首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The renin-angiotensin (RAS) and kallikrein-kinin (KKS) systems play a key role in multiple physiological and pathophysiological conditions, including growth and development, inflammation, blood pressure regulation and control of renal function. In many instances, kinins and angiotensin II work together, e.g., during development, whereas they oppose each other's actions in the regulation of vascular tone and renal function. The RAS and KKS systems also interact at multiple levels, so that changes in the activity of one system greatly impact the activity of the other. The purpose of this brief review is to highlight recent knowledge regarding interactions at the cellular and molecular levels between the two systems, with an emphasis on the coordinate developmental regulation of these phylogenetically conserved vasoactive systems.  相似文献   

2.
Understanding the physiological role of the plasma kallikrein-kinin system (KKS) has been hampered by not knowing how the proteins of this proteolytic system, when assembled in the intravascular compartment, become activated under physiological conditions. Recent studies indicate that the enzyme prolylcarboxypeptidase, an ANG II inactivating enzyme, is a prekallikrein activator. The ability of prolylcarboxypeptidase to act in the KKS and the renin-angiotensin system (RAS) indicates a novel interaction between these two systems. This interaction, along with the roles of angiotensin converting enzyme, cross talk between bradykinin and angiotensin-(1-7) action, and the opposite effects of activation of the ANG II receptors 1 and 2 support a hypothesis that the plasma KKS counterbalances the RAS. This review examines the interaction and cross talk between these two protein systems. This analysis suggests that there is a multilayered interaction between these two systems that are important for a wide array of physiological functions.  相似文献   

3.
Iloprost (ZK 36 374), a stable analog of carbaprostacyclin, was infused for 72 h to nine patients with advanced obliterative arterial disease. Iloprost caused a marked vasodilation and a compensatory increase in cardiac output. The glomerular filtration rate increased by 45% and tubular reabsorption of sodium and water were reduced by 80% and 107%, respectively. The urine excretion rate increased by 122%. Tubular handling of potassium and calcium were not influenced by iloprost but magnesium reabsorption was stimulated. The renin-angiotensin system was not activated while serum angiotensin converting enzyme activity was decreased. Kallikrein excretion in urine was increased 4.4-fold but plasma kininogen, a substrate for kallikrein in producing vasoactive kinins, was unaffected by the drug. Plasma levels of 6-keto-PGF1α and TxB2 were decreased and their excretion in urine increased. Plasma catecholamines were not changed by iloprost. Several of the changes persisted for at least the first postinfusion day. The results indicate that iloprost increases urine excretion rate by increasing glomerular blood flow and by inhibiting sodium and water reabsorptions. The kinin-forming system, but not the renin-angiotensin system or plasma catecholamines, may be activated. The decrease in plasma level of prostanoids can be, at least partly, due to their increased excretions in urine.  相似文献   

4.
Iloprost (ZK 36 374), a stable analog of carbaprostacyclin, was infused for 72 h to nine patients with advanced obliterative arterial disease. Iloprost caused a marked vasodilation and a compensatory increase in cardiac output. The glomerular filtration rate increased by 45% and tubular reabsorption of sodium and water were reduced by 80% and 107%, respectively. The urine excretion rate increased by 122%. Tubular handling of potassium and calcium were not influenced by iloprost but magnesium reabsorption was stimulated. The renin-angiotensin system was not activated while serum angiotensin converting enzyme activity was decreased. Kallikrein excretion in urine was increased 4.4-fold but plasma kininogen, a substrate for kallikrein in producing vasoactive kinins, was unaffected by the drug. Plasma levels of 6-keto-PGF1 alpha and TxB2 were decreased and their excretion in urine increased. Plasma catecholamines were not changed by iloprost. Several of the changes persisted for at least the first postinfusion day. The results indicate that iloprost increases urine excretion rate by increasing glomerular blood flow and by inhibiting sodium and water reabsorptions. The kinin-forming system, but not the renin-angiotensin system or plasma catecholamines, may be activated. The decrease in plasma level of prostanoids can be, at least partly, due to their increased excretions in urine.  相似文献   

5.
Local renin-angiotensin systems   总被引:6,自引:0,他引:6  
The existence of a local cardiovascular renin-angiotensin system (RAS) is often invoked to explain the long-term beneficial effects of RAS inhibitors in heart failure and hypertension. The implicit assumption is that all components of the RAS are synthesized in situ, so that local angiotensin II formation may occur independently of the circulating RAS. Evidence for this assumption however is lacking. The angiotensin release from isolated perfused rat hearts or hindlimbs depends on the presence of renal renin. When calculating the in vivo angiotensin production at tissue sites in humans and pigs, taking into account the extensive regional angiotensin clearance by infusing radiolabeled angiotensin I or II, it was found that angiotensin production correlated closely with plasma renin activity. Moreover, in pigs the cardiac tissue levels of renin and angiotensin were directly correlated with their respective plasma levels, and both in tissue and plasma the levels were undetectably low after nephrectomy. Similarly, rat vascular renin and angiotensin decrease to low or undetectable levels within 48 h after nephrectomy. Aortic renin has a longer half life than plasma renin, suggesting that renin may be bound by the vessel wall. In support of this assumption, both renin receptors and renin-binding proteins have been described. Like ACE, renin was enriched in a purified membrane fraction prepared from cardiac tissue. Binding of renin to cardiac or vascular membranes may therefore be part of a mechanism by which renin is taken up from plasma. It appears that the concept of a local RAS needs to be reassessed. Local angiotensin formation in heart and vessel wall does occur, but depends, at least under normal circumstances, on the uptake of renal renin from the circulation. Tissues may regulate their local angiotensin concentrations by varying the number of renin receptors and/or renin-binding proteins, the ACE level, the amount of metabolizing enzymes and the angiotensin receptor density.Abbreviations RAS renin-angiotensin system - ANG angiotensin - ACE angiotensin-converting enzyme - PRA plasma renin activity  相似文献   

6.
The renin-angiotensin system (RAS) plays an important role in the regulation of the cardiovascular system and the kallikrein-kinin system (KKS) appears to counteract most of the RAS effects. In this study the vagal and the sympathetic influences on the heart rate and the baroreflex control of the heart rate were evaluated in transgenics rats with human tissue kallikrein gene expression [TGR(hKLK1)], and transgenics rats with tissue renin overexpression [TGR(mREN2)27]. Heart rate was similar in all groups but mean arterial pressure was higher in mREN2 rats than in kallikrein and control rats (149+/-4 vs. 114+/-3 vs. 113+/-3 mm Hg, respectively). The intrinsic heart rate was lower in mREN2 rats than in kallikrein and control rats (324+/-5 vs. 331+/-3 vs. 343+/-7 bpm). The HR response to atropine was similar but the response to propranolol was higher in kallikrein rats than control group (61+/-7 vs. 60+/-9 vs. 38+/-7 bpm, respectively). The vagal tonus was lower in mREN2 than in SD and hKAL rats (18+/-3 vs. 40+/-6 vs. 35+/-6 bpm) whereas the sympathetic tonus was higher in kallikrein rats (118+/-7 vs. 96+/-1 vs. 81+/-9 bpm in the mREN2 and SD rats), respectively. Baroreflex sensitivity to bradycardic responses was attenuated in mREN2 rats (0.37+/-0.05 vs. 1.34+/-0.08 vs. 1.34+/-0,13 bpm/mm Hg) while the tachycardic responses were unchanged. The bradycardic responses to electrical stimulation of the vagal nerve were depressed in both renin and kallikrein rats (129+/-47 vs. 129+/-22 vs. 193+/-25 bpm in control group in response to 32 Hz). In conclusion: 1.The rats with overexpression of renin showed decreased intrinsic heart rate and impairment of vagal function, characterized by decreased vagal tonus, reduced response of HR to electrical stimulation of vagus nerve, and depressed reflex bradycardia provoked by increases of blood pressure. 2. The rats with overexpression of kallikrein showed an increase of sympathetic activity that regulates the heart rate, characterized by increased HR response to propranolol and increased sympathetic tonus, accompanied by decreased bradycardic responses to electrical vagal stimulation.  相似文献   

7.
8.
Local renin-angiotensin systems: the unanswered questions   总被引:5,自引:0,他引:5  
The concept of local renin-angiotensin systems has been introduced almost 20 years ago to explain the beneficial blood pressure-independent effects of ACE inhibitors and AT(1) receptor antagonists in cardiovascular diseases. In the past decade, research has focussed on the local effects of angiotensin II rather than on the mechanism(s) of its local generation. This review addresses several of the unanswered questions with regard to tissue angiotensin II generation, focussing in particular on the heart and vascular wall: (1) what is the origin of the renin that is required to generate angiotensin II locally, (2) where does tissue angiotensin generation occur (intra- versus extracellular), (3) what is the importance of alternative (non-renin, non-ACE) angiotensin-generating enzymes, (4) do ACE inhibitors and AT(1) receptor antagonists exert local effects that are renin-angiotensin system independent (thereby incorrectly leading to the conclusion that they interfere with the local generation or effects of angiotensin II), and (5) to what degree do differences in tissue angiotensin generation underlie the association between cardiovascular diseases and renin-angiotensin system gene polymorphisms?  相似文献   

9.
10.
The effects of hypotensive agents (captopril, enalaprilat, and lisinopril) on the activities of components of the fibrinolytic system (FS) and the effects of antifibrinolytic agents (6-aminohexanoic acid (6-AHA) and tranexamic acid (t-AMCHA)) on the activities of angiotensin converting enzyme (ACE) were studied in vitro. Enalaprilat did not affect the FS activity. Captopril considerably inhibited the amidase activities of urokinase (u-PA), tissue plasminogen activator (t-PA), and plasmin ([I]50 (2.0?2.6) ± 0.1 mM), and the activation of Glu-plasminogen by t-PA and u-PA ([I]50 (1.50?1.80) ± 0.06 mM), which may be due to the presence of a mercapto group in the inhibitor molecule. Lisinopril did not affect the amidase activities of FS enzymes, but stimulated Glu-plasminogen activation by u-PA and inhibited activation fibrin-bound Glu-plasminogen by t-PA ([I]50 (12.0 ± 0.5) mM). Presumably, these effects can be explained by the presence in lisinopril of a Lys side residue, whose binding to lysine-binding Glu-plasminogen centers resulted, on the one hand, in the transformation from its closed conformation to a semi-open one and, on the other hand, in its desorption from fibrin. Unspecific inhibition of the activity of ACE, a key enzyme of the renin-angiotensin system, in the presence of 6-AHA and t-AMCHA ([I]50 10.0 ± 0.5 and 7.5 ± 0.4 mM, respectively) was found. A decrease in the ACE activity along with the growth of the fibrin monomer concentration was revealed. The data demonstrate that, along with endogenous mediated interaction between FS and RAS, relations based on the direct interactions of exogenous inhibitors of one system affecting the activities of components of another system can take place.  相似文献   

11.
Summary High molecular weight kininogen (HKg) and T kininogen (TKg) were detected and localized by immunocytochemistry in adult rat hypothalamus. In addition, kininogens were measured by their direct radioimmunoassay (RIA) or by indirect estimation of kinins released after trypsin hydrolysis and high pressure liquid chromatography (HPLC) separation of bradykinin (BK) and T kinin. A specific HKg immunoreactivity demonstrated with antibodies directed against the light chain (LC) of HKg was colocated with SRIF in neurons of hypothalamic periventricular area (PVA) projecting to external zone (ZE) of median eminence (ME). Heavy chain (HC) immunoreactivity which could be related to HKg or to low molecular weight kininogen (LKg) was detected in some other systems: i) parvocellular neurons of suprachiasmatic (SCN) and arcuate nuclei containing SRIF, ii) magnocellular neurons (mostly oxytocinergic) of paraventricular (PVN) and supraoptic (SON) nuclei, iii) neurons of dorsomedian and lateral hypothalamic areas. TKg immunostaining was restricted to magnocellular neurons of PVN, SON, accessory nuclei (mostly vasopressinergic) and to parvocellular neurons of SCN (vasopressinergic). TKg projections are directed towards the internal zone (ZI) of ME, but very few immunoreactive terminals are detectable in neurohypophysis. TKg staining parallels with vasopressin during water deprivation, and is undetectable in homozygous Brattleboro rats. In some magnocellular neurons, TKg and HC (related to HKg or LKg) are coexpressed. TKg, was also detected in hypothalamus and cerebellum extracts by direct RIA, and BK and T kinin were identified after trypsin hydrolysis. HKg and LKg can act as precursor of BK which can play a physiological role as releasing factor, neuromodulator — neurotransmitter, — or modulator of local microcirculation in hypothalamus. The three kininogens are also potent thiolprotease inhibitors which could modulate both the maturation processes of peptidic hormones and their inactivation and catabolism.  相似文献   

12.
Components of the adrenocortical system (adrenal and blood corticosteroid hormones and hepatic and renal 11β-hydroxysteroid dehydrogenase activity) and also activity of the most important enzyme of the renin-angiotensin system, tissue and blood angiotensin converting enzyme (ACE), have been investigated in dynamics of alloxan diabetes. The study has shown that the initial period of diabetes is characterized by activation of synthesis and secretion of adrenocortical hormones into blood. High blood glucose and glucocorticoid hormones increase activity of the renin-angiotensin system in lungs and decrease ACE secretion into blood. This is accompanied by a decrease of activity of the renin-angiotensin system in kidneys. Subsequent progression of diabetes resulted in impairments of physiologically determined correlations between the components of these systems. Development of experimental diabetes for 30 days was accompanied by sign of a decrease of the adrenal glucocorticoid function regardless of stable impairments of carbohydrate metabolism. Under these conditions increased adrenal and hepatic 11β-hydroxysteroid dehydrogenase activity may be responsible for maintenance of elevated levels of the main glucocorticoid in blood and tissues. Factor analysis revealed impairments in intersystem relationships between the adrenocortical and renin-angiotensin systems in experimental diabetes thus suggesting disintegration of regulatory systems.  相似文献   

13.
The aim of this study was to evaluate the components of the renin-angiotensin system in the periphery and in the central nervous system (CNS) of the spontaneous hypertensive rats (SHR). On the other hand, the norepinephrine (NE) content of the different areas and of the mesenteric artery were also measured. Sixteen SHR and 9 Wistar Kyoto (WKY) control animals were used at about 6 months of age. Blood and cerebrospinal fluid (CSF) samples were collected. The brain was dissected into several areas and the mesenteric artery was excised. Plasma renin activity (PRA), plasma angiotensinogen concentration (P1AoC), brain renin (RC) and angiotensinogen concentrations (AoC) were evaluated by radioimmunoassay. NE was determined in all the tissues by a fluorimetric technique. PRA, P1AoC and NE concentration in the mesenteric artery were similar in both groups. An increase in the NE content of the cerebellum was detected in the SHR without changes in the other areas of the CNS. AoC was decreased in the CSF and in the brain stem of the SHR animals. RC was evaluated in the hypothalamus, brain stem, cerebral cortex and cerebellum of the same strain of rats. These results seem to indicate the some alteration of the peptidergic system in the CNS is present in the hypertensive animals.  相似文献   

14.
15.
16.
The CNS renin-angiotensin system   总被引:4,自引:0,他引:4  
The renin-angiotensin system (RAS) is one of the best-studied enzyme-neuropeptide systems in the brain and can serve as a model for the action of peptides on neuronal function in general. It is now well established that the brain has its own intrinsic RAS with all its components present in the central nervous system. The RAS generates a family of bioactive angiotensin peptides with variable biological and neurobiological activities. These include angiotensin-(1–8) [Ang II], angiotensin-(3–8) [Ang IV], and angiotensin-(1–7) [Ang-(1–7)]. These neuroactive forms of angiotensin act through specific receptors. Only Ang II acts through two different high-specific receptors, termed AT1 and AT2. Neuronal AT1 receptors mediate the stimulatory actions of Ang II on blood pressure, water and salt intake, and the secretion of vasopressin. In contrast, neuronal AT2 receptors have been implicated in the stimulation of apoptosis and as being antagonistic to AT1 receptors. Among the many potential effects mediated by stimulation of AT2 are neuronal regeneration after injury and the inhibition of pathological growth. Ang-(1–7) mediates its antihypertensive effects by stimulating the synthesis and release of vasodilator prostaglandins and nitric oxide and by potentiating the hypotensive effects of bradykinin. New data concerning the roles of Ang IV and Ang-(1–7) in cognition also support the existence of complex site-specific interactions between multiple angiotensins and multiple receptors in the mediation of important central functions of the RAS. Thus, the RAS of the brain is involved not only in the regulation of blood pressure, but also in the modulation of multiple additional functions in the brain, including processes of sensory information, learning, and memory, and the regulation of emotional responses.  相似文献   

17.
Intracranial renin is a potent stimulus to sodium appetite and thirst, the effects being mediated by local generation of angiotensin II. Intakes are persistent and lead to fluid retention during the first 24 h (Avrith and Fitzsimons, 1983). Increased circulating renin after captopril treatment in adrenalectomized rats (Elfont and Fitzsimons, 1981), or in renal hypertension following partial inter-renal aortic ligation (Costales et al., 1982), also leads to increased intakes of 2.7% NaCl and water. Fluid intakes after aortic ligation were independent of the severity of hypertension produced by this procedure. In both the examples given, additional stimulation resulting from the hypovolaemia itself is required for the full expression of increased sodium appetite, but in both cases angiotensin makes a significant contribution to sodium appetite as well as thirst. Therefore, as has been shown for thirst, angiotensin is one of a number of factors that act together to cause increased sodium appetite in hypovolaemia.  相似文献   

18.
Summary The distribution of angiotensinogen containing cells was determined in the brain of rats using immunocytochemistry. Specific angiotensinogen immunoreactivity is demonstrated both in glial cells and neurons throughout the brain, except the neocortical and cerebellar territories. Positive neurons are easily and invariably detected in female brains, and haphazardly in male brain (sex hormone dependent). Angiotensinogen immunoreactivity in male brain neurons can be induced by water deprivation or binephrectomy in some areas and particularly in paraventricular nuclei. Finally, the highest concentrations of positive neurons are found in the anterior and lateral hypothalamus, preoptic area, amygdala and some well known nuclei of the mesencephalon and the brainstem.Our results confirm the wide distribution of angiotensinogen mRNA in the brain reported recently by Lynch et al. (1987). Thus the demonstration of angiotensinogen in neurons and glial cells allows a greater understanding of the biochemical and physiological data in accordance with multiple brain renin angiotensin systems.  相似文献   

19.
One of several factors affecting the secretion of renin by the kidneys is the sympathetic nervous system. The sympathetic input is excitatory and is mediated by beta-adrenergic receptors, which are probably located on the membranes of the juxtaglomerular cells. Stimulation of sympathetic areas in the medulla, midbrain and hypothalamus raises blood pressure and increases renin secretion, whereas stimulation of other parts of the hypothalamus decreases blood pressure and renin output. The centrally active alpha-adrenergic agonist clonidine decreases renin secretion, lowers blood pressure, inhibits ACTH and vasopressin secretion, and increases growth hormone secretion in dogs. The effects on ACTH and growth hormone are abolished by administration of phenoxybenzamine into the third ventricle, whereas the effect on blood pressure is abolished by administration of phenoxybenzamine in the fourth ventricle without any effect on the ACTH and growth hormone responses. Fourth ventricular phenoxybenzamine decreases but does not abolish the inhibitory effect of clonidine on renin secretion. Circulating angiotensin II acts on the brain via the area postrema to raise blood pressure and via the subfornical organ to increase water intake. Its effect on vasopressin secretion is debated. The brain contains a renin-like enzyme, converting enzyme, renin substrate, and angiotensin. There is debate about the nature and physiological significance of the angiotensin II-generating enzyme in the brain, and about the nature of the angiotensin I and angiotensin II that have been reported to be present in the central nervous system. However, injection of angiotensin II into the cerebral ventricles produces drinking, increased secretion of vasopressin and ACTH, and increased blood pressure. The same responses are produced by intraventricular renin. Angiotensin II also facilitates sympathetic discharge in the periphery, and the possibility that it exerts a similar action on the adrenergic neurons in the brain merits investigation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号