首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bacteria and Archaea from the meromictic Lake Pavin were analyzed in samples collected along a vertical profile in the anoxic monimolimnion and were compared to those in samples from the oxic mixolimnion. Nine targeted 16S rRNA oligonucleotide probes were used to assess the distribution of Bacteria and Archaea and to investigate the in situ occurrence of sulfate-reducing bacteria and methane-producing Archaea involved in the terminal steps of the anaerobic degradation of organic material. The diversity of the complex microbial communities was assessed from the 16S rRNA polymorphisms present in terminal restriction fragment (TRF) depth patterns. The densities of the microbial community increased in the anoxic layer, and Archaea detected with probe ARCH915 represented the largest microbial group in the water column, with a mean Archaea/Eubacteria ratio of 1.5. Terminal restriction fragment length polymorphism (TRFLP) analysis revealed an elevated archaeal and bacterial phylotype richness in anoxic bottom-water samples. The structure of the Archaea community remained rather homogeneous, while TRFLP patterns for the eubacterial community revealed a heterogeneous distribution of eubacterial TRFs.  相似文献   

2.
The initial interaction between microorganisms and substrata is mediated by physicochemical forces, which in turn originate from the physicochemical surface properties of both interacting phases. In this context, we have determined the physicochemical proprieties of all microorganisms isolated from cedar wood decay in an old monument at the Medina of Fez-Morocco. The cedar wood was also assayed in terms of hydrophobicity and electron donor-electron acceptor (acid-base) properties. Investigations of these two aspects were performed by contact angles measurements via sessile drop technique. Except Bacillus subtilis strain (Giwi < 0), all strains studied showed positive values of the degree of hydrophobicity (Giwi > 0) and can therefore be considered as hydrophilic while cedar wood revealed a hydrophobic character (Giwi = 58.81 mJ m−2). All microbial strains were predominantly electron donor. The results show also that all strains were weak electron acceptors. Cedar wood exhibits a weak electron donor/acceptor character. Based on the thermodynamic approach, the Lifshitz-van der Waals interaction free energy, the acid-basic interactions free energy, the total interaction free energy between the microbial cells and six different wood species (cedar, oak, beech, ash, pine and teak) in aqueous media was calculated and used to predict which microbial strains have a higher ability to adhere to wooden surfaces. Except of weak wood, for all the situations studied, generalizations concerning the adhesion of the microbiata on wood species cannot be made and the microbial adhesion on wooden substrata was dependent on wood species and microorganisms tested.  相似文献   

3.
The aim of this study was to propose a method to improve the biofilm growth on different polymer materials by modifying their surface properties. The ability of two aerobic bacteria strains: Pseudomonas aeruginosa O1 and Bacillus subtilis CIP 5265 to grow on various non-coated and coated polymer materials were investigated. A layer of polymethylmethacrylate and powdered activated carbon (PMMA/PAC) was used to improve the microbial adhesion dynamics. The substratum and cell surface properties were characterized using contact angle measurements. Fluorescent microscopy and SEM were used to observe the support and the biofilm growth. It was determined that better results can be obtained increasing the difference between the surface free energies of the support and the bacteria. It was found that supports with modified surface show higher biofilm development rate and better surface colonization. The influence of the surface free energy on the detachment force and correspondingly on the biofilm formation was demonstrated.  相似文献   

4.
Carbonate caves represent subterranean ecosystems that are largely devoid of phototrophic primary production. In semiarid and arid regions, allochthonous organic carbon inputs entering caves with vadose-zone drip water are minimal, creating highly oligotrophic conditions; however, past research indicates that carbonate speleothem surfaces in these caves support diverse, predominantly heterotrophic prokaryotic communities. The current study applied a metagenomic approach to elucidate the community structure and potential energy dynamics of microbial communities, colonizing speleothem surfaces in Kartchner Caverns, a carbonate cave in semiarid, southeastern Arizona, USA. Manual inspection of a speleothem metagenome revealed a community genetically adapted to low-nutrient conditions with indications that a nitrogen-based primary production strategy is probable, including contributions from both Archaea and Bacteria. Genes for all six known CO2-fixation pathways were detected in the metagenome and RuBisCo genes representative of the Calvin–Benson–Bassham cycle were over-represented in Kartchner speleothem metagenomes relative to bulk soil, rhizosphere soil and deep-ocean communities. Intriguingly, quantitative PCR found Archaea to be significantly more abundant in the cave communities than in soils above the cave. MEtaGenome ANalyzer (MEGAN) analysis of speleothem metagenome sequence reads found Thaumarchaeota to be the third most abundant phylum in the community, and identified taxonomic associations to this phylum for indicator genes representative of multiple CO2-fixation pathways. The results revealed that this oligotrophic subterranean environment supports a unique chemoautotrophic microbial community with potentially novel nutrient cycling strategies. These strategies may provide key insights into other ecosystems dominated by oligotrophy, including aphotic subsurface soils or aquifers and photic systems such as arid deserts.  相似文献   

5.
Hydrothermal venting and the formation of carbonate chimneys in the Lost City hydrothermal field (LCHF) are driven predominantly by serpentinization reactions and cooling of mantle rocks, resulting in a highly reducing, high-pH environment with abundant dissolved hydrogen and methane. Phylogenetic and terminal restriction fragment length polymorphism analyses of 16S rRNA genes in fluids and carbonate material from this site indicate the presence of organisms similar to sulfur-oxidizing, sulfate-reducing, and methane-oxidizing Bacteria as well as methanogenic and anaerobic methane-oxidizing Archaea. The presence of these metabolic groups indicates that microbial cycling of sulfur and methane may be the dominant biogeochemical processes active within this ultramafic rock-hosted environment. 16S rRNA gene sequences grouping within the Methylobacter and Thiomicrospira clades were recovered from a chemically diverse suite of carbonate chimney and fluid samples. In contrast, 16S rRNA genes corresponding to the Lost City Methanosarcinales phylotype were found exclusively in high-temperature chimneys, while a phylotype of anaerobic methanotrophic Archaea (ANME-1) was restricted to lower-temperature, less vigorously venting sites. A hyperthermophilic habitat beneath the LCHF may be reflected by 16S rRNA gene sequences belonging to Thermococcales and uncultured Crenarchaeota identified in vent fluids. The finding of a diverse microbial ecosystem supported by the interaction of high-temperature, high-pH fluids resulting from serpentinization reactions in the subsurface provides insight into the biogeochemistry of what may be a pervasive process in ultramafic subseafloor environments.  相似文献   

6.
Four different thermodynamic approaches were compared on their usefulness to predict correctly the adhesion of two fouling microorganisms from dairy processing to various solid substrata. The surface free energies of the interacting surfaces were derived from measured contact angles according to:
1.  The equation of state;
2.  The geometric-mean equation using dispersion and polar components neglecting spreading pressures;
3.  The geometric-mean equation using dispersion and polar components while accounting for spreading pressures; and
4.  The Lifshitz-van der Waals/Acid-Base approach.
All approaches yielded similar surface free energies for the low energy surfaces. Application of approach 1 with different liquids did not give consistent values for the high surface free energy substrata. The dispersion or Lifshiftz-van der Waals components were nearly equal for approaches 2, 3, and 4; however, the polar or acid-base components differed greatly according to the approach followed. Approaches 1 and 2 correctly predicted that adhesion should occur, although the trend with respect to the various solid substrata was opposite the one experimentally observed, as was also the trend predicted by approach 4. Only approach 3 correctly predicted the observed bacterial adhesion with respect to the various solid substrata. In approach 3 and 4, adhesion was frequently found, despite a positive free energy of adhesion. This was attributed to either possible local attractive electrostatic interactions, inadequate weighing of surface free energy components in the calculation of free energies of adhesion, or to additional forces arising from structured interfacial water.  相似文献   

7.
Anaerobic co-digestion of food waste and biosolids was carried out in sequential batch and single-stage batch systems in four treatments. Methane yield, which was used as a functional process parameter, differed between treatments, with the single-stage batch system generating lower volumes than the sequential batch systems. Volatile fatty acid (VFA) concentrations and pH in the leachate also differed between treatments. VFA concentrations were highest and methane generation yields lowest in the single-stage batch system in comparison to the sequential batch systems. The anaerobic microbial community structure of the domains Archaea and Bacteria, determined by denaturing gradient gel electrophoresis, differed between treatments and was correlated to a number of environmental parameters such as pH, VFA concentration and methane generation rate. Methane generation rate was significantly correlated to the community structure of Bacteria but not Archaea. This indicated that the substrates that are produced by acetogens (Bacteria) are important for the growth and community structure of the methanogens (Archaea). Community structure of Archaea changed over time, but this had no observable effect on functional ability based on methane yields. Microbial diversity (H′) was shown to be not important in developing a functionally successful anaerobic microbial community.  相似文献   

8.
Oligonucleotide probes were used to study the structure of anaerobic granular biofilm originating from a pentachlorophenol-fed upflow anaerobic sludge bed reactor augmented with Desulfitobacterium frappieri PCP-1. Fluorescence in situ hybridization demonstrated successful colonization of anaerobic granules by strain PCP-1. Scattered microcolonies of strain PCP-1 were detected on the biofilm surface after 3 weeks of reactor operation, and a dense outer layer of strain PCP-1 was observed after 9 weeks. Hybridization with probes specific for Eubacteria and Archaea probes showed that Eubacteria predominantly colonized the outer layer, while Archaea were observed in the granule interior. Mathematical simulations showed a distribution similar to that observed experimentally when using a specific growth rate of 2.2 day−1 and a low bacterial diffusion of 10−7 dm2 day−1. Also, the simulations showed that strain PCP-1 proliferation in the outer biofilm layer provided excellent protection of the biofilm from pentachlorophenol toxicity.  相似文献   

9.
A better understanding of the microbial ecology of anaerobic processes during transitional states is important to achieve a long-term efficient reactor operation. Five wastes (pig manure, biodiesel residues, ethanol stillage, molasses residues, and fish canning waste) were treated in five anaerobic reactors under the same operational conditions. The influence of the type of substrate and the effect of modifying feeding composition on the microbial community structure was evaluated. The highest biomethanation efficiency was observed in reactors fed with fish canning waste, which also presented the highest active archaeal population and the most diverse microbial communities. Only two Bacteria populations could be directly related to a particular substrate: Ilyobacter with biodiesel residues and Trichococcus with molasses residues. Results showed that the time to achieve steady-state performance after these transitional states was not dependent on the substrate treated. But reactors needed more time to handle the stress conditions derived from the start-up compared to the adaptation to a new feeding. Cluster analyses showed that the type of substrate had a clear influence on the microbiology of the reactors, and that segregation was related to the reactors performance. Finally, we conclude that the previous inoculum history treating solid waste and higher values of active Archaea population are important factors to face a successful change in substrate not entailing stability failure.  相似文献   

10.
The impact of substratum surface property change on biofilm community structure was investigated using laboratory biological aerated filter (BAF) reactors and molecular microbial community analysis. Two substratum surfaces that differed in surface properties were created via surface coating and used to develop biofilms in test (modified surface) and control (original surface) BAF reactors. Microbial community analysis by 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis (DGGE) showed that the surface property change consistently resulted in distinct profiles of microbial populations during replicate reactor start-ups. Pyrosequencing of the bar-coded 16S rRNA gene amplicons surveyed more than 90% of the microbial diversity in the microbial communities and identified 72 unique bacterial species within 19 bacterial orders. Among the 19 orders of bacteria detected, Burkholderiales and Rhodocyclales of the Betaproteobacteria class were numerically dominant and accounted for 90.5 to 97.4% of the sequence reads, and their relative abundances in the test and control BAF reactors were different in consistent patterns during the two reactor start-ups. Three of the five dominant bacterial species also showed consistent relative abundance changes between the test and control BAF reactors. The different biofilm microbial communities led to different treatment efficiencies, with consistently higher total organic carbon (TOC) removal in the test reactor than in the control reactor. Further understanding of how surface properties affect biofilm microbial communities and functional performance would enable the rational design of new generations of substrata for the improvement of biofilm-based biological treatment processes.  相似文献   

11.
Archaea are widely distributed and yet are most often not the most abundant members of microbial communities. Here, we document a transition from Bacteria- to Archaea-dominated communities in microbial biofilms sampled from the Richmond Mine acid mine drainage (AMD) system (∼pH 1.0, ∼38°C) and in laboratory-cultivated biofilms. This transition occurs when chemoautotrophic microbial communities that develop at the air-solution interface sink to the sediment-solution interface and degrade under microaerobic and anaerobic conditions. The archaea identified in these sunken biofilms are from the class Thermoplasmata, and in some cases, the highly divergent ARMAN nanoarchaeal lineage. In several of the sunken biofilms, nanoarchaea comprise 10 to 25% of the community, based on fluorescent in situ hybridization and metagenomic analyses. Comparative community proteomic analyses show a persistence of bacterial proteins in sunken biofilms, but there is clear evidence for amino acid modifications due to acid hydrolysis. Given the low representation of bacterial cells in sunken biofilms based on microscopy, we infer that hydrolysis reflects proteins derived from lysed cells. For archaea, we detected ∼2,400 distinct proteins, including a subset involved in proteolysis and peptide uptake. Laboratory cultivation experiments using complex carbon substrates demonstrated anaerobic enrichment of Ferroplasma and Aplasma coupled to the reduction of ferric iron. These findings indicate dominance of acidophilic archaea in degrading biofilms and suggest that they play roles in anaerobic nutrient cycling at low pH.  相似文献   

12.
Four previously isolated methanogenic anaerobic consortia, which were originally cultivated on a cellulose-containing substrate (filter paper), were used as inocula for the anaerobic conversion of the biomass of Anabaena variabilis into biogas at 55°C. The cumulative methane yield in the biogas produced by the most active consortia reached 64%. However, the biotransformation was only efficient in the course of the single inoculation and pretreatment of the cyanobacterial biomass by its concentration and freeze-thawing. The DGGE analysis of the structure of the selected microbial consortia, cultivated on the filter paper, revealed qualitative variations in the biodiversity of predominant Bacteria, showing differences in band number and intensity. The composition of methanogenic Archaea in these consortia was similar, with the presence of the genera Methanoculleus and Methanosarcina. The efficiency of the microbial consortia selection, and the role of the various microbial trophic groups in bioconversion of the substrates, such as cellulose and the biomass of phototrophic microorganisms are discussed.  相似文献   

13.
This study examined whether the abundance and expression of microbial 16S rRNA genes were associated with elemental concentrations and substrate conversion biokinetics in 20 full‐scale anaerobic digesters, including seven municipal sewage sludge (SS) digesters and 13 industrial codigesters. SS digester contents had higher methane production rates from acetate, propionate and phenyl acetate compared to industrial codigesters. SS digesters and industrial codigesters were distinctly clustered based on their elemental concentrations, with higher concentrations of NH3‐N, Cl, K and Na observed in codigesters. Amplicon sequencing of 16S rRNA genes and reverse‐transcribed 16S rRNA revealed divergent grouping of microbial communities between mesophilic SS digesters, mesophilic codigesters and thermophilic digesters. Higher intradigester distances between Archaea 16S rRNA and rRNA gene profiles were observed in mesophilic codigesters, which also had the lowest acetate utilization biokinetics. Constrained ordination showed that microbial rRNA and rRNA gene profiles were significantly associated with maximum methane production rates from acetate, propionate, oleate and phenyl acetate, as well as concentrations of NH3‐N, Fe, S, Mo and Ni. A co‐occurrence network of rRNA gene expression confirmed the three main clusters of anaerobic digester communities based on active populations. Syntrophic and methanogenic taxa were highly represented within the subnetworks, indicating that obligate energy‐sharing partnerships play critical roles in stabilizing the digester microbiome. Overall, these results provide new evidence showing that different feed substrates associate with different micronutrient compositions in anaerobic digesters, which in turn may influence microbial abundance, activity and function.  相似文献   

14.
The most significant variable in anaerobic digestion in an anaerobic fluidized-bed reactor (AFBR) is the selection of the support medium for microbial adhesion. Using eight kinds of media, cristobalite, zeolite, vermiculite, granular active carbon, granulated clay, pottery stone, volcanic ash, and slag, we examined the physical properties of each medium, microbial adhesion, loading rates of organic matter and removal efficiencies in an AFBR. It appeared that good performance as a support medium was associated with rougher surfaces rather than with larger surface areas, because, although cristobalite had a much smaller surface area (50 m2/g) than that of the granular active carbon (1,125 m2/g), it had a very rough surface with many tubercular processes, by which a maximum loading rate of TOC of 8 g/l·d could be achieved in a synthetic wastewater. Moreover, it appeared to be important that the surface of the medium has a positive charge judging from the difference in performance between cristobalite and zeolite. That is, the two media were charged positively and negatively at pH 7, respectively. As a result, microorganisms, charged negatively in general, could adhere more easily to cristobalite than to zeolite, which was confirmed under a scanning electron microscope (SEM) and by amounts of microbial cells adhering (85 mg cells/g). The upflow linear velocity to allow twice the expanded volume (defined as the ratio of the expanded height to the static height) was decreased to half (0.13 cm/s) by microbial adhesion. In conclusion, a suitable medium for adherence of microorganisms in AFBR should have a rough and positively charged surface rather than a large surface area.  相似文献   

15.
Anaerobic digestion is a complex process involving hydrolysis, acidogenesis, acetogenesis and methanogenesis. The separation of the hydrogen-yielding (dark fermentation) and methane-yielding steps under controlled conditions permits the production of hydrogen and methane from biomass. The characterization of microbial communities developed in bioreactors is crucial for the understanding and optimization of fermentation processes. Previously we developed an effective system for hydrogen production based on long-term continuous microbial cultures grown on sugar beet molasses. Here, the acidic effluent from molasses fermentation was used as the substrate for methanogenesis in an upflow anaerobic sludge blanket bioreactor. This study focused on the molecular analysis of the methane-yielding community processing the non-gaseous products of molasses fermentation. The substrate for methanogenesis produces conditions that favor the hydrogenotrophic pathway of methane synthesis. Methane production results from syntrophic metabolism whose key process is hydrogen transfer between bacteria and methanogenic Archaea. High-throughput 454 pyrosequencing of total DNA isolated from the methanogenic microbial community and bioinformatic sequence analysis revealed that the domain Bacteria was dominated by Firmicutes (mainly Clostridia), Bacteroidetes, δ- and γ-Proteobacteria, Cloacimonetes and Spirochaetes. In the domain Archaea, the order Methanomicrobiales was predominant, with Methanoculleus as the most abundant genus. The second and third most abundant members of the Archaeal community were representatives of the Methanomassiliicoccales and the Methanosarcinales. Analysis of the methanogenic sludge by scanning electron microscopy with Energy Dispersive X-ray Spectroscopy and X-ray diffraction showed that it was composed of small highly heterogeneous mineral-rich granules. Mineral components of methanogenic granules probably modulate syntrophic metabolism and methanogenic pathways. A rough functional analysis from shotgun data of the metagenome demonstrated that our knowledge of methanogenesis is poor and/or the enzymes responsible for methane production are highly effective, since despite reasonably good sequencing coverage, the details of the functional potential of the microbial community appeared to be incomplete.  相似文献   

16.
Rock varnish from Arizona's Whipple Mountains harbors a microbial community containing about 108 microorganisms g−1 of varnish. Analyses of varnish phospholipid fatty acids and rRNA gene libraries reveal a community comprised of mostly Proteobacteria but also including Actinobacteria, eukaryota, and a few members of the Archaea. Rock varnish represents a significant niche for microbial colonization.  相似文献   

17.
For the analysis of microbial community structure based on 16S rDNA sequence diversity, sensitive and robust PCR amplification of 16S rDNA is a critical step. To obtain accurate microbial composition data, PCR amplification must be free of bias; however, amplifying all 16S rDNA species with equal efficiency from a sample containing a large variety of microorganisms remains challenging. Here, we designed a universal primer based on the V3-V4 hypervariable region of prokaryotic 16S rDNA for the simultaneous detection of Bacteria and Archaea in fecal samples from crossbred pigs (Landrace×Large white×Duroc) using an Illumina MiSeq next-generation sequencer. In-silico analysis showed that the newly designed universal prokaryotic primers matched approximately 98.0% of Bacteria and 94.6% of Archaea rRNA gene sequences in the Ribosomal Database Project database. For each sequencing reaction performed with the prokaryotic universal primer, an average of 69,330 (±20,482) reads were obtained, of which archaeal rRNA genes comprised approximately 1.2% to 3.2% of all prokaryotic reads. In addition, the detection frequency of Bacteria belonging to the phylum Verrucomicrobia, including members of the classes Verrucomicrobiae and Opitutae, was higher in the NGS analysis using the prokaryotic universal primer than that performed with the bacterial universal primer. Importantly, this new prokaryotic universal primer set had markedly lower bias than that of most previously designed universal primers. Our findings demonstrate that the prokaryotic universal primer set designed in the present study will permit the simultaneous detection of Bacteria and Archaea, and will therefore allow for a more comprehensive understanding of microbial community structures in environmental samples.  相似文献   

18.
Conidia of the plant pathogenic fungus Botrytis cinerea adhered to tomato cuticle and to certain other substrata immediately upon hydration. This immediate adhesion occurred with both living and nonliving conidia. Adhesion was not consistently influenced by several lectins, sugars, or salts or by protease treatment, but it was strongly inhibited by ionic or nonionic detergents. With glass and oxidized polyethylene, substrata whose surface hydrophobicities could be conveniently varied, there was a direct relationship between water contact angle and percent adhesion. Immediate adhesion did not involve specific conidial attachment structures, although the surfaces of attached conidia were altered by contact with a substratum. Freshly harvested conidia were very hydrophobic, with more than 97% partitioning into the organic layer when subjected to a phase distribution test. Percent adhesion of germinated conidia was larger than that of nongerminated conidia. Evidence suggests that immediate adhesion of conidia of B. cinerea depends, at least in part, on hydrophobic interactions between the conidia and substratum.  相似文献   

19.
Four different thermodynamic approaches were compared on their usefulness to predict correctly the adhesion of two fouling microogranisms from dairy processing to various solid substrata. The surface free energies of the interacting surfaces were derived from measured contact angles according to: 1. The equation of state; 2. The geometric-mean equation using dispersion and polar components neglecting spreading pressures; 3. The geometric-mean equation using dispersion and polar components while accounting for spreading pressures; and 4. The Lifshitz-van der Waals/Acid-Base approach. All approaches yielded similar surface free energies for the low energy surfaces. Application of approach 1 with different liquids did not give consistent values for the high surface free energy substrata. The dispersion or Lifshiftz-van der Waals components were nearly equal for approaches 2, 3, and 4; however, the polar or acid-base components differed greatly according to the approach followed. Approaches 1 and 2 correctly predicted that adhesion should occur, although the trend with respect to the various solid substrata was opposite the one experimentally observed, as was also the trend predicted by approach 4. Only approach 3 correctly predicted the observed bacterial adhesion with respect to the various solid substrata. In approach 3 and 4, adhesion was frequently found, despite a positive free energy of adhesion. This was attributed to either possible local attractive electrostatic interactions, inadequate weighing of surface free energy components in the calculation of free energies of adhesion, or to additional forces arising from structured interfacial water.  相似文献   

20.
Abstract The reversibility of adhesion of 3 representative strains of oral streptococci from a phosphate-buffered suspension onto 5 different solid substrata was studied.
Streptococcus mitis T9 (surface free energy γb= 39 mJ · m−2). Streptococcus sanguis CH3 (γb= 95 mJ · m−2) and Streptococcus mutans NS (γb= 117 mJ · m−2) were selected on basis of their surface free energy. Solid substrata were employed with a surface free energy γs ranging from 20 mJ · m−2 for polytetrafluorethylene to 109 mJ · m−2 for glass. Bacterial suspensions containing 2.5 × 109 cells per ml were incubated with 2 samples of each substratum. After 1 h the number of adhering bacteria was evaluated on one sample, while the second sample was kept for another hour at a 10-fold lower bacterial concentration. Bacteria with a low surface free energy desorbed only from substrata with a high surface free energy, while bacteria with a high surface free energy desorbed from substrata with a low surface free energy. Thus low energy bacterial strains adhered reversibly to high energy substrata and vice versa. Similar observations were made with polystyrene particles. Calculation of the interfacial free energy of adhesion (Δ F adh) for each bacterial strain as well as for the polystyrene particles showed that a reversible adhesion was associated with a positive Δ F adh, denoting unfavourable adhesion conditions upon a thermodynamic basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号