首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, using γ-irradiation treatment, we isolated a mutant strain of Klebsiella pneumoniae (named GEM167) that showed high-level ethanol production from glycerol. In the present study, in an effort to enhance ethanol production, we used a deletion of the lactate dehydrogenase gene to engineer a mutant strain incapable of lactate synthesis. In the ΔldhA mutant of GEM167, the production of ethanol was significantly increased from 21.5 g/l to 28.9 g/l and from 0.93 g/(l h) to 1.2 g/(l h). Introduction of the Zymomonas mobilis pdc and adhII genes encoding pyruvate decarboxylase and aldehyde dehydrogenase, respectively, further improved the ethanol production level from glycerol to 31.0 g/l; this is the highest level reported to date.  相似文献   

2.
Hu ZC  Zheng YG  Shen YC 《Bioresource technology》2011,102(14):7177-7182
1,3-Dihydroxyacetone can be produced by biotransformation of glycerol with glycerol dehydrogenase from Gluconobacter oxydans cells. Firstly, improvement the activity of glycerol dehydrogenase was carried out by medium optimization. The optimal medium for cell cultivation was composed of 5.6 g/l yeast extract, 4.7 g/l glycerol, 42.1 g/l mannitol, 0.5 g/l K2HPO4, 0.5 g/l KH2PO4, 0.1 g/l MgSO4·7H2O, and 2.0 g/l CaCO3 with the initial pH of 4.9. Secondly, an internal loop airlift bioreactor was applied for DHA production from glycerol by resting cells of G. oxydans ZJB09113. Furthermore, the effects of pH, aeration rate and cell content on DHA production and glycerol feeding strategy were investigated. 156.3 ± 7.8 g/l of maximal DHA concentration with 89.8 ± 2.4% of conversion rate of glycerol to DHA was achieved after 72 h of biotransformation using 10 g/l resting cells at 30 °C, pH 5.0 and 1.5 vvm of aeration rate.  相似文献   

3.
Feasibility of producing (R)-3-hydroxybutyric acid ((R)-3-HB) using wild type Azohydromonas lata and its mutants (derived by UV mutation) was investigated. A. lata mutant (M5) produced 780 mg/l in the culture broth when sucrose was used as the carbon source. M5 was further studied in terms of its specificity with various bioconversion substrates for production of (R)-3-HB. (R)-3-HB concentration produced in the culture broth by M5 mutant was 2.7-fold higher than that of the wild type strain when sucrose (3% w/v) and (R,S)-1,3-butanediol (3% v/v) were used as carbon source and bioconversion substrate, respectively. Bioconversion of resting cells (M5) with glucose (1% v/w), ethylacetoacetate (2% v/v), and (R,S)-1,3-butanediol (3% v/v), resulted in (R)-3-HB concentrations of 6.5 g/l, 7.3 g/l and 8.7 g/l, respectively.  相似文献   

4.
In order to increase the hydrogen yield from glucose, hydrogen production by immobilized Rhodopseudomonas faecalis RLD-53 using soluble metabolites from ethanol fermentation bacteria Ethanoligenens harbinense B49 was investigated. The soluble metabolites from dark-fermentation mainly were ethanol and acetate, which could be further utilized for photo-hydrogen production. Hydrogen production by B49 was noticeably affected by the glucose and phosphate buffer concentration. The maximum hydrogen yield (1.83 mol H2/mol glucose) was obtained at 9 g/l glucose. In addition, we found that the ratio of acetate/ethanol (A/E) increased with increasing phosphate buffer concentration, which is favorable to further photo-hydrogen production. The total hydrogen yield during dark- and photo-fermentation reached its maximum value (6.32 mol H2/mol glucose) using 9 g/l glucose, 30 mmol/l phosphate buffers and immobilized R. faecalis RLD-53. Results demonstrated that the combination of dark- and photo- fermentation was an effective and efficient process to improve hydrogen yield from a single substrate.  相似文献   

5.
In the biotechnological process, insufficient cofactor NADH and multiple by-products restrain the final titer of 1,3-propanediol (1,3-PD). In this study, 1,3-PD production was improved by engineering the 2,3-butanediol (2,3-BD) and formic acid pathways in integrative recombinant Klebsiella pneumoniae. The formation of 2,3-BD is catalysed by acetoin reductase (AR). An inactivation mutation of the AR in K. pneumoniae CF was generated by insertion of a formate dehydrogenase gene. Inactivation of AR and expression of formate dehydrogenase reduced 2,3-BD formation and improved 1,3-PD production. Fermentation results revealed that intracellular metabolic flux was redistributed pronouncedly. The yield of 1,3-PD reached 0.74 mol/mol glycerol in flask fermentation, which is higher than the theoretical yield. In 5 L fed-batch fermentation, the final titer and 1,3-PD yield of the K. pneumoniae CF strain reached 72.2 g/L and 0.569 mol/mol, respectively, which were 15.9% and 21.7% higher than those of the wild-type strain. The titers of 2,3-BD and formic acid decreased by 52.2% and 73.4%, respectively. By decreasing the concentration of all nonvolatile by-products and by increasing the availability of NADH, this study demonstrates an important strategy in the metabolic engineering of 1,3-PD production by integrative recombinant hosts.  相似文献   

6.
7.
A new solventogenic bacterium, strain GT6, was isolated from standing water sediment. 16S-rRNA gene analysis revealed that GT6 belongs to the heterogeneous Clostridium tetanomorphum group of bacteria exhibiting 99% sequence identity with C. tetanomorphum 4474T. GT6 can utilize a wide range of carbohydrate substrates including glucose, fructose, maltose, xylose and glycerol to produce mainly n-butanol without any acetone. Additional products of GT6 metabolism were ethanol, butyric acid, acetic acid, and trace amounts of 1,3-propanediol. Medium and substrate composition, and culture conditions such as pH and temperature influenced product formation. The major fermentation product from glycerol was n-butanol with a final concentration of up to 11.5 g/L. 3% (v/v) glycerol lead to a total solvent concentration of 14 g/L within 72 h. Growth was not inhibited by glycerol concentrations as high as 15% (v/v).  相似文献   

8.
In this study, an aldehyde dehydrogenase (ALDH) was over-expressed in Klebsiella pneumoniae for simultaneous production of 3-hydroxypropionic acid (3-HP) and 1,3-propanediol (1,3-PDO). Various genes encoding ALDH were cloned and expressed in K. pneumoniae, and expression of Escherichia colialdH resulted in the highest 3-HP titer in anaerobic cultures in shake flasks. Anaerobic fed-batch culture of this recombinant strain was further performed in a 5-L reactor. The 3-HP concentration and yield reached 24.4 g/L and 0.18 mol/mol glycerol, respectively, and at the same time 1,3-PDO achieved 49.3 g/L with a yield of 0.43 mol/mol in 24 h. The overall yield of 3-HP plus 1,3-PDO was 0.61 mol/mol. Over-expression of the E. coli AldH also reduced the yields of by-products except for lactate. This study demonstrated the possibility of simultaneous production of 3-HP and 1,3-PDO by K. pneumoniae under anaerobic conditions without supply of vitamin B12.  相似文献   

9.
The production of 1,3-propanediol, 2,3-butanediol and ethanol was studied, during cultivations of strain Klebsiella oxytoca FMCC-197 on biodiesel-derived glycerol based media. Different kinds of glycerol feedstocks and experimental conditions had an important impact upon the distribution of metabolic products; production of 1,3-propanediol was positively influenced by stable pH conditions and by the absence of N2 gas infusions throughout the fermentation. Thus, during batch bioreactor fermentations conducted at increasing glycerol concentrations, 1,3-propanediol at 41.3 g/L and yield ~47% (w/w) was achieved at initial glycerol concentration ~120 g/L. At even higher initial glycerol media (150 and 170 g/L), growth was not ceased, but 1,3-propanediol production declined. During fed-batch fermentation under optimal experimental conditions, 126 g/L of glycerol were converted into 50.1 g/L of 1,3-propanediol. In this experiment, also 25.2 g/L of ethanol (conversion yield ~20%, w/w) were formed. A batch-bioreactor culture was performed under non-sterilized conditions and the 1,3-propanediol production was almost equivalent to the sterilized process. Concerning 2,3-butanediol formation, the most detrimental parameter was the absence of N2 sparging and as a result, no 2,3-butanediol was produced. The presence of glucose as co-substrate seriously enhanced 2,3-butanediol production; when commercial glucose was employed as sole substrate, 32.1 g/L of 2,3-butanediol were formed.  相似文献   

10.
A mutant plant (Arabidopsis thaliana), sex1-1 (starch excess 1-1), accumulating high starch content in leaves was created to serve as better biomass feedstock for a H2-producing strain Clostridium butyricum CGS2, which efficiently utilizes starch for H2 production but cannot assimilate cellulosic materials. The starch content of the mutant plant increased to 10.67 mg/fresh weight, which is four times higher than that of wild type plant. Using sex1-1 mutant plant as feedstock, C. butyricum CGS2 could produce 490.4 ml/l of H2 with a H2 production rate of 32.9 ml/h/l. The H2 production performance appeared to increase with the increase in the concentration of mutant plant from 2.5 to 10 g/l. The highest H2 to plant biomass yield was nearly 49 ml/g for the mutant plant. This study successfully demonstrated the feasibility of using a starch-rich mutant plant for more effective bioH2 production with C. butyricum CGS2.  相似文献   

11.
A rapid empirical assay is presented for assessing the phenotypic stability of continuous cultures of recombinant bacteria containing transposed pdc and adh genes for ethanol production. The method measures spectrophotometrically the rate of colour formation when cells oxidize added ethanol to acetaldehyde in the presence of Schiff’s reagent. During chemostat cultures of the recombinant ethanologen Escherichia coli KO11 on 20 g/l glucose, assay activities were stable and high at ca 8 × 10−4 ΔOD540/(s.OD550), reflecting the high, stable ethanol yield (ca 95%). On 20 g/l and 50 g/l xylose, ethanol yields declined rapidly to about 60% and this was closely mirrored by the assay activities which fell to ca 1.5 ΔOD540/(s.OD550), only slightly higher than those measured for the parent strain. Typically taking only about an hour to perform, the assay provides a faster means of gauging the phenotypic stability of ethanol production than is possible by conventional methods.  相似文献   

12.
A novel approach to trigger lipid accumulation and/or citrate production in vivo through the inactivation of the 2-methyl-citrate dehydratase in Yarrowia lipolytica was developed. In nitrogen-limited cultures with biodiesel-derived glycerol utilized as substrate, the Δphd1 mutant (JMY1203) produced 57.7 g/L of total citrate, 1.6-fold more than the wild-type strain, with a concomitant glycerol to citrate yield of 0.91 g/g. Storage lipid in cells increased at the early growth stages, suggesting that inactivation of the 2-methyl-citrate dehydratase would mimic nitrogen limitation. Thus, a trial of JMY1203 strain was performed with glycerol under nitrogen-excess conditions. Compared with the equivalent nitrogen-limited culture, significant quantities of lipid (up to ∼31% w/w in dry weight, 1.6-fold higher than the nitrogen-limited experiment) were produced. Also, non-negligible quantities of citric acid (up to ∼26 g/L, though 0.57-fold lower than the nitrogen-limited experiment) were produced, despite remarkable nitrogen presence into the medium, indicating the construction of phenotype that constitutively accumulated lipid and secreted citrate in Y. lipolytica during growth on waste glycerol utilized as substrate.  相似文献   

13.
In this study, 1,3-propanediol (1,3-PDO) was produced from crude glycerol through the fermentation of resting and immobilized cells of a Klebsieblla sp. HE-2 strain isolated from a hydrogen producing anaerobic sludge collected in Southern Taiwan. The Klebsieblla sp. HE-2 cells were first grown on a fermentation medium (FM medium). The medium was then switched to resting-cell medium (RC medium) tailored to improve the production of 1,3-PDO. Using a glycerol-amended FM medium, the soluble metabolites consisted of 1,3-PDO, 2,3-butanediol, and ethanol and byproducts (such as acetic acid and lactic acid) at a content of 18, 28, 49, and 5% (of total soluble metabolites), respectively. When the culture was transferred from the FM medium to the RC medium, the concentration of 1,3-PDO was doubled from 5 g/L to 10 g/L. Using immobilized cells of Klebsieblla sp. HE-2 greatly improved the operational stability and reusability of the cells, as the immobilized cells could be used for 6 cycles without significant activity loss. The immobilized cells were able to directly utilize non-pretreated crude glycerol obtained from a local biodiesel manufacturing plant for 1,3-PDO production with an efficiency comparable to that obtained from using pure glycerol.  相似文献   

14.
The acetolactate synthase (als)-deficient mutant of Klebsiella pneumoniae fails to produce 1,3-propanediol (1,3-PD) or 2,3-butanediol (2,3-BD), and is defective in glycerol metabolism. In an effort to recover production of the industrially valuable 1,3-PD, we introduced the Zymomonas mobilis pyruvate decarboxylase (pdc) and aldehyde dehydrogenase (aldB) genes into the als-deficient mutant to activate the conversion of pyruvate to ethanol. Heterologous expression of pdc and aldB efficiently recovered glycerol metabolism in the 2,3-BD synthesis-defective mutant, enhancing the production of 1,3-PD by preventing the accumulation of pyruvate. Production of 1,3-PD in the pdc- and aldB-expressing als-deficient mutant was further enhanced by increasing the aeration rate. This system uses metabolic engineering to produce 1,3-PD while minimizing the generation of 2,3-BD, offering a breakthrough for the industrial production of 1,3-PD from crude glycerol.  相似文献   

15.
Kang Z  Du L  Kang J  Wang Y  Wang Q  Liang Q  Qi Q 《Bioresource technology》2011,102(11):6600-6604
The strategic design of this study aimed at producing succinate and polyhydroxyalkanoate (PHA) from substrate mixture of glycerol/glucose and fatty acid in Escherichia coli. To accomplish this, an E. coli KNSP1 strain derived from E. coli LR1110 was constructed by deletions of ptsG, sdhA and pta genes and overexpression of phaC1 from Pseudomonas aeruginosa. Cultivation of E. coli KNSP1 showed that this strain was able to produce 21.07 g/L succinate and 0.54 g/L PHA (5.62 wt.% of cell dry weight) from glycerol and fatty acid mixture. The generated PHA composed of 58.7 mol% 3-hydroxyoctanoate (3HO) and 41.3 mol% 3-hydroxydecanoate (3HD). This strain would be useful for complete utilization of byproducts glycerol and fatty acid of biodiesel production process.  相似文献   

16.
The thermotolerant yeast strain isolated from sugarcane juice through enrichment technique was identified as a strain of Pichiakudriavzevii (Issatchenkiaorientalis) through molecular characterization. The P. kudriavzevii cells adapted to galactose medium produced about 30% more ethanol from sugarcane juice than the non-adapted cells. The recycled cells could be used for four successive cycles without a significant drop in ethanol production. Fermentation in a laboratory fermenter with galactose adapted P. kudriavzevii cells at 40 °C resulted in an ethanol concentration and productivity of 71.9 g L−1 and 4.0 g L−1 h−1, respectively from sugarcane juice composed of about 14% (w/v) sucrose, 2% (w/v) glucose and 1% (w/v) fructose. In addition to ethanol, 3.30 g L−1 arabitol and 4.19 g L−1 glycerol were also produced, whereas sorbitol and xylitol were not formed during fermentation. Use of galactose adapted P. kudriavzevii cells for ethanol production from sugarcane juice holds potential for scale-up studies.  相似文献   

17.
This work describes the production of (R,R)-2,3-butanediol in Escherichia coli using glycerol by metabolic engineering approaches. The introduction of a synthetic pathway converting pyruvate to (R,R)-2,3-butanediol into wild-type E. coli strain BW25113 led to the production of (R,R)-2,3-butanediol at a titer of 3.54?g/l and a yield of 0.131?g product/g glycerol (26.7?% of theoretical maximum) with acetate (around 3.00?g/l) as the dominant by-product. We therefore evaluated the impacts of deleting the genes ackA or/and poxB that are responsible for the major by-product, acetate. This increased production of (R,R)-2,3-butanediol to 9.54?g/l with a yield of 0.333?g product/g glycerol (68.0?% of theoretical maximum) in shake flask studies. The utilization of low-priced crude glycerol to produce value-added chemicals is of great significance to the economic viability of the biodiesel industry.  相似文献   

18.
Simultaneous production of citric acid (CA) and invertase by Yarrowia lipolytica A-101-B56-5 (SUC+ clone) growing from sucrose, mixture of glucose and fructose, glucose or glycerol was investigated. Among the tested substrates the highest concentration of CA was reached from glycerol (57.15 g/L) with high yield (YCA/S = 0.6 g/g). When sucrose was used, comparable amount of CA was secreted (45 g/L) with slightly higher yield (YCA/S = 0.643 g/g). In all cultures amount of isocitrate (ICA) was below 2% of total citrates. Considering invertase production, the best carbon source appeared to be sucrose (72 380 U/L). The highest yield of CA and invertase biosynthesis calculated for 1 g of biomass was obtained for cells growing from glycerol (9.9 g/g and 4325 U/g, respectively). Concentrates of extra- and intracellular invertase of the highest activity were obtained from sucrose as substrate (0.5 and 1.8 × 106 U/L, respectively).  相似文献   

19.
Lactobacillus panis PM1 has the ability to produce 1,3-propanediol (1,3-PDO) from thin stillage (TS), which is the major waste material after bioethanol production, and is therefore of significance. However, the fact that L. panis PM1 cannot use glycerol as a sole carbon source presents a considerable problem in terms of utilization of this strain in a wide range of industrial applications. Accordingly, L. panis PM1 was genetically engineered to directly utilize TS as a fermentable substrate for the production of valuable platform chemicals without the need for exogenous nutrient supplementation (e.g., sugars and nitrogen sources). An artificial glycerol-oxidative pathway, comprised of glycerol facilitator, glycerol kinase, glycerol 3-phosphate dehydrogenase, triosephosphate isomerase, and NADPH-dependent aldehyde reductase genes of Escherichia coli, was introduced into L. panis PM1 in order to directly utilize glycerol for the production of energy for growth and value-added chemicals. A pH 6.5 culture converted glycerol to mainly lactic acid (85.43 mM), whereas a significant amount of 1,3-propanediol (59.96 mM) was formed at pH 7.5. Regardless of the pH, ethanol (82.16 to 83.22 mM) was produced from TS fermentations, confirming that the artificial pathway metabolized glycerol for energy production and converted it into lactic acid or 1,3-PDO and ethanol in a pH-dependent manner. This study demonstrates the cost-effective conversion of TS to value-added chemicals by the engineered PM1 strain cultured under industrial conditions. Thus, application of this strain or these research findings can contribute to reduced costs of bioethanol production.  相似文献   

20.
The performance of Saccharomyces cerevisiae MBG3964, a strain able to tolerate >18% v/v ethanol, was compared to leading industrial ethanol strain, Fermentis Ethanol Red, under high gravity corn mash fermentation conditions. Compared to the industrial ethanol strain, MBG3964 gave increased alcohol yield (140 g L−1 vs. 126 g L−1), lower residual sugar (4 g L−1 vs. 32 g L−1), and lower glycerol (11 g L−1 vs. 12 g L−1). After 72 h fermentation, MBG3964 showed about 40% viability, whereas the control yeast was only about 3% viable. Based on modelling, the higher ethanol tolerant yeast could increase the profitability of a corn-ethanol plant and help it remain viable through higher production, lower unit heating requirements and extra throughput. A typical 50 M gal y−1 dry mill ethanol plant that sells dried distiller’s grain could potentially increase its profit by nearly $US3.4 M y−1 due solely to the extra yield, and potentially another $US4.1 M y−1 if extra throughput is possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号