed by fluorescence, far-UV CD and gel-filtration chromatography techniques indicated a co-operative transition only for B23-110. None of the fragments melted co-operatively with temperature. Thus, the formation of secondary and tertiary structure requires most of the polypeptide chain to be present, that is, secondary and tertiary structure are formed in parallel. This agrees with the proposed model for barnase folding, where the residual structure in small fragments is weak and flickering, and it is only consolidated when there are enough tertiary interactions. Thus, the development of structure in the series of C-terminal fragments follows a similar behaviour to that observed in the series of N-terminal fragments of barnase.  相似文献   

2.
The study of complementary protein fragments is thought to be generally useful to identify early folding intermediates. A prerequisite for these studies is the reconstitution of the native-like structure by fragment complementation. Structural analysis of the complementation of the domain-sized proteolytic fragments of E. coli thioredoxin, using a combination of H-exchange and 2D NMR experiments as a fingerprint technique, provide evidence for the extensive reconstitution of a native β-sheet, with local conformational adjustments near the cleavage site. Remarkably, the antiparallel β-strand between the fragments shows a native-like protection of the amide protons to solvent exchange. Our results indicate that these fragments can be useful to study the early events in the still little understood formation of β-sheets. © 1995 Wiley-Liss, Inc.  相似文献   

3.
The N-terminal SH2 domain from the p85alpha subunit of phosphatidylinositol 3' kinase is cleaved specifically into 9- and 5-kD fragments by limited proteolytic digestion with trypsin. The noncovalent SH2 domain complex and its constituent tryptic peptides have been investigated using high-resolution heteronuclear magnetic resonance (NMR). These studies have established the viability of the SH2 domain as a fragment complementation system. The individual peptide fragments are predominantly unstructured in solution. In contrast, the noncovalent 9-kD + 5-kD complex shows a native-like (1)H-(15)N HSQC spectrum, demonstrating that the two fragments fold into a native-like structure on binding. Chemical shift analysis of the noncovalent complex compared to the native SH2 domain reveals that the highest degree of perturbation in the structure occurs at the cleavage site within a flexible loop and along the hydrophobic interface between the two peptide fragments. Mapping of these chemical shift changes on the structure of the domain reveals changes consistent with the reduction in affinity for the target peptide ligand observed in the noncovalent complex relative to the intact protein. The 5-kD fragment of the homologous Src protein is incapable of structurally complementing the p85 9-kD fragment, either in complex formation or in the context of the full-length protein. These high-resolution structural studies of the SH2 domain fragment complementation features establish the suitability of the system for further protein-folding and design studies.  相似文献   

4.
Antibody folding is a complex process comprising folding and association reactions. Although it is usually difficult to characterize kinetic folding intermediates, in the case of the antibody Fab fragment, domain-domain interactions lead to a rate-limiting step of folding, thus accumulating folding intermediates at a late step of folding. Here, we analyzed a late folding intermediate of the Fab fragment of the monoclonal antibody MAK 33 from mouse (kappa/IgG1). As a strategy for accumulation of this intermediate we used partial denaturation of the native Fab by guanidinium chloride. This denaturation intermediate, which can be populated to about 90%, is indistinguishable from a late-folding intermediate with respect to denaturation and renaturation kinetics. The spectroscopic analysis reveals a native-like secondary structure of this intermediate with aromatic side chains only slightly more solvent exposed than in the native state. The respective partner domains are weekly associated. From these data we conclude that the intramolecular association of the two chains during folding, with all domains in a native-like structure, follows a two-step mechanism. In this mechanism, presumably hydrophobic interactions are followed by rearrangements leading to the exact complementarity of the contact sites of the respective domains.  相似文献   

5.
Cyanogen bromide (CB) cleavage of Neurospora tyrosinase resulted in four major fragments, CB1 (222 residues), CB2 (82 residues), CB3 (68 residues), and CB4 (35 residues), and one minor overlap peptide CB2-4 (117 residues) due to incomplete cleavage of a methionylthreonyl bond. The sum of the amino acid residues of the four major fragments matches the total number of amino acid residues of the native protein. The amino acid sequences of the cyanogen bromide fragments CB2, CB3, and CB4 were determined by a combination of automated and manual sequence analysis on peptides derived by chemical and enzymatic cleavage of the intact and the maleylated derivatives. The peptides were the products of cleavage by mild acid hydrolysis, trypsin, pepsin, chymotrypsin, thermolysin, and Staphylococcus aureus protease V8. The cyanogen bromide fragment CB1 was found to contain two unusual amino acids whose chemical structure will be presented in the following paper.  相似文献   

6.
Xie T  Liu D  Feng Y  Shan L  Wang J 《Biophysical journal》2007,92(6):2090-2107
Folding stability and cooperativity of the three forms of 1-110 residues fragment of staphylococcal nuclease (SNase110) have been studied by various biophysical and NMR methods. Samples of G-88W- and V-66W-mutant SNase110, namely G-88W110 and V-66W110, in aqueous solution and SNase110 in 2.0 M TMAO are adopted in this study. The unfolding transitions and folded conformations of the three SNase fragments were detected by far- and near-ultraviolet circular dichroism and intrinsic tryptophan fluorescence measurements. The tertiary structures and internal motions of the fragments were determined by NMR spectroscopy. Both G-88W and V-66W single mutations as well as a small organic osmolyte (Trimethylamine N-oxide, TMAO) can fold the fragment into a native-like conformation. However, the tertiary structures of the three fragments exhibit different degrees of folding stability and compactness. G-88W110 adopts a relatively rigid structure representing a most stable native-like beta-subdomain conformation of the three fragments. V-66W110- and TMAO-stabilized SNase110 produce less compact structures having a less stable "beta-barrel" structural region. The different folding status accounts for the different backbone dynamic and urea-unfolding transition features of the three fragments. The G-20I/G-29I-mutant variants of the three fragments have provided the evidence that the folding status is correlated closely to the packing of the beta-strands in the beta-barrel of the fragments. The native-like beta-barrel structural region acts as a nonlocal nucleus for folding the fragment. The tertiary folding of the three fragments is initiated by formation of the local nucleation sites at two beta-turn regions, I-18-D-21 and Y-27-Q-30, and developed by the formation of a nonlocal nucleation site at the beta-barrel region. The formation of beta-barrel and overall structure is concerted, but the level of cooperativity is different for the three 1-110 residues SNase fragments.  相似文献   

7.
Experimental evidence and theoretical models both suggest that protein folding is initiated within specific fragments intermittently adopting conformations close to that found in the protein native structure. These folding initiation sites encompassing short portions of the protein are ideally suited for study in isolation by computational methods aimed at peering into the very early events of folding. We have used Molecular Dynamics (MD) technique to investigate the behavior of an isolated protein fragment formed by residues 85 to 102 of barnase that folds into a β hairpin in the protein native structure. Three independent MD simulations of 1.3 to 1.8 ns starting from unfolded conformations of the peptide portrayed with an all-atom model in water were carried out at gradually decreasing temperature. A detailed analysis of the conformational preferences adopted by this peptide in the course of the simulations is presented. Two of the unfolded peptide conformations fold into a hairpin characterized by native and a larger bulk of nonnative interactions. Both refolding simulations substantiate the close relationship between interstrand compactness and hydrogen bonding network involving backbone atoms. Persistent compactness witnessed by side-chain interactions always occurs concomitantly with the formation of backbone hydrogen bonds. No highly populated conformations generated in a third simulation starting from the remotest unfolded conformer relative to the native structure are observed. However, nonnative long-range and medium-range contacts with the aromatic moiety of Trp94 are spotted, which are in fair agreement with a former nuclear magnetic resonance study of a denaturing solution of an isolated barnase fragment encompassing the β hairpin. All this lends reason to believe that the 85–102 barnase fragment is a strong initiation site for folding. Proteins 29:212–227, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
To facilitate structural studies of the ligand binding region from the nicotinic acetylcholine receptor (nAChR), we have developed methods for the high-level expression and purification of an important functional portion of the N-terminal extracellular domain (ECD) of the alpha-subunit. Two soluble receptor fragments comprising residues 143-210 of the Torpedo californica alpha-subunit were expressed in E. coli: alphaT68His6, which contains a histidine tag, and alphaT68M1, which includes the first transmembrane region, M1, of the alpha-subunit. Both proteins demonstrate saturable, high-affinity alpha-bungarotoxin (Bgtx) binding with an apparent equilibrium KD (3 nM) that is comparable to the affinities reported for preparations comprising the entire alpha-subunit ECD. These results demonstrate that the ECD determinants required for Bgtx recognition of the alpha-subunit are entirely specified by residues 143-210. The binding of small ligands was demonstrated in competition assays with 125I-Bgtx yielding KI values of 58 and 105 microM for d-tubocurarine and nicotine, respectively. Circular dichroism (CD) analysis of monomeric alphaT68His6 protein revealed considerable secondary structure. Furthermore, a cooperative, two-state folding transition was observed upon urea denaturation. To circumvent concentration-dependent aggregation of the alphaT68His6 protein at the millimolar concentrations needed for NMR study, we utilized the M1 transmembrane domain to anchor the recombinant receptor fragment onto membrane-mimicking micelles. Monodispersed preparations of alphaT68M1 in dodecylphosphocholine micelles demonstrate high-affinity Bgtx binding and considerable secondary structure by CD. The structural features revealed in the CD profile appear to undergo a cooperative, two-state folding transition upon thermal denaturation. Initial NMR studies suggest that micellar preparations of the alphaT68M1 fragment are amenable to further high-resolution heteronuclear NMR analysis.  相似文献   

9.
The N-terminal large fragments of staphylococcal nuclease (SNase), SNase110 (1-110 residues), SNase121 (1-121 residues), and SNase135 (1-135 residues), and the fragment mutants G88W110, G88W121, V66W110 and V66W121 were studied by heteronuclear multidimensional NMR spectroscopy. Ensembles of co-existent native-like partially folded and unfolded states were observed for fragments. The persistent native-like tertiary interaction drives fragments to be in partially folded states, which reveal native-like beta-barrel conformations. G88W and V66W mutations modulate the extent of inherent native-like tertiary interaction in fragment molecules, and in consequence, fragment mutants fold into native-like beta-subdomain conformations. In cooperation with the inherent tertiary interaction, 2 M TMAO (trimethylamine N-oxide) can promote the folding reaction of fragments through the changes of unfolding free energy, and a native-like beta-subdomain conformation is observed when the chain length contains 135 residues. Heterogeneous partially folded conformations of 1-121 and 1-135 fragments due to cis and trans X-prolyl bond of Lys116-Pro117 make a non-unique folding pathway of fragments. The folding reaction of fragments can be characterized as a hierarchical process.  相似文献   

10.
Globular proteins can be decomposed into several modules or secondary structure units. It is useful to investigate the functions of such structural units in order to understand the folding units of proteins. In our previous work, barnase was divided into six peptide fragments corresponding to modules, and some of them were shown to have RNA-binding and RNase activity [Yanagawa, et al. (1993) J. Biol. Chem. 268, 5861-5865]. Barnase mutant proteins obtained by permutation of the structural units also had RNase activity [Tsuji, T. et al. (1999) J. Mol. Biol. 286, 1581-1596]. Here we investigated the structure and function of peptide fragments corresponding to secondary structure units of barnase. The results of circular dichroism spectroscopy indicated that some of the peptide fragments form helical structures in aqueous solutions containing over 30% 2,2,2-trifluoroethanol, and the S6 (94-110) peptide fragment is induced to form a beta-sheet structure in the presence of RNA. The S6 peptide fragment forms aggregate complexes with RNA. Electron microscopic analysis showed that the aggregate complexes were comprised of filaments. These results indicate that not only modules but also secondary structure units dissected from a globular protein have functional and structure-forming capabilities.  相似文献   

11.
In the Lewis rat, fragment 43–88 of the highly encephalitogenic guinea-pig basic protein has been previously shown to retain the full activity of the parent protein. In the present studies this fragment was subjected to controlled chymotryptic digestion so that cleavage occurred only at tyrosine 67, generating two peptides, residues 43-67 and residues 68-88. When compared on an equimolar basis peptide 68-88 had the same encephalitogenic activity as the intact fragment and induced the same degree of immunologically specific cell response as measured by the in vitro lymphocyte stimulation test. Peptide 68-88 was further fragmented by selective tryptic cleavage at arginine 78 after blocking lysine 73 with citraconic anhydride. The two peptides, residues 68-78 and residues 79-88, were not encephalitogenic, indicating that residues adjacent to the point of cleavage contribute to the active site.  相似文献   

12.
The self-association reaction of a 79-residue fragment of staphylococcal nuclease (SNase79) was studied by far-UV CD, size-exclusion chromatography, and heteronuclear multidimensional NMR spectroscopy. A large population of SNase79 is in self-associated state while a small population of SNase79 is essentially in a monomeric state. The sequence region Thr13-Val39 is responsible for association interface of SNase79. The trans-conformation of X-prolyl bond Gln30-Pro31 may make residues Tyr27-Gln30, serve as a folding nucleation site, and lead the segment Thr13-Val39 of SNase79 to adopt a native-like beta-sheet conformation, which results in the self-association of SNase79. The non-native conformation of the segment Thr13-Val39 of SNase79 associated with the cis-conformation of X-prolyl bond Gln30-Pro31 may preclude SNase79 from the soluble aggregates.  相似文献   

13.
Treatment of a gonococcal major outer membrane protein IB (serotype 5) with cyanogen bromide (CNBr) resulted in cleavage of PIB into three major fragments of apparent molecular weight of 15, 13, and 8 kD. The location of these peptides in the intact protein was determined by analysis of partial cleavage products. The 8 kD peptide (CB2) was found to be located in the central region of the protein. Chymotrypsin cleavage of PIB revealed a cleavage site near one of the CNBr cleavage sites. Trypsin was found to cleave the protein, either in outer membranes (OMC) or in detergent micelles, in the central CB2 fragment. These result suggest that CB2 is a part of the surface exposed region of PIB.Immunization of mice with purified PIB (serotype 5) induced antibodies against all three CB-peptides. Absorption of the sera with homologous intact OMC resulted in a complete removal of antibodies against CB2, supplying further evidence for its surface exposed nature. Antibodies against the 13 kD peptide (CB1) could not be absorbed with intact OMC, suggesting that this peptide is buried within the outer membrane.Antisera raised against CB2 of serotype 5 demonstrated a considerable cross-reactivity with heterologous outer membranes. On the contrary, intact OMC induced mainly type-specific antibodies. These data demonstrate the presence of conserved epitopes on the surface exposed CB2 peptide. These conserved epitopes are generally not very immunogenic when present in intact OMC.  相似文献   

14.
Limited proteolysis of the 153-residue chain of horse apomyoglobin (apoMb) by thermolysin results in the selective cleavage of the peptide bond Pro88-Leu89. The N-terminal (residues 1-88) and C-terminal (residues 89-153) fragments of apoMb were isolated to homogeneity and their conformational and association properties investigated in detail. Far-UV circular dichroism (CD) measurements revealed that both fragments in isolation acquire a high content of helical secondary structure, while near-UV CD indicated the absence of tertiary structure. A 1:1 mixture of the fragments leads to a tight noncovalent protein complex (1-88/89-153, nicked apoMb), characterized by secondary and tertiary structures similar to those of intact apoMb. The apoMb complex binds heme in a nativelike manner, as given by CD measurements in the Soret region. Second-derivative absorption spectra in the 250-300 nm region provided evidence that the degree of exposure of Tyr residues in the nicked species is similar to that of the intact protein at neutral pH. Also, the microenvironment of Trp residues, located in positions 7 and 14 of the 153-residue chain of the protein, is similar in both protein species, as given by fluorescence emission data. Moreover, in analogy to intact apoMb, the nicked protein binds the hydrophobic dye 1-anilinonaphthalene-8-sulfonate (ANS). Taken together, our results indicate that the two proteolytic fragments 1-88 and 89-153 of apoMb adopt partly folded states characterized by sufficiently nativelike conformational features that promote their specific association and mutual stabilization into a nicked protein species much resembling in its structural features intact apoMb. It is suggested that the formation of a noncovalent complex upon fragment complementation can mimic the protein folding process of the entire protein chain, with the difference that the folding of the complementary fragments is an intermolecular process. In particular, this study emphasizes the importance of interactions between marginally stable elements of secondary structure in promoting the tertiary contacts of a native protein. Considering that apoMb has been extensively used as a paradigm in protein folding studies for the past few decades, the novel fragment complementing system of apoMb here described appears to be very useful for investigating the initial as well as late events in protein folding.  相似文献   

15.
Autonomous subdomains in protein folding.   总被引:5,自引:5,他引:0       下载免费PDF全文
Proteolytic dissection of native trp repressor and horse heart cytochrome c has been used to infer some of the steps in the folding pathways of the intact proteins. For both proteins, small fragments are capable of undergoing spontaneous noncovalent association to form subdomains with native-like secondary and/or tertiary structural features, suggesting that dissection/reassembly may be a general method to gain insight into the structures of folding intermediates. The importance of this approach is its simplicity and potential applicability to studying the folding pathways of a wide range of proteins. The proteases report on the structure and dynamics of the native state, circumventing the need for prior knowledge of the structures of folding intermediates. The observation that small fragments of proteins can associated noncovalently suggests that protein folding can be viewed as an intramolecular "recognition" process. The results imply that substantial information about protein structure and folding is encoded at the level of subdomains, and that chain connectivity has only a minor role in determining the fold.  相似文献   

16.
Preparations of recombinant bovine calbindin D9k (r-calbindin) that appear homogeneous on SDS electrophoresis gels have been shown by isoelectric focusing to be mixtures of proteins differing in net charge. The production of two isoforms with increased negative charge occurs during a routine urea denaturation step and can be effectively suppressed by replacing this procedure with thermal denaturation. The two isoforms have been separated from the native protein by DEAE-Sephacel ion-exchange chromatography. Amino acid sequencing of tryptic peptide fragments and two-dimensional (2D) 1H NMR studies establish that the isoforms correspond to calbindin D9k deamidated at Asn56 and that the major product has an isoaspartate (beta-linked peptide) residue at this position. The minor deamidated component is found to have a normal Asp-Gly alpha-linkage. A detailed analysis of proton chemical shifts, phi backbone dihedral angles, and nuclear Overhauser effects indicates that the global conformation of r-calbindin is not perturbed upon deamidation and that all elements of secondary structure are intact. The Asp56 form is nearly identical with the intact protein, whereas the structure of the iso-Asp56 form is perturbed, predominantly in the polypeptide segment Lys55-Asp58. These studies demonstrate that 2D 1H NMR techniques can be used to identify and quantitate the two isoforms produced upon deamidation of a protein and to assess changes in the local and global conformation.  相似文献   

17.
Previous studies from this laboratory have shown that the thermolysin fragment 121–316, comprising entirely the“all-α” COOH-terminal structural domain 158–316, as well as fragment 206–316 (fragment FII) are able to refold into a native-like, stable structure independently from the rest of the protein molecule. The present report describes conformational properties of fragments 228–316 and 255–316 obtained by chemical and enzymatic cleavage of fragment FII, respectively. These subfragments are able to acquire a stable conformation of native-like characteristics, as judged by quantitative analysis of secondary structure from far-ultra-violet circular dichroism spectra and immunochemical properties using rabbit anti-thermolysin antibodies. Melting curves of the secondary structure of the fragments show cooperativity with a temperature of half-denaturationT mof 65–66°C. The results of this study provide evidence that it is possible to isolate stable supersecondary structures (folding units) of globular proteins and correlate well with predictions of subdomains of the COOH-terminal structural domain 158–316 of thermolysin.  相似文献   

18.
L G Chavez  H A Scherage 《Biochemistry》1977,16(9):1849-1856
An immunological method is used to follow the folding of different portions of the reduced bovine pancreatic ribonuclease molecule during air oxidation. Antibodies that react specifically with segments 1-13, 31-79, and 80-124 of native ribonuclease, as they are folded, were purified by affinity chromatography, using antiserum to native ribonuclease and columns to which the ribonuclease fragments were attached. The kinetics of reaction between these prufied antibodies and refolded portions that are produced when reduced rebonuclease is oxidized by air demonstrate the presence of intermediate states of folding, and are consistent with folding of the anti-genic determinants in the order 80-124, 1-13, and 31-79. The relative stabilities of each of these segments to thermal denaturation in the native protein provide additional evidence that the native conformation of region 80-124 is a very stable one in the intact molecule. On the basis of these two types of evidence, it appears that segment 80-124 contains a nucleation site for the folding of the protein molecule.  相似文献   

19.
The self-association reaction of denatured staphylococcal nuclease fragments, urea-denatured G88W110, containing residues 1-110 and mutation G88W, and physiologically denatured 131-residue Delta 131 Delta, have been characterized by NMR at close to neutral pH. The two fragments differ in the extent and degree of association due to the different sequence and experimental conditions. Residues 13-39, which show significant exchange line broadening, constitute the main association interface in both fragments. A second weak association region was identified involving residues 79-105 only in the case of urea-denatured G88W110. For residues involved in the association reaction, significant suppression of the line broadening and small but systematic chemical shift variation of the amide protons were observed as the protein concentration decreased. The direction of chemical shift change suggests that the associated state adopts mainly beta-sheet-like conformation, and the beta-hairpin formed by strands beta 2 and beta 3 is native-like. The apparent molecular size obtained by diffusion coefficient measurements shows a weak degree of association for Delta 131 Delta below 0.4 mM protein concentration and for G88W110 in 4 M urea. In both cases the fragments are predominantly in the monomeric state. However, the weak association reaction can significantly influence the transverse relaxation of residues involved in the association reaction. The degree of association abruptly increases for Delta 131 Delta above 0.4 mM concentration, and it is estimated to form a 4 to 8 mer at 2 mM. It is proposed that the main region involved in association forms the core structure, with the remainder of residues largely disordered in the associated state. Despite the obvious influence of the association reaction on the slow motion of the backbone, the restricted mobility on the nanosecond timescale around the region of strand beta 5 is essentially unaffected by the association reaction and degree of denaturation.  相似文献   

20.
Proteolysis experiments have been used to monitor the conformational transitions from an unfolded to a folded state occurring when the apo form of horse cytochrome c (cyt c) binds the heme moiety or when two fragments of cyt c form a native-like 1:1 complex. Proteinase K was used as a proteolytic probe, in view of the fact that the broad substrate specificity of this protease allows digestion at many sites along a polypeptide chain. The rather unfolded apo form of cyt c binds heme with a concomitant conformational transition to a folded species characterized by an enhanced content of helical secondary structure. While the holoprotein is fully resistant to proteolytic digestion and the apoprotein is digested to small peptides, the noncovalent complex of the apoprotein and heme exhibits an intermediate resistance to proteolysis, in agreement with the fact that the more folded structure of the complex makes the protein substrate more resistant to proteolysis. The noncovalent native-like complex of the two fragments 1-56 and 57-104 of cyt c, covering the entire polypeptide chain of 104 residues of the protein, is rather resistant to proteolysis, while the individual fragments are easily digested. Fragment 57-104 is fast degraded to several peptides, while fragment 1-56 is slowly degraded stepwise from its C-terminal end, leading initially mostly to fragments 1-48 and 1-40 and, at later stages of proteolysis, fragments 1-38, 1-35, 1-33, and 1-31. Thus, proteolysis data indicate that the heme containing fragment 1-56 has a rather compact core and a C-terminal flexible tail. Upon prolonged incubation of the complex of fragments 1-56 and 57-104 (nicked cyt c) with proteinase K, a chain segment is removed from the nicked protein, leading to a gapped protein complex of fragments of 1-48 and 57-104 and, on further digestion, fragments 1-40 and 57-104. Of interest, the chain segment being removed by proteolysis of the complex matches the omega-loop which is evolutionarily removed in cyt c of microbial origin. Overall, rates and/or resistance to proteolysis correlates well with the extent of folding of the protein substrates, as deduced from circular dichroism measurements. Thus, our results underscore the utility of proteolytic probes for analyzing conformational and dynamic features of proteins. Finally, a specific interest of the cyt c fragment system herewith investigated resides in the fact that the fragments are exactly the exon products of the cyt c gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号