首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carotid body glomus cells sense hypoxia through the inhibition of plasmalemmal K(+) channels, which leads to Ca(2+) influx and transmitter release. Although the mechanism of O(2) sensing remains enigmatic, it does not seem to depend on cellular redox status or inhibition of mitochondrial electron transport. Hypoxia inducible factors appear to be necessary for the expression of the O(2) sensor and carotid body remodeling in chronic hypoxia, but are not directly involved in acute O(2) sensing. Glomus cells are also rapidly activated by reductions of glucose concentration due to inhibition of K(+) channels. These cells function as combined O(2) and glucose sensors that help to prevent neuronal damage by acute hypoxia and/or hypoglycemia.  相似文献   

2.
3.
4.
5.
6.
Early detection of an O2 deficit in the bloodstream is essential to initiate corrective changes in the breathing pattern of mammals. Carotid bodies serve an essential role in this respect; their type I cells depolarize when O2 levels fall, causing voltage-gated Ca2+ entry. Subsequent neurosecretion elicits increased afferent chemosensory fiber discharge to induce appropriate changes in respiratory function (1). Although depolarization of type I cells by hypoxia is known to arise from K+ channel inhibition, the identity of the signaling pathway has been contested, and the coupling mechanism is unknown (2). We tested the hypothesis that AMP-activated protein kinase (AMPK) is the effector of hypoxic chemotransduction. AMPK is co-localized at the plasma membrane of type I cells with O2-sensitive K+ channels. In isolated type I cells, activation of AMPK using 5-aminoimidazole-4-carboxamide riboside (AICAR) inhibited O2-sensitive K+ currents (carried by large conductance Ca2+-activated (BKCa) channels and TASK (tandem pore, acid-sensing potassium channel)-like channels, leading to plasma membrane depolarization, Ca2+ influx, and increased chemosensory fiber discharge. Conversely, the AMPK antagonist compound C reversed the effects of hypoxia and AICAR on type I cell and carotid body activation. These results suggest that AMPK activation is both sufficient and necessary for the effects of hypoxia. Furthermore, AMPK activation inhibited currents carried by recombinant BKCa channels, whereas purified AMPK phosphorylated thealpha subunit of the channel in immunoprecipitates, an effect that was stimulated by AMP and inhibited by compound C. Our findings demonstrate a central role for AMPK in stimulus-response coupling by hypoxia and identify for the first time a link between metabolic stress and ion channel regulation in an O2-sensing system.  相似文献   

7.
8.
Summary The cellular localization of carbonic anhydrase (CAH) in the carotid body of the rat was investigated by means of Hansson's cobalt-precipitation technique in cultures of dissociated cells. In both young (2-day-old) and old (77-day-old) cultures, the parenchymal glomus (type-I) cells were selectively stained by this technique, and in addition expressed tyrosine hydroxylase and neuron-specific enolase as revealed by immunofluorescence. Enzymic reaction product of CAH appeared to be predominantly intracellular since staining was more intense and occurred more rapidly following permeabilization of the cell membranes with Triton X-100; its formation was inhibited by the CAH-inhibitor acetazolamide (1–10 M) or by increasing the pH from 5.8 to 7.5. Cryostat sections of the carotid bifurcation revealed intense CAH-reaction product in cell clusters of the carotid body, in a few cells of the nodose ganglion, and in red blood cells. Neuronal cell bodies of the petrosal ganglion and superior cervical ganglion (SCG) were largely non-reactive. The SCG is known to contain clusters of small intensely fluorescent (SIF) cells, which were also non-reactive when grown in dissociated cell culture. Thus, although glomus and SIF cells are often considered to be similar cell types, functional CAH-activity appears unique to glomus cells, and this may be important for the physiological response of the carotid body to certain chemosensory stimuli.  相似文献   

9.
Summary Glomus cells from carotid bodies of adult rats dissociated by means of collagenase or collagenase + trypsin were used to study by electron microscopy the endocytotic uptake of cationized ferritin (CF) tracer into subcellular compartments. The glomus cells were incubated with the tracer (1) in a basic salt medium (BM), or (2) in the BM into which calcium ionophore A23187 had been added, or (3) in a potassium-rich medium.Incubation of the cells in BM containing CF for 30 min resulted in attachment of the tracer to the cell membrane and uptake of a few solitary tracer particles into small vesicles and multivesicular bodies. No uptake into the cisternae of the Golgi apparatus was observed. Further incubation in BM containing CF for another 30 min resulted in increased uptake of the tracer into small vesicles and multivesicular bodies. A similar pattern of uptake was observed when the dissociated glomus cells were first preincubated in BM with CF for 30 min and then incubated for 1 min or 30 min in the BM solution containing both the ionophore and CF. Upon such incubation, CF particles were seen to penetrate into coated pits and sites of exocytosis at the cell surface. When the 30-min preincubation in BM was followed by incubation in a CF-containing potassium-rich medium for 15–30 min, uptake into vesicles, small lysosomes and occasionally also into profiles of the smooth endoplasmic reticulum was seen. Endocytotic mechanisms of the glomus cells are outlined.  相似文献   

10.
The SDHD gene encodes one of the two membrane-anchoring proteins of the succinate dehydrogenase (complex II) of the mitochondrial electron transport chain. This gene has recently been proposed to be involved in oxygen sensing because mutations that cause loss of its function produce hereditary familiar paraganglioma, a tumor of the carotid body (CB), the main arterial chemoreceptor that senses oxygen levels in the blood. Here, we report the generation of a SDHD knockout mouse, which to our knowledge is the first mammalian model lacking a protein of the electron transport chain. Homozygous SDHD(-/-) animals die at early embryonic stages. Heterozygous SDHD(+/-) mice show a general, noncompensated deficiency of succinate dehydrogenase activity without alterations in body weight or major physiological dysfunction. The responsiveness to hypoxia of CBs from SDHD(+/-) mice remains intact, although the loss of an SDHD allele results in abnormal enhancement of resting CB activity due to a decrease of K(+) conductance and persistent Ca(2+) influx into glomus cells. This CB overactivity is linked to a subtle glomus cell hypertrophy and hyperplasia. These observations indicate that constitutive activation of SDHD(+/-) glomus cells precedes CB tumor transformation. They also suggest that, contrary to previous beliefs, mitochondrial complex II is not directly involved in CB oxygen sensing.  相似文献   

11.
A statistically significant decrease in the intensity of catecholamine fluorescence of some carotid body glomus cells was observed after inhibition of the enzyme tyrosine hydroxylase by injection of 80 mg/kg alpha-methyl-paratyrosine. The intensity of the formaldehyde-induced fluorescence was measured in individual glomus cells. The maximum decrease in the intensity was observed 4 to 6 hr after the alpha-methyltyrosine injection. This suggests a rapid turnover in the catecholamines of the carotid body.  相似文献   

12.
The carotid body is an arterial chemoreceptor organ that senses arterial pO(2) and pH. Previous studies have indicated that both reactive oxygen species (ROS) and nitric oxide (NO) are important potential mediators that may be involved in the response of the carotid body to hypoxia. However, whether their production by the chemosensitive elements of the carotid body is indeed oxygen-dependent is currently unclear. Thus, we have investigated their production under normoxic (20% O(2)) and hypoxic (1% O(2)) conditions in slice preparations of the rat carotid body by using fluorescent indicators and confocal microscopy. NO-synthesizing enzymes were identified by immunohistochemistry and histochemistry, and the subcellular localization of the NO-sensitive indicator diaminofluorescein was determined by a photoconversion technique and electron microscopy. Glomus cells of the carotid body responded to hypoxia by increases in both ROS and NO production. The hypoxia-induced increase in NO generation required (to a large extent, but not completely) extracellular calcium. Glomus cells were immunoreactive to endothelial NO synthase but not to the neuronal or inducible isoforms. Ultrastructurally, the NO-sensitive indicator was observed in mitochondrial membranes after exposure to hypoxia. The data show that glomus cells respond to exposure to hypoxia by the enhanced production of both ROS and NO. NO production by glomus cells is probably mediated by endothelial NO synthase, which is activated by calcium influx. The presence of NO indicator in mitochondria suggests the hypoxic regulation of mitochondrial function via NO in glomus cells.  相似文献   

13.
14.
Summary Glomus (Type I) cells of the carotid body of adult rats were studied electron microscopically after fixation with potassium permanganate or with glutaraldehyde and osmium tetroxide. Two permanganate fixation methods (using Krebs-Ringer-glucose, pH 7.0, or acetate buffer, pH 5.0) were compared. Numerous dense-cored vesicles were observed only in about one tenth of the glomus cells when neutral permanganate was used for fixation, although all glomus cells showed such vesicles after fixation with glutaraldehyde and osmium tetroxide. Numerous vesicles with a dense core were observed in about one third of the cells after fixation with acid potassium permanganate. With this fixation, small dense-cored vesicles similar to those in adrenergic nerve terminals were occasionally seen in the cytoplasm of glomus cells. It is tentatively concluded that the amine-storing vesicles of the carotid body are different from those in the small intensely fluorescent (SIF) cells and those in adrenergic nerve terminals.  相似文献   

15.
16.
17.
18.
Time-dependent effect of hypoxia on carotid body chemosensory function   总被引:4,自引:0,他引:4  
The time-dependent effects of hypoxia on the discharge rate carotid chemoreceptors were measured in anesthetized cats. Hypoxic exposure of two different durations were used: a short-term exposure (2-3 h) was used to measure the response of the same carotid chemoreceptors; and a long-term exposure (28 days at inspired PO2 of 70 Torr) to study carotid chemoreceptor properties in one group of cats relative to those of a control group. In the chronically hypoxic and control groups, determinations were made of the 1) steady-state responses to four levels of arterial PO2 (PaO2) at constant levels of arterial PCO2; 2) steady-state responses to acute hypercapnia during hyperoxia; and 3) maximal discharge rates during anoxia. We found that the acute responses of carotid chemoreceptor afferents to a given level of hypoxia (PaO2 = 30-40 Torr) did not significantly change within 2-3 h. After long-term exposure the carotid chemoreceptor responses to hypoxia significantly increased, with no significant changes in the hypercapnic response and in the maximal discharge rate during anoxia. We conclude that isocapnic hypoxia may not elicit a sufficient cellular response within 2-3 h in the cat carotid body to sensitize the O2 responsive mechanism, but hypoxia of longer duration will sensitize such a mechanism, thereby augmenting the chemosensory activity.  相似文献   

19.
The identity of the postulated excitatory transmitter released by glomus cells is not known. Since our preliminary work on paraffin sections of the cat carotid body indicated that most glomus cells were intensely immunoreactive to glutamate, we decided to investigate whether glutamate might be such a transmitter, using two approaches. One approach was to make a quantitative immunogold analysis of ultrathin sections to assess the level of glutamate immunoreactivity of glomus cells relative to glia and to afferent axon terminals. The other approach was to measure the potassium-induced release of glutamate from carotid bodies superfused in vitro. We consistently found that glomus cell profiles had 50% more immunogold particles per unit of area than glial cell or axonal profiles. However, the levels of glutamate immunoreactivity of glomus cells were lower than those expected for glutamatergic terminals. We also found that glutamate was not released from in vitro carotid bodies stimulated with high concentrations of potassium. These findings indicate that the oxygen-sensitive glomus cells have a high concentration of glutamate, which is not released by superfusion with high potassium. Thus, glutamate is not the excitatory transmitter released by glomus cells. We speculate that the high concentrations of glutamate might instead be related to the known dependence of the “in vitro” chemosensory activity on metabolic substrates.  相似文献   

20.
Summary Developmental patterns of immunoreactivity for serotonin and neuropeptide Y were investigated immunohistochemically in the carotid body and glomus cells in the wall of the common carotid artery and around its branches of chickens at various developmental ages. The development of peptidergic nerve fibers was also studied. Serotonin immunoreactivity began to appear in the glomus cells of the carotid body and around arteries at 10 days of incubation and became very intense from 12 days onwards. Neuropeptide Y immunoreactivity also appeared in these cells at 10 days, became intense at 14 days, and was sustained until 20 days. After hatching, neuropeptide Y immunoreactivity in the carotid body rapidly decreased with age and almost cisappeared at posnatal day 10. However, it persisted for life in the glomus cells distributed in the wall of the common carotid artery. Substance P- and calcitonin gene-related peptide (CGRP)-immunoreactive fibers first penetrated into the carotid body parenchyma at 12 days of incubation. These peptidergic nerve fibers in the carotid body and glomus cell groups in and around arteries gradually increased with age, and approached the adult state at 18 days of incubation. Only a few galanin-and vasoactive intestinal peptide (VIP)-immunoreactive fibers were observed in the late embryonic carotid bodies. They rapidly developed after hatching and reached adult numbers at postnatal day 10. During late embryonic and neonatal development, considerable numbers of met-enkephalin-immunoreactive fibers were detected in the connective tissue encircling the carotid body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号