首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The nucleotide sequence of rat carbamyl phosphate synthetase I mRNA has been determined from the complementary DNA. The mRNA comprises minimally 5,645 nucleotides and codes for a polypeptide of 164,564 Da corresponding to the precursor form of the rat liver enzyme. The primary sequence of mature rat carbamyl phosphate synthetase I indicates that the precursor is cleaved at one of two leucines at residues 38 or 39. The derived amino acid sequence of carbamyl phosphate synthetase I is homologous to the sequences of carbamyl phosphate synthetase of Escherichia coli and yeast. The sequence homology extends along the entire length of the rat polypeptide and encompasses the entire sequences of both the small and large subunits of the E. coli and yeast enzymes. The protein sequence data provide strong evidence that the carbamyl phosphate synthetase I gene of rat, the carAB gene of E. coli, and the CPA1 and CPA2 genes of yeast were derived from common ancestral genes. Part of the rat carbamyl phosphate synthetase I gene has been characterized with two nonoverlapping phage clones spanning 28.7 kilobases of rat chromosomal DNA. This region contains 13 exons ranging in size from 68 to 195 base pairs and encodes the 453 carboxyl-terminal amino acids of the rat protein. Southern hybridization analysis of rat genomic DNA indicates the carbamyl phosphate synthetase I gene to be present in single copy.  相似文献   

2.
A cDNA clone complementary to mRNA encoding the precursor (Mr = 165,000) to the rat liver mitochondrial matrix enzyme carbamyl phosphate synthetase I (Mr = 160,000) was employed to compare relative amounts of the messenger in adult and fetal liver and in Morris hepatoma 5123D and 3924A cells. Northern blot analysis gave a size estimate for the messenger of 6,500-6,700 nucleotides. Carbamyl phosphate synthetase mRNA levels in 15-day-old fetal liver were less than 10% of adult levels; 5123D cells expressed the messenger at levels about 2-fold higher than normal adult liver, but the messenger was undetectable in 3924A cells. Albumin mRNA was also expressed in the former but not in the latter. Maintaining rats for 5 days on a diet containing 60% casein augmented the relative amount of carbamyl phosphate synthetase mRNA by about 2-fold, while a protein-free diet resulted in reduced levels of the mRNA (about 50% compared to animals on a normal diet). Finally, the pattern of hybridization of carbamyl phosphate synthetase cDNA to HindIII-digested genomic DNA showed no differences between normal liver and its corresponding hepatoma; however, a HindIII site polymorphism was observed between Buffalo and ACI rats.  相似文献   

3.
Summary The CAD gene encodes a trifunctional protein that carries the activities of the first three enzymes (carbamyl phosphate synthetase II, aspartate transcarbamylase, and dihydroorotase) of de novo pyrimidine biosynthesis. Genomic fragments of the human CAD gene have been obtained by screening a human genomic library in bacteriophage lambda using a Syrian hamster cDNA clone as a probe. These human genomic clones have been used to assign the CAD gene to human chromosome 2 using in situ hybridization to human metaphase chromosomes and Southern blot hybridization analysis of DNA isolated from a panel of Chinese hamster/human hybrid cells. In situ hybridization analysis has allowed further localization of this gene to the chromosomal region 2p21-p22.  相似文献   

4.
Three overlapping cDNA clones encoding methylmalonate-semialdehyde dehydrogenase (MMSDH; 2-methyl-3-oxopropanoate:NAD+ oxidoreductase (CoA-propanoylating); EC 1.2.1.27) have been isolated by screening a rat liver lambda gt 11 library with nondegenerate oligonucleotide probes synthesized according to polymerase chain reaction-amplified portions coding for the N-terminal amino acid sequence of rat liver MMSDH. The three clones cover a total of 1942 base pairs of cDNA, with an open reading frame of 1569 base pairs. The authenticity of the composite cDNA was confirmed by a perfect match of 43 amino acids known from protein sequencing. The composite cDNA predicts a 503 amino acid mature protein with M(r) = 55,330, consistent with previous estimates. Polymerase chain reaction was used to obtain the sequence of the 32 amino acids corresponding to the mitochondrial entry peptide. Northern blot analysis of total RNA from several rat tissues showed a single mRNA band of 3.8 kilobases. Relative mRNA levels were: kidney greater than liver greater than heart greater than muscle greater than brain, which differed somewhat from relative MMSDH protein levels determined by Western blot analysis: liver = kidney greater than heart greater than muscle greater than brain. A 1423-base pair cDNA clone encoding human MMSDH was isolated from a human liver lambda gt 11 library. The human MMSDH cDNA contains an open reading frame of 1293 base pairs that encodes the protein from Leu-74 to the C terminus. Human and rat MMSDH share 89.6 and 97.7% identity in nucleotide and protein sequence, respectively. MMSDH clearly belongs to a superfamily of aldehyde dehydrogenases and is closely related to betaine aldehyde dehydrogenase, 2-hydroxymuconic semialdehyde dehydrogenase, and class 1 and 2 aldehyde dehydrogenases.  相似文献   

5.
6.
A gene coding a novel isoform of carbamyl phosphate synthetase I (CPS1) was cloned from a human testicular library. As shown by cDNA microarray hybridization, this gene was expressed at a higher level in human adult testes than in fetal testes. The full length of its cDNA was 3831 bp, with a 3149 bp open reading frame, encoding a 1050-amino-acid protein. The cDNA sequence was deposited in the GenBank (AY317138). Sequence analysis showed that it was homologous to the human CPS1 gene. The putative protein contained functional domains composing the intact large subunit of carbamoyl phosphate synthetase, thus indicated it has the capability of arginine biosynthesis. A multiple tissue expression profile showed high expression of this gene in human testis, suggesting the novel alternative splicing form of CPS1 may be correlated with human spermatogenesis.  相似文献   

7.
We previously reported the isolation of a cDNA encoding the liver-specific isozyme of rat S-adenosylmethionine synthetase from a lambda gt11 rat liver cDNA library. Using this cDNA as a probe, we have isolated and sequenced cDNA clones for the rat kidney S-adenosylmethionine synthetase (extrahepatic isoenzyme) from a lambda gt11 rat kidney cDNA library. The complete coding sequence of this enzyme mRNA was obtained from two overlapping cDNA clones. The amino acid sequence deduced from the cDNAs indicates that this enzyme contains 395 amino acids and has a molecular mass of 43,715 Da. The predicted amino acid sequence of this protein shares 85% similarity with that of rat liver S-adenosylmethionine synthetase. This result suggests that kidney and liver isoenzymes may have originated from a common ancestral gene. In addition, comparison of known S-adenosylmethionine synthetase sequences among different species also shows that these proteins have a high degree of similarity. The distribution of kidney- and liver-type S-adenosylmethionine synthetase mRNAs in kidney, liver, brain, and testis were examined by RNA blot hybridization analysis with probes specific for the respective mRNAs. A 3.4-kilobase (kb) mRNA species hybridizable with a probe for kidney S-adenosylmethionine synthetase was found in all tissues examined except for liver, while a 3.4-kb mRNA species hybridizable with a probe for liver S-adenosylmethionine synthetase was only present in the liver. The 3.4-kb kidney-type isozyme mRNA showed the same molecular size as the liver-type isozyme mRNA. Thus, kidney- and liver-type S-adenosylmethionine synthetase isozyme mRNAs were expressed in various tissues with different tissue specificities.  相似文献   

8.
9.
A partial length cDNA encoding farnesyl pyrophosphate synthetase (hpt807) has been isolated from a human fetal liver cDNA library in lambda gt11. DNA sequence analysis reveals hpt807 is 1115 bp in length and contains an open reading frame coding for 346 amino acids before reaching a stop codon, a polyadenylation addition sequence, and the first 14 residues of a poly(A+) tail. Considerable nucleotide and deduced amino acid sequence homology is observed between hpt807 and previously isolated rat liver cDNAs for farnesyl pyrophosphate synthetase. Comparison with rat cDNAs suggests that hpt807 is about 20 bp short of encoding the initiator methionine of farnesyl pyrophosphate synthetase. The human cDNA was cloned into a prokaryotic expression vector and Escherichia coli strain DH5 alpha F'IQ was transformed. Clones were isolated that express an active fusion protein which can be readily observed on protein gels and specifically stained on immunoblots with an antibody raised against purified chicken farnesyl pyrophosphate phosphate synthetase. These data confirm the identity of hpt807 as encoding farnesyl pyrophosphate synthetase. Slot blot analyses of RNA isolated from Hep G2 cells show that the expression of farnesyl pyrophosphate synthetase mRNA is regulated. Lovastatin increases mRNA levels for farnesyl pyrophosphate synthetase 2.5-fold while mevalonic acid, low-density lipoprotein, and 25-hydroxycholesterol decrease mRNA levels to 40-50% of control values.  相似文献   

10.
An oligonucleotide probe specific for the amino acid sequence at the biotin site in pyruvate carboxylase was used to screen a human liver cDNA library. Nine cDNA clones were isolated and three proved to be pyruvate carboxylase clones based on nucleotide sequencing and Northern blotting. The biotin site amino acid sequence of human pyruvate carboxylase agreed perfectly with that of the sheep enzyme in 14 consecutive positions. The highly conserved amino acid sequence, Ala-Met-Lys-Met, found at the biotin site in most biotin-containing carboxylases was also present in human pyruvate carboxylase. The termination codon was located 35 residues 3' to the lysine residue at which the biotin is attached. Therefore, the biotin cofactor is covalently linked near the carboxyl-terminal end of the carboxylase protein. These data are consistent with that observed for other biotin-containing carboxylases and strongly suggests that the genes encoding the biotin-containing carboxylases may have evolved from a common ancestral gene. Northern blotting of mRNA isolated from human, baboon, and rat liver demonstrated that the pyruvate carboxylase mRNA was 4.2 kilobase pairs in length in all species examined. Southern blot analysis of genomic DNA isolated from human-Chinese hamster somatic cell hybrids localized the pyruvate carboxylase gene on the long arm of human chromosome 11. The human cDNA was also used to quantitate pyruvate carboxylase mRNA levels in a differentiating mouse preadipocyte cell line. These data demonstrated that pyruvate carboxylase mRNA content increased 23-fold in 7 days after the onset of differentiation.  相似文献   

11.
From a human fetal liver cDNA library, a new cDNA clone (lambda HFL10) was isolated using an antiserum to P450 HFLa, which has been isolated from livers of human fetuses. Cytochrome P450 cDNAs, namely lambda hPA6, lamda hP2-1, and lambda hPD4 which were highly homologous to cDNA clones, pHY13, Hp1-1, and phP450j, respectively, were also isolated from the cDNA library of human adult livers. Using these cDNA clones as probes together with Lambda HFL10, Northern blot analysis was conducted to determine whether all of these cytochromes were expressed in human fetal livers. The results clearly showed that only P450 HFL10 mRNA was detected in human fetal livers. This result supports the allegation that there is a much more limited number of forms of cytochrome P450 in human fetal livers than in adult livers.  相似文献   

12.
13.
We have cloned the cDNA encoding a new isozyme of glycogen phosphorylase (1,4-D-glucan:orthosphosphate D-glucosyltransferase, EC 2.4.1.1) from a cDNA library prepared from a human brain astrocytoma cell line. Blot-hybridization analysis reveals that this message is preferentially expressed in human brain, but is also found at a low level in human fetal liver and adult liver and muscle tissues. Although previous studies have suggested that the major isozyme of phosphorylase found in all fetal tissues is the brain type, our data show that the predominant mRNA in fetal liver (24-week gestation) is the adult liver form. The protein sequence deduced from the nucleotide sequence of the brain phosphorylase cDNA is 862 amino acids long compared with 846 and 841 amino acids for the liver and muscle isozymes, respectively; the greater length of brain phosphorylase is entirely due to an extension at the far C-terminal portion of the protein. The muscle and brain isozymes share greater identity with regard to nucleotide and deduced amino acid sequences, codon usage, and nucleotide composition than either do with the liver sequence, suggesting a closer evolutionary relationship between them. Spot blot hybridization of the brain phosphorylase cDNA to laser-sorted human chromosome fractions, and Southern blot analysis of hamster/human hybrid cell line DNA reveals that the exact homolog of the newly cloned cDNA maps to chromosome 20, but that a slightly less homologous gene is found on chromosome 10 as well. The liver and muscle genes have previously been localized to chromosomes 14 and 11, respectively. This suggests that the phosphorylase genes evolved by duplication and translocation of a common ancestral gene, leading to divergence of elements controlling gene expression and of structural features of the phosphorylase proteins that confer tissue-specific functional properties.  相似文献   

14.
The complete amino acid sequence of human augmenter of liver regeneration (hALR) was reported by deduction from nucleotide sequence of its complementary DNA . The cDNA for hALR was isolated by screening a human fetal liver cDNA library and the sequencing of this insert revealed an open reading frame encoding a protein with 125aa and highly homologous (87% ) with rat ALR encoding sequence. The recombinant hALR expressed from its cDNA in transient expression experiments in cos-7 cells could stimulate DNA synthesis of HTC hepatoma cell in the dose-dependent and heat-resistant way. Northern blot analysis with rat ALR cDNA as probe confirmed that ALR mRNA was expressed in the normal rat liver at low level and that dramatically increased in the regenerating liver after partial hepatectomied rat. This size of hALR mRNA is 1.4 kb long and expressed in human fetal liver, kidney and testis. These findings indicated that liver itself may be the resource of ALR and suggested that ALR seems to be an im-portant parac  相似文献   

15.
V V Dmitrenko  V M Kavsan 《Genetika》1990,26(4):765-769
Human fetal liver cDNA was cloned in pBR322 vector by dG:dC-tailing method. The cDNA library was screened for liver-specific clones by means of differential hybridization. Human fetal liver and human kidney cDNAs were used as hybridization probes. Application of this procedure revealed twenty five liver-specific clones among about one thousand recombinants analysed. These clones represent cDNAs corresponding abundant mRNAs. Eighteen clones were identified as encoding serum albumin. Two different mRNA polyadenylation sites were found in four sequenced plasmids. Cleavage/polyadenylation site in two plasmids, pHA1 and pHA12, is situated fifteen nucleotides downstream the AATAAA signal; in two other plasmids, pHA8 and pHA25, this site is ten nucleotides downstream the same signal.  相似文献   

16.
cDNA clones for human phosphoribosyl pyrophosphate synthetase subunit I (PRS I) were isolated from a glioblastoma cell line MGC 1 cDNA library. The longest clone contained 2,075 base pairs (bp) almost covering the 2.3-kb mRNA and the base sequence of the coding region (954 bp) had a 92.0% sequence homology with that of rat PRS I cDNA. The deduced amino acid sequences were identical between human and rat PRS I. This perfect conservation has heretofore not been reported for other enzymes involved in nucleotide metabolism and glycolysis. A comparison with other isoforms of this enzyme, PRS II and PRS III, showed that the human PRS I was 79.9 and 92.2% homologous in the coding sequence and 95.3 and 94.0% in the deduced amino acid sequence to human PRS II and PRS III, respectively. The high value of the synonymous difference between PRS I and PRS II cDNAs places their time of divergence long before that of the radiation of mammals. Based on the evolutionary rate of amino acid substitution, the PRS I and II genes probably diverged about 760 million years ago.  相似文献   

17.
Recently, a potent transforming gene which was exclusively expressed in rat pituitary tumor but not in normal pituitary had been isolated and named as pituitary tumor transforming gene (PTTG). A cDNA clone encoding human homologue of rat PTTG was isolated from human fetal liver cDNA library. It contained an open reading frame of 603 base pairs predicting a protein composed of 201 amino acids with a calculated molecular weight of 26 kDa. The deduced protein showed about 85% homology (78% identity, 7% favored substitution) with the rat PTTG. Northern blot analysis showed that the cDNA hybridized to 1.0 kb mRNA species which was expressed in fetal liver and several cancer cell lines. These results suggest that the presence of the human homologue of rat PTTG gene may not be restricted to pituitary tumor.  相似文献   

18.
NAD(P)H:menadione oxidoreductase (NMOR1) is a flavoprotein that catalyzes the two-electron reduction of various redox dyes and quinones. It has been proposed that this enzyme may have a protective effect against cancer caused by quinones and their metabolic precursors. We show that tetrachlorodibenzo-p-dioxin (TCDD) treatment of the human hepatoblastoma cell line Hep-G2 produces a 5-fold induction of NMOR activity. Several overlapping human NMOR1 cDNAs were isolated from a human liver lambda gt 11 expression library, and their composite sequence corresponds to an mRNA of 2448 nucleotides containing a continuous open reading frame encoding a protein of 274 residues (molecular weight, 30,880). The corresponding human NMOR1 mRNA has an unusually long 3'-untranslated region (1679 base pairs) with four potential polyadenylation signals (I-IV) at positions 986, 1460, 1838, and 2419 and a single copy of human Alu repetitive sequence between polyadenylation sites II and III. Southern blot analysis of human genomic DNA suggests the presence of a single NMOR1 gene approximately 10 kilobases (KB) in length. The use of three of the aforementioned polyadenylation signals is likely to account for the three different species (2.7, 1.7, and 1.2 kb) of mRNA hybridizing to NMOR1 cDNA in Hep-G2 cells. Indeed several partial cDNA clones were isolated that corresponded to the mRNA derived by use of the proximal polyadenylation signal. Interestingly, the longest (2.7 kb) mRNA species was induced severalfold by TCDD, whereas the other two mRNAs (1.7 and 1.2 kb) were induced to a much lesser extent by TCDD treatment. The human NMOR1 cDNA and protein are 83 and 85% similar to rat liver cytosolic NMOR1 cDNA and protein, respectively. Southern analysis of DNA from 54 human x mouse and 39 human x hamster somatic cell hybrids shows that the NMOR1 gene resides on human chromosome 16.  相似文献   

19.
20.
The hamster CAD gene encodes a protein that catalyzes the first three steps of pyrimidine biosynthesis. We have sequenced a portion of a CAD cDNA and determined the location of the carbamyl phosphate synthetase II coding region. Subdomains coding for the glutamine hydrolyzing and carbamyl phosphate synthesizing functions have been identified through their high degree of similarity to carbamyl phosphate synthetase genes from a variety of organisms. The proline-rich junction between the glutaminase and synthetase domains, however, does not appear to be conserved among carbamyl phosphate synthetases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号