首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
As genetic information is transmitted through successive generations, it passes between pluripotent cells in the early embryo and germ cells in the developing foetus and adult animal. Tex19.1 encodes a protein of unknown function, whose expression is restricted to germ cells and pluripotent cells. During male spermatogenesis, Tex19.1 expression is highest in mitotic spermatogonia and diminishes as these cells differentiate and progress through meiosis. In pluripotent stem cells, Tex19.1 expression is also downregulated upon differentiation. However, it is not clear whether Tex19.1 has an essential function in germ cells or pluripotent stem cells, or what that function might be. To analyse the potential role of Tex19.1 in pluripotency or germ cell function we have generated Tex19.1(-/-) knockout mice and analysed the Tex19.1(-/-) mutant phenotype. Adult Tex19.1(-/-) knockout males exhibit impaired spermatogenesis. Immunostaining and histological analysis revealed defects in meiotic chromosome synapsis, the persistence of DNA double-strand breaks during meiosis, and a loss of post-meiotic germ cells in the testis. Furthermore, expression of a class of endogenous retroviruses is upregulated during meiosis in the Tex19.1(-/-) testes. Increased transposition of endogenous retroviruses in the germline of Tex19.1(-/-) mutant mice, and the concomitant increase in DNA damage, may be sufficient to disrupt the normal processes of recombination and chromosome synapsis during meiosis and cause defects in spermatogenesis. Our results suggest that Tex19.1 is part of a specialised mechanism that operates in the germline to repress transposable genetic elements and maintain genomic stability through successive generations.  相似文献   

3.
4.
Lymphoid-specific helicase (HELLS; also known as LSH) is a member of the SNF2 family of chromatin remodeling proteins. Because Hells-null mice die at birth, a phenotype in male meiosis cannot be studied in these animals. Allografting of testis tissue from Hells(-/-) to wild-type mice was employed to study postnatal germ cell differentiation. Testes harvested at Day 18.5 of gestation from Hells(-/-), Hells(+/-), and Hells(+/+) mice were grafted ectopically to immunodeficient mice. Bromodeoxyuridine incorporation at 1 wk postgrafting revealed fewer dividing germ cells in grafts from Hells(-/-) than from Hells(+/+) mice. Whereas spermatogenesis proceeded through meiosis with round spermatids in grafts from Hells heterozygote and wild-type donor testes, spermatogenesis arrested at stage IV, and midpachytene spermatocytes were the most advanced germ cell type in grafts from Hells(-/-) mice at 4, 6, and 8 wk after grafting. Analysis of meiotic configurations at 22 days posttransplantation revealed an increase in Hells(-/-) spermatocytes with abnormal chromosome synapsis. These results indicate that in the absence of HELLS, proliferation of spermatogonia is reduced and germ cell differentiation arrested at the midpachytene stage, implicating an essential role for HELLS during male meiosis. This study highlights the utility of testis tissue grafting to study spermatogenesis in animal models that cannot reach sexual maturity.  相似文献   

5.
The objective of this study was to further understand the genetic mechanisms of vitamin A deficiency (VAD) induced arrest of spermatogonial stem-cell differentiation.Vitamin A and its derivatives (the retinoids) participate in many physiological processes including vision, cellular differentiation and reproduction. VAD affects spermatogenesis, the subject of our present study. Spermatogenesis is a highly regulated process of differentiation and complex morphologic alterations that leads to the formation of sperm in the seminiferous epithelium. VAD causes early cessation of spermatogenesis, characterized by degeneration of meiotic germ cells, leading to seminiferous tubules containing mostly type A spermatogonia and Sertoli cells. These observations led us to the hypothesis that VAD affects not only germ cells but also somatic cells.To investigate the effects of VAD on spermatogenesis in mice we used adult Balb/C mice fed with Control or VAD diet for an extended period of time (6–28 weeks). We first observed the chronology, then the extent of the effects of VAD on the testes. Using microarray analysis of isolated pure populations of spermatogonia, Leydig and Sertoli cells from control and VAD 18- and 25-week mice, we examined the effects of VAD on gene expression and identified target genes involved in the arrest of spermatogonial differentiation and spermatogenesis.Our results provide a more precise definition of the chronology and magnitude of the consequences of VAD on mouse testes than the previously available literature and highlight direct and indirect (via somatic cells) effects of VAD on germ cell differentiation.  相似文献   

6.
During spermatogenesis, cells coordinate differentiation with the meiotic cell cycle to generate functional gametes. We identified a novel gene, which we named off-schedule (ofs), as being essential for this coordinated control. During the meiotic G(2) phase, Drosophila ofs mutant germ cells do not reach their proper size and fail to execute meiosis or significant differentiation. The accumulation of four cell cycle regulators--Cyclin A, Boule, Twine and Roughex--is altered in these mutants, indicating that ofs reveals a novel branch of the pathway controlling meiosis and differentiation. Ofs is homologous to eukaryotic translation initiation factor eIF4G. The level of ofs expression in spermatocytes is much higher than for the known eIF4G ortholog (known as eIF-4G or eIF4G), suggesting that Ofs substitutes for this protein. Consistent with this, assays for association with mRNA cap complexes, as well as RNA-interference and phenotypic-rescue experiments, demonstrate that Ofs has eIF4G activity. Based on these studies, we speculate that spermatocytes monitor G(2) growth as one means to coordinate the initiation of meiotic division and differentiation.  相似文献   

7.
Metabolic pathways are increasingly postulated to be vital in programming cell fate, including stemness, differentiation, proliferation, and apoptosis. The commitment to meiosis is a critical fate decision for mammalian germ cells, and requires a metabolic derivative of vitamin A, retinoic acid (RA). Recent evidence showed that a pulse of RA is generated in the testis of male mice thereby triggering meiotic commitment. However, enzymes and reactions that regulate this RA pulse have yet to be identified. We developed a mouse germ cell-specific metabolic network with a curated vitamin A pathway. Using this network, we implemented flux balance analysis throughout the initial wave of spermatogenesis to elucidate important reactions and enzymes for the generation and degradation of RA. Our results indicate that primary RA sources in the germ cell include RA import from the extracellular region, release of RA from binding proteins, and metabolism of retinal to RA. Further, in silico knockouts of genes and reactions in the vitamin A pathway predict that deletion of Lipe, hormone-sensitive lipase, disrupts the RA pulse thereby causing spermatogenic defects. Examination of other metabolic pathways reveals that the citric acid cycle is the most active pathway. In addition, we discover that fatty acid synthesis/oxidation are the primary energy sources in the germ cell. In summary, this study predicts enzymes, reactions, and pathways important for germ cell commitment to meiosis. These findings enhance our understanding of the metabolic control of germ cell differentiation and will help guide future experiments to improve reproductive health.  相似文献   

8.
Histone phosphorylation is sometimes associated with mitosis and meiosis. We have recently identified a phosphorylation of the 127th threonine on TH2A (pTH2A), a germ cell-specific H2A variant, in condensed spermatids and mitotic early preimplantation embryos of mice. Here, we further report the existence of pTH2A at the centromeres in metaphase I spermatocytes and oocytes. Moreover, we identified Haspin, a known kinase for the 3rd threonine on H3, is responsible for pTH2A in vivo. In contrast to the severe meiotic defect in oocytes treated with a Haspin inhibitor, pTH2A-deficient mice, in which the 127th threonine was replaced by alanine, maintained the fertility and exhibited no obvious defect in both oocytes and spermatogenesis. Interestingly, pTH2A was significantly decreased in aged oocytes, suggesting that its accumulation is regulated by centromeric cohesins. Collectively, our study proposes a new set of kinase-histone pair at meiotic centromere, which is highly coordinated during meiosis.  相似文献   

9.
Lecithin:retinol acyltransferase (LRAT) catalyzes the esterification of retinol (vitamin A) in the liver and in some extrahepatic tissues, including the lung. We produced an LRAT gene knock-out mouse strain and assessed whether LRAT-/- mice were more susceptible to vitamin A deficiency than wild type (WT) mice. After maintenance on a vitamin A-deficient diet for 6 weeks, the serum retinol level was 1.34 +/- 0.32 microM in WT mice versus 0.13 +/- 0.06 microM in LRAT-/- mice (p < 0.05). In liver, lung, eye, kidney, brain, tongue, adipose tissue, skeletal muscle, and pancreas, the retinol levels ranged from 0.05 pmol/mg (muscle and tongue) to 17.35 +/- 2.66 pmol/mg (liver) in WT mice. In contrast, retinol was not detectable (<0.007 pmol/mg) in most tissues from LRAT-/- mice after maintenance on a vitamin A-deficient diet for 6 weeks. Cyp26A1 mRNA was not detected in hepatic tissue samples from LRAT-/- mice but was detected in WT mice fed the vitamin A-deficient diet. These data indicate that LRAT-/- mice are much more susceptible to vitamin A deficiency and should be an excellent animal model of vitamin A deficiency. In addition, the retinol levels in serum rapidly increased in the LRAT-/- mice upon re-addition of vitamin A to the diet, indicating that serum retinol levels in LRAT-/- mice can be conveniently modulated by the quantitative manipulation of dietary retinol.  相似文献   

10.
Retinoic acid (RA) is required for germ cell differentiation, the regulation of which gives rise to a constant production of mature sperm. In testes from 3-day postpartum (dpp) RARE-hsplacZ mice, periodic regions positive for beta-galactosidase activity were observed along the length of the seminiferous tubules. Periodicity was abolished by treatment of neonates with exogenous RA at 2 dpp. To assess the consequences, 2-dpp mice were treated with RA, and the long- and short-term effects were assessed. Long-term effects of neonatal RA exposure included a delay in the appearance of advanced germ cells and the absence of a spermatogenic wave (synchronous spermatogenesis) in the adult. In contrast, RA exposure in vitamin A-sufficient adults did not result in synchronous spermatogenesis but rather induced apoptosis in a subset of spermatogonia. Shortly after (24 h) neonates were exposed, altered expression of known germ cell differentiation and the (Stra8, Kit, Sycp3, and Rec8) meiosis markers and an increase in the number of STRA8 and SYCP3 immunopositive cells were observed relative to those of vehicle controls. However, 48 and 72 h after exposure, a significant reduction in the number of STRA8 and SYCP3 immunopositive cells occurred. Immunohistochemical analysis of a marker for apoptosis demonstrated neonatal exposure resulted in increased germ cell apoptosis, as observed in the adult. Additionally, RA exposure resulted in increased Cyp26a1 expression of the RA-degrading enzyme. Thus, while RA treatment of neonatal and adult mice resulted in apoptosis of spermatogonia, synchronous spermatogenesis occurred only after neonatal RA exposure.  相似文献   

11.
Testicular teratomas result from anomalies in germ cell development during embryogenesis. In the 129 family of inbred strains of mice, teratomas initiate around embryonic day (E) 13.5 during the same developmental period in which female germ cells initiate meiosis and male germ cells enter mitotic arrest. Here, we report that three germ cell developmental abnormalities, namely continued proliferation, retention of pluripotency, and premature induction of differentiation, associate with teratoma susceptibility. Using mouse strains with low versus high teratoma incidence (129 versus 129-Chr19(MOLF/Ei)), and resistant to teratoma formation (FVB), we found that germ cell proliferation and expression of the pluripotency factor Nanog at a specific time point, E15.5, were directly related with increased tumor risk. Additionally, we discovered that genes expressed in pre-meiotic embryonic female and adult male germ cells, including cyclin D1 (Ccnd1) and stimulated by retinoic acid 8 (Stra8), were prematurely expressed in teratoma-susceptible germ cells and, in rare instances, induced entry into meiosis. As with Nanog, expression of differentiation-associated factors at a specific time point, E15.5, increased with tumor risk. Furthermore, Nanog and Ccnd1, genes with known roles in testicular cancer risk and tumorigenesis, respectively, were co-expressed in teratoma-susceptible germ cells and tumor stem cells, suggesting that retention of pluripotency and premature germ cell differentiation both contribute to tumorigenesis. Importantly, Stra8-deficient mice had an 88% decrease in teratoma incidence, providing direct evidence that premature initiation of the meiotic program contributes to tumorigenesis. These results show that deregulation of the mitotic-meiotic switch in XY germ cells contributes to teratoma initiation.  相似文献   

12.
生殖细胞的发生、增殖和分化是生命科学领域研究的重要课题之一. 生殖是所有动物赖以生存的基础,精子发生是完成繁殖所必须经历的过程,其最终目的是源源不断地产生单倍体精子.精子发生过程本身是一个复杂特殊的细胞增殖与分化过程,其中减数分裂是精子发生最重要的步骤,但关于减数分裂如何精确起始的分子机制仍知之甚少.已有报道发现,维甲酸(RA)调控Stra8可能是哺乳动物减数分裂起始的机制之一,Nanos2、Boule对RA-Stra8通路具有重要的调控作用. 本文对哺乳动物精子发生中减数分裂起始的相关研究进展进行综述.  相似文献   

13.
14.
In mammals, early fetal germ cells are unique in their ability to initiate the spermatogenesis or oogenesis programs dependent of their somatic environment. In mice, female germ cells enter into meiosis at 13.5 dpc whereas in the male, germ cells undergo mitotic arrest. Recent findings indicate that Cyp26b1, a RA-degrading enzyme, is a key factor preventing initiation of meiosis in the fetal testis. Here, we report evidence for additional testicular pathways involved in the prevention of fetal meiosis. Using a co-culture model in which an undifferentiated XX gonad is cultured with a fetal or neonatal testis, we demonstrated that the testis prevented the initiation of meiosis and induced male germ cell differentiation in the XX gonad. This testicular effect disappeared when male meiosis starts in the neonatal testis and was not directly due to Cyp26b1 expression. Moreover, neither RA nor ketoconazole, an inhibitor of Cyp26b1, completely prevented testicular inhibition of meiosis in co-cultured ovary. We found that secreted factor(s), with molecular weight greater than 10 kDa contained in conditioned media from cultured fetal testes, inhibited meiosis in the XX gonad. Lastly, although both Sertoli and interstitial cells inhibited meiosis in XX germ cells, only interstitial cells induced mitotic arrest in germ cell. In conclusion, our results demonstrate that male germ cell determination is supported by additional non-retinoid secreted factors inhibiting both meiosis and mitosis and produced by the testicular somatic cells during fetal and neonatal life.  相似文献   

15.
Research on in vitro spermatogenesis is important for elucidating the spermatogenic mechanism. We previously developed an organ culture method which can support spermatogenesis from spermatogonial stem cells up to sperm formation using immature mouse testis tissues. In this study, we examined whether it is also applicable to mature testis tissues of adult mice. We used two lines of transgenic mice, Acrosin-GFP and Gsg2-GFP, which carry the marker GFP gene specific for meiotic and haploid cells, respectively. Testis tissue fragments of adult GFP mice, aged from 4 to 29 weeks old, which express GFP at full extension, were cultured in medium supplemented with 10% KSR or AlbuMAX. GFP expression decreased rapidly and became the lowest at 7 to 14 days of culture, but then slightly increased during the following culture period. This increase reflected de novo spermatogenesis, confirmed by BrdU labeling in spermatocytes and spermatids. We also used vitamin A-deficient mice, whose testes contain only spermatogonia. The testes of those mice at 13-21 weeks old, showing no GFP expression at explantation, gained GFP expression during culturing, and spermatogenesis was confirmed histologically. In addition, the adult testis tissues of Sl/Sld mutant mice, which lack spermatogenesis due to Kit ligand mutation, were cultured with recombinant Kit ligand to induce spermatogenesis up to haploid formation. Although the efficiency of spermatogenesis was lower than that of pup, present results showed that the organ culture method is effective for the culturing of mature adult mouse testis tissue, demonstrated by the induction of spermatogenesis from spermatogonia to haploid cells.  相似文献   

16.
A cytogenetic and histological study of nine XO/XY or XO/XY/XYY mosaic mice revealed that XO germ cells were selectively eliminated from the spermatogenic epithelium. Although the XO contribution to the bone marrow in seven mice exceeded 50%, in only two cases were significant numbers of dividing XO spermatogonia present. These XO germ cells only occasionally progressed to meiosis and then degenerated prior to first meiotic metaphase. It was concluded that the mouse Y chromosome carries a "spermatogenesis gene" (or genes) which acts autonomously in the germ cells.  相似文献   

17.
Testicular teratomas result from anomalies in embryonic germ cell development. In the 129 family of inbred mouse strains, teratomas arise during the same developmental period that male germ cells normally enter G1/G0 mitotic arrest and female germ cells initiate meiosis (the mitotic:meiotic switch). Dysregulation of this switch associates with teratoma susceptibility and involves three germ cell developmental abnormalities seemingly critical for tumor initiation: delayed G1/G0 mitotic arrest, retention of pluripotency, and misexpression of genes normally restricted to embryonic female and adult male germ cells. One misexpressed gene, cyclin D1 (Ccnd1), is a known regulator of cell cycle progression and an oncogene in many tissues. Here, we investigated whether Ccnd1 misexpression in embryonic germ cells is a determinant of teratoma susceptibility in mice. We found that CCND1 localizes to teratoma-susceptible germ cells that fail to enter G1/G0 arrest during the mitotic:meiotic switch and is the only D-type cyclin misexpressed during this critical developmental time frame. We discovered that Ccnd1 deficiency in teratoma-susceptible mice significantly reduced teratoma incidence and suppressed the germ cell proliferation and pluripotency abnormalities associated with tumor initiation. Importantly, Ccnd1 expression was dispensable for somatic cell development and male germ cell specification and maturation in tumor-susceptible mice, implying that the mechanisms by which Ccnd1 deficiency reduced teratoma incidence were germ cell autonomous and specific to tumorigenesis. We conclude that misexpression of Ccnd1 in male germ cells is a key component of a larger pro-proliferative program that disrupts the mitotic:meiotic switch and predisposes 129 inbred mice to testicular teratocarcinogenesis.  相似文献   

18.
Spermatogenesis consists of complex cellular and developmental processes, such as the mitotic proliferation of spermatogonial stem cells, meiotic division of spermatocytes, and morphogenesis of haploid spermatids. In this study, we show that RNA interference (RNAi) functions throughout spermatogenesis in mice. We first carried out in vivo DNA electroporation of the testis during the first wave of spermatogenesis to enable foreign gene expression in spermatogenic cells at different stages of differentiation. Using prepubertal testes at different ages and differentiation stage-specific promoters, reporter gene expression was predominantly observed in spermatogonia, spermatocytes, and round spermatids. This method was next applied to introduce DNA vectors that express small hairpin RNAs, and the sequence-specific reduction in the reporter gene products was confirmed at each stage of spermatogenesis. RNAi against endogenous Dmc1, which encodes a DNA recombinase that is expressed and functionally required in spermatocytes, led to the same phenotypes observed in null mutant mice. Thus, RNAi is effective in male germ cells during mitosis and meiosis as well as in haploid cells. This experimental system provides a novel tool for the rapid, first-pass assessment of the physiological functions of spermatogenic genes in vivo.  相似文献   

19.
We have shown that Meiosis Inducing Substance (MIS) and forskolin synergistically and dose dependently induce meiosis in germ cells of cultured fetal mouse testes. We used a bioassay which consists of fetal mouse testes and ovaries cultured for 6 days. In this study MIS media are spent culture media from 24 hour cultures of minced adult mouse testes. In the bioassay one gonad of each fetus is cultured either in MIS medium, in control medium with forskolin, or in MIS medium with forskolin. The other gonad serves as the control and is cultured in control medium. After culture the gonads are fixed, squashed, and DNA-stained. In these preparations germ cells and somatic cells can be distinguished, and the number of germ cells in the different stages of meiosis is counted as is the number of somatic cells in mitosis. MIS activity is defined to be present in a medium when meiosis is induced in male germ cells during culture. We found that MIS media as well as forskolin induced meiosis in fetal male germ cells in a dose-dependent manner. In addition, MIS media and forskolin acted synergistically by inducing meiosis. Female germ cells seem to be unaffected by the various culture media. These findings indicate that receptors for stimuli of meiotic initiation may exist in germ cells or neighbouring somatic cells. In addition to induction of meiosis, MIS media and forskolin also dose dependently increase the number of male germ cells compared to controls. This increase is correlated with induction of advanced stages of meiosis: Male germ cells seem to survive better if they are triggered to enter meiosis. Neither MIS media nor forskolin affected the growth of somatic cells. We therefore propose that MIS media has a growth factor activity with a specific effect on meiotic initiation. © 1993 Wiley-Liss, Inc.  相似文献   

20.
The transition from mitosis to meiosis is unique to germ cells. In murine embryonic ovaries and juvenile testes, retinoic acid (RA) induces meiosis via the stimulated by retinoic acid gene 8 (Stra8), but its molecular pathway requires elucidation. We present genetic evidence in vivo and in vitro that neuregulins (NRGs) are essential for the proliferation of spermatogonia and the initiation of meiosis. Tamoxifen (TAM) was injected into 14-day post-partum (dpp) Sertoli cell-specific conditional Nrg1(Ser-/-) mutant mice. TAM induced testis degeneration, suppressed BrdU incorporation into spermatogonia and pre-leptotene primary spermatocytes, and decreased and increased the number of STRA8-positive and TUNEL-positive cells, respectively. In testicular organ cultures from 5-6 dpp wild-type mice and cultures of their re-aggregated spermatogonia and Sertoli cells, FSH, RA [all-trans-retinoic acid (ATRA), AM580, 9-cis-RA] and NRG1 promoted spermatogonial proliferation and meiotic initiation. However, TAM treatment of testicular organ cultures from the Nrg1(Ser-/-) mutants suppressed spermatogonial proliferation and meiotic initiation that was promoted by FSH or AM580. In re-aggregated cultures of purified spermatogonia, NRG1, NRG3, ATRA and 9-cis-RA promoted their proliferation and meiotic initiation, but neither AM580 nor FSH did. In addition, FSH, RAs and NRG1 promoted Nrg1 and Nrg3 mRNA expression in Sertoli cells. These results indicate that in juvenile testes RA and FSH induced meiosis indirectly through Sertoli cells when NRG1 and NRG3 were upregulated, as NRG1 amplified itself and NRG3. The amplified NRG1 and NRG3 directly induced meiosis in spermatogonia. In addition, ATRA and 9-cis-RA activated spermatogonia directly and promoted their proliferation and eventually meiotic initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号