首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Testicular development in a patient with deletion of the distal (fluorescent) segment of the Y chromosome is described. The presence of a normal dose of H-Y antigen was demonstrated by Goldberg's cytotoxicity test. It is concluded that the distal fluorescent segment of the Y chromosome is void of genes regulating H-Y antigen activity.  相似文献   

2.
3.
4.
Summary Anti-H-Y antiserum is generally obtained from female inbred mice or rats that have been hyperimmunized with syngeneic male cells. The specificity of such antiserum is defined by its reactivity for male but not female cells. A number of conventional serological assays have been used to measure that reactivity. However, H-Y is a weak antigen, evidently represented sparingly on the surfaces of cells other than sperm, epidermal cells and brain cells; thus the srological assays for H-Y are technically difficult. Yet H-Y serology has enabled significant progress toward the understanding of primary sex differentiation.A recent advance in H-Y serology is the establishment of monoclonal anti-H-Y antisera which promise to facilitate analysis and clarification of the H-Y system.  相似文献   

5.
It has been proposed that H-Y antigen secreted by cells of the Sertoli lineage is bound by receptors on these and other cells of the primordial gonad and thereby initiates formation of the testicular cords, and that H-Y is not an integral transmembrane component but a part of a ternary system with β2-microglobulin and products of the MHC. It follows that cultured Daudi cells, which lack β2-microglobulin and HLA, should secrete H-Y. This is consistent with evidence obtained with monoclonal H-Y antibody and an ELISA. By this method, free H-Y was demonstrable in the supernatant fluids of cultured Sertoli cells and Daudi cells. The assay provides a useful alternative to detection of H-Y in the complement-dependent cytotoxicity test.  相似文献   

6.
Genetic aspects of H-Y antigen   总被引:3,自引:0,他引:3  
Summary While it remains to be clarified what detection of H-Y antigen by current methods means, the existence of a factor governing testicular differentiation of the indifferent gonadal anlage seems to be well established. There are various kinds of evidence that H-Y antigen as a biologically meaningful factor has a complex genetical basis. There is the contribution of the Y chromosome which, independent of the number of other chromosomes, especially of X chromosomes, leads to a male phenotype. The X chromosome must be involved also because structural aberrations of its distal short arm influence the expression of the H-Y structural gene. Due to examples of autosomal inheritance of various forms of sex reversal, an autosomal gene is assumed to be involved as well. Arguments are presented favoring the assumption that the structural H-Y gene is autosomal, while genes on the X and Y chromosomes have a controlling function.This genetic control mechanism for H-Y antigen seems to have evolved secondary to placentation in mammals. In non-mammalian vertebrates, H-Y antigen is controlled by other factors, e.g. steroid hormones. While the functional role of H-Y antigen in directing differentiation of the heterogametic gonad appears to have been preserved during evolution, the mechanism of its control has changed. This latter mechanism is only poorly understood.  相似文献   

7.
8.
Summary In the absence of beta-2-microglobulin and MHC-determined cell surface antigens, cultured cells of the Burkitt lymphoma, Daudi, secrete testis-inducing H-Y antigen into the surrounding medium. We have precipitated Daudi-secreted H-Y antigen by two methods, one using mouse H-Y antibody and goat anti-mouse Ig, and the other using mouse H-Y antibody and Sepharose beads coated with protein A. The estimated molecular weight of the specific immunoprecipitate was 15,000–18,000 Daltons.  相似文献   

9.
10.
11.
12.
13.
Summary When sensitized with human cultured fibroblasts of the XY and XO, but not XX, sex chromosomal types C57BL/6 female mice reject syngeneic male grafts accelerated (second set graft reaction). These findings demonstrate that the antigenic determinants of H-Y antigen of man and mouse are homologous and that XO females (at least those tested) carry the H-Y transplantation antigen. The results are discussed in the light of the question of differences between the H-Y antigen as defined by grafting and serology and the chromosomal localization of the H-Y structural gene(s).  相似文献   

14.
H-Y antigen is a surface component associated with the heterogametic sex of various species and supposed to induce testicular differentiation. Genes controlling directly or not the expression of H-Y antigen and testicular differentiation have been localized on Y as well as on X chromosome and even autosomal chromosome. However the genetical localization of the H-Y structural gene remains unknown. We analysed the expression of H-Y antigen in three types of sexual dysgenesis (males bearing XX caryotype, testicular feminization syndrome and one case of hermaphroditism) to clarify the function and the genetics of this antigen.  相似文献   

15.
16.
The H-Y antigen and sex reversal   总被引:1,自引:0,他引:1  
E Simpson 《Cell》1986,44(6):813-814
  相似文献   

17.
With the use of mixed-hemadsorption-hybrid-antibody (MHA-HA) test, H-Y antigen was studied on neonatal testicular cells and fractionated testicular cells from young mice (4–6 weeks old). H-Y antigen was undetectable on spermatogonia cells from neonatal testes but became fully expressed on late spermatids. Our data suggested that there was postmeiotic expression of H-Y antigen.  相似文献   

18.
Summary The binding capacity for H-Y antigen was studied in various rat tissues of both sexes. In nongonadal tissues (liver, kidney, brain, epidermis) binding could not be demonstrated. In contrast, the gonads are able to bind exogenously supplied H-Y antigen. In the ovary, the binding capacity remains unchanged in newborn and adult animals, while in the testis, this capacity decreases with age. A receptor like that of a proteohormone is assumed to exist in the gonads but not in other tissues. In nongonadal tissues, H-Y antigen apparently is present only if the cell itself synthesizes the antigen. The H-Y antigen receptor of the gonads is not sex-specific. Thus, the primary sex differentiation depends on whether H-Y antigen is synthesized in the organism.  相似文献   

19.
Summary H-Y-antigen expression was analyzed in patients with transsexuality. Peripheral blood lymphocytes and various tissues were examined using the cytotoxicity assay of Goldberg et al. (1971). Peripheral blood lymphocytes from healthy male and female subjects were used as controls as well as tissues from nontranssexual individuals and from male and female C57Bl/6J mice. In three female-to-male transsexuals the peripheral blood lymphocytes were H-Y antigen positive. In these patients also their ovaries, uterus, and mammae were found to be H-Y antigen positive. Three male-to-female transsexuals were examined. The peripheral blood lymphocytes in two of these patients were found to be H-Y antigen negative. Their testes were also H-Y antigen negative, as well as the epididymus, the corpus cavernosum penis, and the cremaster muscle which was analyzed in one of them. One male-to-female transsexual had peripheral blood lymphocytes which were H-Y antigen positive; this patient had testis and corpus cavernosum penis which were also H-Y-antigen positive.  相似文献   

20.
Summary H-Y antigen was examined in XX-, XY-, and XO-mice using spleen, kidney, and liver cells of the animals for the absorption of the anti-H-Y antiserum produced in the rat. The cells of the XY- and XO-mice were found to be H-Y antigenpositive while the cells of the XX-mice were negative. As in Turner syndrome patients with 45,X, in the XO-female mice the H-Y antigen titre was reduced as compared to normal XY-male mice; intermediate values between those of normal male and female mice were obtained. These results clearly indicate that as in man, in the mouse the structural gene for H-Y antigen is not Y-linked but is located on an autosome. Furthermore, the concept of the regulation of the H-Y antigen gene expression in the human (Wolf et al. 1980a, b) by an X-linked repressor gene, escaping X-inactivation in the XX-female and an Y-linked inducer gene also seems to hold true in the mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号