共查询到20条相似文献,搜索用时 15 毫秒
1.
Vascular Adaptation and Mechanical Homeostasis at Tissue, Cellular, and Sub-cellular Levels 总被引:2,自引:0,他引:2
Humphrey JD 《Cell biochemistry and biophysics》2008,50(2):53-78
Blood vessels exhibit a remarkable ability to adapt throughout life that depends upon genetic programming and well-orchestrated biochemical processes. Findings over the past four decades demonstrate, however, that the mechanical environment experienced by these vessels similarly plays a critical role in governing their adaptive responses. This article briefly reviews, as illustrative examples, six cases of tissue level growth and remodeling, and then reviews general observations at cell-matrix, cellular, and sub-cellular levels, which collectively point to the existence of a "mechanical homeostasis" across multiple length and time scales that is mediated primarily by endothelial cells, vascular smooth muscle cells, and fibroblasts. In particular, responses to altered blood flow, blood pressure, and axial extension, disease processes such as cerebral aneurysms and vasospasm, and diverse experimental manipulations and clinical treatments suggest that arteries seek to maintain constant a preferred (homeostatic) mechanical state. Experiments on isolated microvessels, cell-seeded collagen gels, and adherent cells isolated in culture suggest that vascular cells and sub-cellular structures such as stress fibers and focal adhesions likewise seek to maintain constant a preferred mechanical state. Although much is known about mechanical homeostasis in the vasculature, there remains a pressing need for more quantitative data that will enable the formulation of an integrative mathematical theory that describes and eventually predicts vascular adaptations in response to diverse stimuli. Such a theory promises to deepen our understanding of vascular biology as well as to enable the design of improved clinical interventions and implantable medical devices. 相似文献
2.
Screen HR Shelton JC Bader DL Lee DA 《Biochemical and biophysical research communications》2005,336(2):424-429
Mechanical stimulation has been implicated as an important regulatory factor in tendon homeostasis. In this study, a custom-designed tensile loading system was used to apply controlled mechanical stimulation to isolated tendon fascicles, in order to examine the effects of 5% cyclic tensile strain at 1 Hz on cell proliferation and matrix synthesis. Sample viability and gross structural composition were maintained over a 24 h loading period. Data demonstrated no statistically significant differences in cell proliferation or glycosaminoglycan production, however, collagen synthesis was upregulated with the application of cyclic tensile strain over the 24 h period. Moreover, a greater proportion of the newly synthesised matrix was retained within the sample after loading. These data provide evidence of altered anabolic activity within tendon in response to mechanical stimuli, and suggest the importance of cyclic tensile loading for the maintenance of the collagen hierarchy within tendon. 相似文献
3.
LATTA H 《The Journal of biophysical and biochemical cytology》1959,5(3):405-410
The reaction of embryonic chick heart cells grown in tissue culture to specific guinea pig antiserum has been studied with electron microscopy. Heart fragments from chick embryos were cultured with a plasma clot. After being tested with antiserum or normal serum, they were fixed with buffered osmium tetroxide and embedded in butyl methacrylate before removal from the glass culture chamber. Thin cells found by phase microscopy to have reacted were sectioned in a plane parallel to the glass surface on which they had grown. The results confirm and extend observations made previously while the reactions were occurring. The plasma membrane, like that of the red cell, becomes disrupted or less resistant to trauma following the action of antiserum. The membranes of mitochondria and endoplasmic reticulum vesiculate and swell. Before nuclear shrinkage becomes prominent, the outer nuclear membrane separates over a large portion of the nuclear envelope and forms one or more large swollen blebs. Thus, the outer nuclear membrane shows a reactivity similar to endoplasmic reticulum. It is suggested that the various physical and chemical changes observed to follow the action of antibody and complement on fibroblasts may be explained by osmotic pressure differences between various cell components. Some basic similarities to the action of hemolytic agents on red cells are noted. 相似文献
4.
A flow-through system in which monolayer cells, growing on a 50-cm2 glass surface, are in contact with a film of medium with a thickness of 0.14 mm, is described. For murine B16 melanoma cells, the loading capacity is 8.106 cells. The flow-through principle permits frequent off-line or on-line detection of medium constituents for a period on the order of days. The system has a fast dynamic response. With off-line radiochemical detection, the system was applied to the uptake of uridine and excretion of uracil over a period of 45 h. With on-line fluorescence detection, the interaction between the cells and two anthracycline analogs was monitored. The cells can be easily observed with a light microscope. 相似文献
5.
Mitsugu Ogawa Yoshinori Harada Katsumasa Fujita Tetsuro Takamatsu 《Biochemical and biophysical research communications》2009,382(2):370-9425
Label-free imaging is desirable for elucidating morphological and biochemical changes of heart tissue in vivo. Spontaneous Raman microscopy (SRM) provides high chemical contrast without labeling, but presents disadvantage in acquiring images due to low sensitivity and consequent long imaging time. Here, we report a novel technique for label-free imaging of rat heart tissues with high-speed SRM combined with resonance Raman effect of heme proteins. We found that individual cardiomyocytes were identified with resonance Raman signal arising mainly from reduced b- and c-type cytochromes, and that cardiomyocytes and blood vessels were imaged by distinguishing cytochromes from oxy- and deoxy-hemoglobin in intact hearts, while cardiomyocytes and fibrotic tissue were imaged by distinguishing cytochromes from collagen type-I in infarct hearts with principal component analysis. These results suggest the potential of SRM as a label-free high-contrast imaging technique, providing a new approach for studying biochemical changes, based on the molecular composition, in the heart. 相似文献
6.
The demonstration that the “dedifferentiation” of cells commonly observed in the early days of tissue culture was due to selective overgrowth of fibroblasts led to enrichment culture techniques (alternate animal and culture passage) designed to give a selective advantage to functionally differentiated tumor cells. These experiments resulted in the derivation of a large number of functionally differentiated clonal strains of a range of cell types. These results gave rise to the hypothesis that cells in culture accurately represent cells in vivo but without the complex in vivo environment. This concept has been strengthened with the development of hormonally defined culture media in combination with functionally differentiated clonal cell lines, which have augmented the potential of tissue culture studies. The use of hormonally defined media in place of serum-supplemented media demonstrates that hormonal responses and dependencies can be discovered in culture. Discoveries of hormonal dependencies of cancer cells has led to therapies targeting intracellular signaling pathways while discoveries of hormonal responses of pluripotent cells are helping to identify the potential application of stem cells. In these and other ways tissue culture technology will continue to contribute to solving problems of human health. 相似文献
7.
Insights into molecular mechanisms of collagen assembly are important for understanding countless biological processes and at the same time a prerequisite for many biotechnological and medical applications. In this work, the self-assembly of collagen type I molecules into fibrils could be directly observed using time-lapse atomic force microscopy (AFM). The smallest isolated fibrillar structures initiating fibril growth showed a thickness of approximately 1.5 nm corresponding to that of a single collagen molecule. Fibrils assembled in vitro established an axial D-periodicity of approximately 67 nm such as typically observed for in vivo assembled collagen fibrils from tendon. At given collagen concentrations of the buffer solution the fibrils showed constant lateral and longitudinal growth rates. Single fibrils continuously grew and fused with each other until the supporting surface was completely covered by a nanoscopically well-defined collagen matrix. Their thickness of approximately 3 nm suggests that the fibrils were build from laterally assembled collagen microfibrils. Laterally the fibrils grew in steps of approximately 4 nm, indicating microfibril formation and incorporation. Thus, we suggest collagen fibrils assembling in a two-step process. In a first step, collagen molecules assemble with each other. In the second step, these molecules then rearrange into microfibrils which form the building blocks of collagen fibrils. High-resolution AFM topographs revealed substructural details of the D-band architecture of the fibrils forming the collagen matrix. These substructures correlated well with those revealed from positively stained collagen fibers imaged by transmission electron microscopy. 相似文献
8.
9.
A tissue culture system for different germplasms of indica rice 总被引:4,自引:0,他引:4
Agrobacterium-mediated transformation of indica rice has been manipulated in only a limited number of cultivars because the majority of indica varieties are recalcitrant to in vitro response. Establishment of a highly efficient and widely used tissue culture system for indica rice will accelerate the application of transformation technology in breeding programs and the study of the functions of
indica-specific genes. By manipulating plant growth regulators, organic components and salts within the culture media, we established
two media for callus induction and subculture, respectively, in tissue culture of indica rice. The modified media could guarantee the production and proliferation of a great number of embryogenic calli with high
regeneration capacity from mature seeds representing different indica rice germplasms. The calli obtained from this system should be ideal material for Agrobacterium-mediated transformation. The results suggest that this optimized tissue culture system will be widely applicable for the
tissue culture of indica varieties.
Electronic Supplementary Material Supplementary material is available for this article at
The first two authors contributed equally to this work. 相似文献
10.
Mechanisms controlling epithelial proliferation and differentiation in the prostate have been primarily investigated in mouse models. The regulation of proliferation and differentiation is poorly understood in human prostate epithelial cells. In vivo, the glandular prostate epithelium consists of a p63-positive proliferating basal cell layer and a post-mitotic p27-positive secretory cell layer. We have established an organized stratified culture system of human primary prostate epithelial cells to gain insight into mechanisms regulating proliferation and differentiation. In this system, expression of p63 is observed in the bottom layer. In addition, BrdU incorporation persists even though cells are confluent. In contrast, in the upper layer, p63 expression is greatly diminished, p27 is expressed, and the cells are growth arrested. Overexpression of cyclin D1 or knockdown of p27 does not increase proliferation. After inactivation of the nuclear phosphoprotein Rb, the cell layers remain organized and cell proliferation increases only in the bottom layer. Furthermore, the expression of p63 remains confined to the bottom layer after Rb inactivation. Altogether, this in vitro model recapitulates certain aspects of in vivo growth regulation and differentiation and suggests that the loss of Rb family proteins in human cells trigger hyperplasia but is not sufficient for transformation.This work was supported by the Departments of Pathology and Urology at Weill Medial College, by grants DAMD-17-02-1-0159, MEDC-GR-355, and P30 CA015704-30, and by grant RO1CA84069 to B.E.C. 相似文献
11.
Fixation and epoxy-embedment of tissue culture clones in situ were carried out in Falcon tissue culture plates. The clone of cells, retained at one end of the casting, was stained with azure II-methylene blue and then studied with the oil immersion objective. The dimensions of the epoxy casting were ideal for mouting as a block in conventional ultramicrotone chucks. The use of one epoxy casting permits a single preparation of tissue culture clones for direct light microscopic observations and subsequently for ultramicrotomy. 相似文献
12.
Nagaoka H Mochida Y Atsawasuwan P Kaku M Kondoh T Yamauchi M 《Biochemical and biophysical research communications》2008,377(2):674-678
The active form of vitamin D, 1,25(OH)2D3, has a broad range of effects on bone, however, its role in the quality of bone matrix is not well understood. In this study, using an osteoblastic cell (MC3T3-E1) culture system, the effects of 1,25(OH)2D3 on collagen cross-linking and related enzymes, i.e., lysyl hydroxylases (LH1-3) and lysyl oxidases (LOX, LOXL1-4), were examined and compared to controls where cells were treated with cholecalciferol or ethanol. When compared to the controls, gene expressions of LH1, LH2b and LOXL2 were significantly upregulated by 1,25(OH)2D3 up to 72 h of culture. In addition, hydroxylysine (Hyl), Hyl aldehyde (Hylald), Hylald-derived cross-links and a total number of cross-links of collagen were significantly higher and the cross-link maturation was accelerated in the 1,25(OH)2D3 treated group. These results demonstrate that 1,25(OH)2D3 directly regulates collagen cross-linking in this culture system likely by upregulating gene expression of specific LH and LOX enzymes. 相似文献
13.
Altered response of vascular smooth muscle cells to exogenous biochemical stimulation in two- and three-dimensional culture 总被引:8,自引:0,他引:8
Removal of vascular smooth muscle cells (SMC) from their native environment alters the biochemical and mechanical signals responsible for maintaining normal cell function, causing a shift from a quiescent, contractile phenotype to a more proliferative, synthetic state. We examined the effect on SMC function of culture on two-dimensional (2D) substrates and in three-dimensional (3D) collagen Type I gels, including the effect of exogenous biochemical stimulation on gel compaction, cell proliferation, and expression of the contractile protein smooth muscle alpha-actin (SMA) in these systems. Embedding of SMC in 3D collagen matrices caused a marked decrease in both cell proliferation and expression of SMA. The presence of the extracellular matrix modulated cellular responses to platelet-derived growth factor BB, heparin, transforming growth factor-beta1, and endothelial cell-conditioned medium. Cell proliferation and SMA expression were shown to be inversely related, while gel compaction and SMA expression were not correlated. Taken together, these results show that SMC phenotype and function can be modulated using biochemical stimulation in vitro, but that the effects produced are dependent on the nature of the extracellular matrix. These findings have implications for the study of vascular biology in vitro, as well as for the development of engineered vascular tissues. 相似文献
14.
用组织块培养法对毛脚鵟不同组织进行原代培养,获得了3种不同组织来源的细胞,并成功对细胞进行了冷冻保存和复苏。在传代培养过程中,对比分析了3种组织来源细胞的形态学、生长曲线、贴壁率、核型等生物学特性。形态学方面,3种来源细胞均为成纤维样细胞。对于3种组织来源细胞的贴壁能力分析显示,输卵管源细胞最强,肺源细胞和气管源细胞次之。3种不同组织来源细胞的倍增时间分别为(29.91±0.39)、(33.18±0.21)和(30.67±0.28)h,群体倍增次数分别为3.54±0.01、4.52±0.02和4.38±0.03。毛脚鵟细胞的染色体数目为2n=68,性染色体为典型的ZW型。本实验为今后毛脚鵟细胞利用、遗传信息的保存及生物学特性的深入研究提供实验材料和依据。 相似文献
15.
Aim
Recent studies have emphasized the importance of the extracellular microenvironment in modulating cell growth, motility, and signalling. In this study we have evaluated the ability of a fibroblast derived-extracellular matrix (fd-ECM) to regulate type I collagen synthesis and degradation in fibroblasts.Main methods
Fibroblasts were plated on plastic (control) or on fd-ECM and type I collagen synthesis and degradation was evaluated. MTT, western blotting, real time PCR, zymographic analysis and inhibitor assays were utilised to investigate the molecular mechanism of type I collagen regulation by the fd-ECM.Key findings
Fibroblasts plated on fd-ECM showed significant downregulation in the production of type I collagen and COL1A2 messenger ribonucleic acid (mRNA) whilst COL1A1 mRNA remained unchanged. Cells grown on fd-ECM exhibited increased matrix metalloproteases (MMPs) and their corresponding mRNAs. The use of transforming growth factor β (TGF-β) and MMP inhibitors showed that the excess COL1A1 polypeptide chains were degraded by the combined action of MMP-1, MMP-2, MMP-9 and cathepsins.Significance
These results show the crucial role played by proteases in regulating extracellular matrix protein levels in the feedback regulation of connective tissue gene expression. 相似文献16.
Gordon VD Valentine MT Gardel ML Andor-Ardó D Dennison S Bogdanov AA Weitz DA Deisboeck TS 《Experimental cell research》2003,289(1):58-66
Rapid volumetric growth and extensive invasion into brain parenchyma are hallmarks of malignant neuroepithelial tumors in vivo. Little is known, however, about the mechanical impact of the growing brain tumor on its microenvironment. To better understand the environmental mechanical response, we used multiparticle tracking methods to probe the environment of a dynamically expanding, multicellular brain tumor spheroid that grew for 6 days in a three-dimensional Matrigel-based in vitro assay containing 1.0-microm latex beads. These beads act as reference markers for the gel, allowing us to image the spatial displacement of the tumor environment using high-resolution time-lapse video microscopy. The results show that the volumetrically expanding tumor spheroid pushes the gel outward and that this tumor-generated pressure propagates to a distance greater than the initial radius of the tumor spheroid. Intriguingly, beads near the tips of invasive cells are displaced inward, toward the advancing invasive cells. Furthermore, this localized cell traction correlates with a marked increase in total invasion area over the observation period. This case study presents evidence that an expanding microscopic tumor system exerts both significant mechanical pressure and significant traction on its microenvironment. 相似文献
17.
Alvena Kureshi Partha Vaiude Showan N. Nazhat Aviva Petrie Robert A. Brown 《Journal of biomechanics》2008,41(16):3462-3468
Inguinal herniation represents a common condition requiring surgical intervention. Despite being regarded as a connective tissue disorder of uncertain cause, research has focused predominantly on biochemical changes in the key tissue layer, the transversalis fascia (TF) with little direct analysis of functional tissue mechanics. Connective tissue tensile properties are dominated by collagen fibril density and architecture. This study has correlated mechanical properties of herniated TF (HTF) and non-herniated TF (NHTF) with fibrillar properties at the ultrastructural level by quasi-static tensile mechanical analysis and image analysis of collagen electron micrographs. No significant difference was found between any of the key mechanical properties (break stress, strain or modulus) for HTF and NHTF. In addition, no significant differences were found in average collagen fibril diameter, density or fibre bundle spacing. However, both groups displayed anisotropy with greater break stress (p=0.001) on average in the transverse anatomical plane compared to the longitudinal plane in a mean ratio of 2:1 (anisotropy ratio), though there was no evidence of a difference in this ratio for HTF and NHTF for both break stress and modulus. It was noted that this anisotropy ratio corresponds closely with the expected force distribution on a model cylindrical structure loaded axially. The absence of other functional differences does not support the idea of a failing (injured) tissue but is consistent with it being a tissue undergoing chronic growth/expansion under multi-vectored mechanical loading. These findings provide new clues to collagen tissue herniation for mathematical modelling and model tissue engineering. 相似文献
18.
19.
A simple kinetic model for myeloma cell culture with consideration of lysine limitation 总被引:1,自引:0,他引:1
A simple kinetic model is developed to describe the dynamic behavior of myeloma cell growth and cell metabolism. Glucose, glutamine as well as lysine are considered as growth limiting substrates. The cell growth was restricted as soon as the extracellular lysine is exhausted and then intracellular lysine becomes a growth limiting substrate. In addition, a metabolic regulator model together with the Monod model is used to deal with the growth lag phase after inoculation or feeding. By using these models, concentrations of substrates and metabolites, as well as densities of viable and dead cells are quantitatively described. One batch cultivation and two fed-batch cultivations with pulse feeding of nutrients are used to validate the model. 相似文献
20.
澳洲青苹组织培养再生体系的研究 总被引:1,自引:0,他引:1
通过对澳洲青苹茎尖培养及植株再生体系中无菌培养物的建立、初代培养、继代培养、生根培养和移栽五个技术环节的研究,建立了澳洲青苹组织培养快速繁殖技术体系。结果表明:(1)BA0.3~0.6mg/L NAA0.1~0.3mg/L的MS培养基能促进澳洲青苹茎尖生长或大量侧芽的分化,不定芽生长健壮;(2)无根幼苗在含有IBA0.6~1.0mg/L NAA0.1mg/L的1/2MS培养基上暗培养一周后,再进行自然光培养,30d生根率可达到78%以上;(3)生根苗经50mg/L NAA浸渍1~2h后,移入蛭石:腐殖土:田园土=2:1:1的移栽基质中,保温保湿,成活率达80%以上;(4)进一步建立了自然光下生根、练苗一次完成的同步化体系,缩短了繁育时间,简化了步骤,降低了成本。此技术体系为澳洲青苹优良种苗快速繁殖提供了一条新途径。 相似文献