首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bering Strait connection: dispersal and speciation in boreal macroalgae   总被引:1,自引:0,他引:1  
A large number of boreal seaweeds have either sibling species or conspecific populations of a single species in the North Pacific and North Atlantic Oceans. This pattern is thought to have arisen from the dispersal between the two oceans through the Arctic Ocean after the opening of the Bering Strait in the mid-to-late Miocene or earliest Pliocene and from subsequent vicariant speciation as the Arctic Ocean froze and Bering Strait closed intermittently during glacial periods. Recent molecular studies of species in all three major seaweed phyla reveal patterns of vicariance. However, a number of lines of evidence point to differences in origins of these clades; some appear to be Pacific in origin whereas others appear to be derived from Atlantic stock. Different origins can be explained by recent stratigraphic finds that push the first Cenozoic opening of the Bering Strait back from 3.1–4.1 to 4.8–7.4 Ma (million years ago). Northern hemisphere ocean circulation models suggest that water flow would have been from the North Atlantic–Arctic south through the Bering Strait prior to the closure of the Panamanian Isthmus c. 3.5 Ma in contrast to the northward flow from the Pacific into the Arctic and North Atlantic, which developed after the closing of the Isthmus. Despite these differences in timing of the two invasions, there are no significant differences in levels of relationships among species with a North Atlantic origin compared with species with a North Pacific origin based on currently available data. More work is required to understand vicariance in seaweeds, especially in deciphering when a speciation event has occurred.  相似文献   

2.
One of the longest, most detailed quantitative records of oceanographic change in the Cenozoic is that provided by oxygen isotope measurements made on the tests of foraminifera. As indicated by measurements on benthic foraminifera, the deep waters of the world ocean have undergone an overall cooling of about 10°C in the Cenozoic. This change has been neither monotonic nor gradual. Rather, it is evidenced by a few, relatively rapid increases in the 13O content of the benthic shells. These “steps” in the isotopic record have been associated with major evolutionary changes in the mean state of the deep ocean. The variance around this mean state has also changed through the Cenozoic. From relatively high variance in the Middle Eocene, the oceans showed low variance in the Late Eocene and Oligocene. In the Miocene the variance of the isotopic measurement again increased, reaching a maximum of short duration in the Middle Miocene. This maximum as well as that which occurred during the Late Pliocene and Quaternary, may be attributable to fluctuations in the isotopic composition of the oceans caused by growth and decay of large ice sheets.In the Late Miocene the benthic oxygen isotopes in Atlantic sites less than 3000 m deep have a higher variance than sites at similar depths in the Pacific and Indian Oceans. It is thought that this high variance results from long-term changes in the importance of the cool and salty North Atlantic Deep Water relative to that of the warmer and less saline Antarctic Intermediate Water at Atlantic sites between 1000 m and 3000 m water depth. Such significant differences in benthic isotopic variance between the ocean basins have been demonstrated only in post-Middle Miocene intervals.  相似文献   

3.
The Alcidae is a group of marine, wing-propelled diving birds known as auks that are distributed along the coasts of the northern oceans. It has been suggested that auks originated in the Pacific coastal shores as early as the Miocene, and dispersed to the Atlantic either through the Arctic coasts of Eurasia and North America (northern dispersal route), or through upwelling zones in the coastal areas of California to Florida (southern dispersal route), before the closure of the Isthmus of Panama in the Pliocene. These hypotheses have not been tested formally because proposed phylogenies failed to recover fully bifurcating, well-supported phylogenetic relationships among and within genera. We therefore constructed a large data set of mitochondrial and nuclear DNA sequences for 21 of the 23 species of extant auks. We also included sequences from two other extant and one extinct species retrieved from GenBank. Our analyses recovered a well-supported phylogenetic hypothesis among and within genera. Aethia is the only genus for which we could not obtain strong support for species relationships, probably due to incomplete lineage sorting. By applying a Bayesian method of molecular dating that allows for rate variation across lineages and genes, we showed that auks became an independent lineage in the Early Paleocene and radiated gradually from the Early Eocene to the Quaternary. Reconstruction of ancestral areas strongly suggests that auks originated in the Pacific during the Paleocene. The southern dispersal route seems to have favored the subsequent colonization of the northern Atlantic Ocean during the Eocene and Oligocene. The northern route across the Arctic Ocean was probably only used more recently after the opening of the Norwegian Sea in the Middle Miocene and the opening of the Bering Strait in the Late Miocene. We postulate that the ancestors of auks lived in a warmer world than that currently occupied by auks, and became gradually adapted to feeding in cool marine currents with high biomass productivity. Hence, warmer tropical waters are now a barrier for the dispersal of auks into the Southern Hemisphere, as it is for penguins in the opposite direction.  相似文献   

4.
Phylogenetics of Cancer crabs (Crustacea: Decapoda: Brachyura).   总被引:4,自引:0,他引:4  
We used morphological, mitochondrial DNA sequence, paleontological, and biogeographical information to examine the evolutionary history of crabs of the genus Cancer. Phylogenies inferred from adult morphology and DNA sequence of the cytochrome oxidase I (COI) gene were each well resolved and well supported, but differed substantially in topology. Four lines of evidence suggested that the COI data set accurately reflected Cancer phylogeny: (1) in the phylogeny inferred from morphological data, each Atlantic species was sister taxon to an ecologically similar Pacific species, suggesting convergence in morphology; (2) a single trans-Arctic dispersal event, as indicated by the phylogeny inferred from COI, is more parsimonious than two such dispersal events, as inferred from morphology; (3) test and application of a maximum likelihood molecular clock to the COI data yielded estimates of origin and speciation times that fit well with the fossil record; and (4) the tree inferred from the combined COI and morphology data was closely similar to the trees inferred from COI, although notably less well supported by the bootstrap. The phylogeny inferred from maximum likelihood analysis of COI suggested that Cancer originated in the North Pacific in the early Miocene, that the Atlantic species arose from a North Pacific ancestor, and that Cancer crabs invaded the Atlantic from the North Pacific 6-12 mya. This inferred invasion time is notably prior to most estimates of the date of submergence of the Bering Strait and the trans-Arctic interchange, but it agrees with fossil evidence placing at least one Cancer species in the Atlantic about 8 mya.  相似文献   

5.
Unravelling the genetic structure and phylogeographic patterns of deep-sea sharks is particularly challenging given the inherent difficulty in obtaining samples. The deep-sea shark Centroscymnus crepidater is a medium-sized benthopelagic species that exhibits a circumglobal distribution occurring both in the Atlantic and Indo-Pacific Oceans. Contrary to the wealth of phylogeographic studies focused on coastal sharks, the genetic structure of bathyal species remains largely unexplored. We used a fragment of the mitochondrial DNA control region, and microsatellite data, to examine genetic structure in C. crepidater collected from the Atlantic Ocean, Tasman Sea, and southern Pacific Ocean (Chatham Rise). Two deeply divergent (3.1%) mtDNA clades were recovered, with one clade including both Atlantic and Pacific specimens, and the other composed of Atlantic samples with a single specimen from the Pacific (Chatham Rise). Bayesian analyses estimated this splitting in the Miocene at about 15 million years ago. The ancestral C. crepidater lineage was probably widely distributed in the Atlantic and Indo-Pacific Oceans. The oceanic cooling observed during the Miocene due to an Antarctic glaciation and the Tethys closure caused changes in environmental conditions that presumably restricted gene flow between basins. Fluctuations in food resources in the Southern Ocean might have promoted the dispersal of C. crepidater throughout the northern Atlantic where habitat conditions were more suitable during the Miocene. The significant genetic structure revealed by microsatellite data suggests the existence of present-day barriers to gene flow between the Atlantic and Pacific populations most likely due to the influence of the Agulhas Current retroflection on prey movements.  相似文献   

6.
An allozyme investigation of 41 protein-coding loci in two morphologically similar fishes, Atlantic and Pacific cod, indicates that Pacific cod experienced a severe population bottleneck that led to the loss of gene diversity and gene expression. Pacific cod possesses a significantly lesser amount of gene diversity (H = 0.032) than Atlantic cod (H = 0.125) and lacks gene expression for Me-3. Allele-frequency distributions differ between species as predicted by neutral theory: Atlantic cod has a U-shaped distribution, which is expected for populations in drift-mutation equilibrium, whereas Pacific cod has a J-shaped distribution with an excess of low-frequency alleles. This excess may be explained by the appearance of new alleles through mutation which have not yet reached intermediate frequencies through drift. The population bottleneck in Pacific cod was most likely associated with founder populations that dispersed into the Pacific Ocean after the Bering Strait opened. Under the molecular-clock hypothesis a Nei genetic distance of 0.415 (based on 41 loci) suggests that Pacific cod dispersed into the Pacific Ocean soon after the Bering Strait opened in the mid-Pliocene, 3.0 to 3.5 million years ago.  相似文献   

7.
An analysis of the variability in the composition and distribution of Pacific Late Miocene calcareous nannoplankton about their average biogeography shows that there are primarily two environmental factors causing that variability, climate and dissolution. Climate produces a latitudinal, biogeographic differentiation of the Late Miocene nannoflora, while selective dissolution superimposes a bathymetric differentiation of the nannoflora on that due to climate. Together, these two factors produce three distinct Late Miocene nannofloral assemblages, a high-latitude, temperate assemblage characterized by Reticulofenestra pseudoumbilica and Coccolithus pelagicus, and two tropical assemblages, their differences in composition depending on water depth and surface-water productivity: (1) in shallower water and beneath areas of higher organic production and sedimentation of calcite there is an undissolved assemblage characterized by sphenoliths, small elliptical placoliths and Coccolithus pataecus; (2) in deeper water and areas of lower productivity there is a dissolved assemblage dominated by discoasters.Selective dissolution produces most of the apparent biogeographic variation in Pacific Late Miocene nannoplankton compositions, the variation in compositions observed between the seventeen sites studied. Dissolution preferentially removes the more soluble constituents of the tropical nannoflora so that increasing dissolution tends to give tropical nannoflora a cooler, more temperate aspect. At the same time, selective dissolution shifts the composition of the warmer, tropical component towards its more resistant taxa.Nannoplankton records show a period of greatly decreased calcite dissolution in deep tropical and temperate South Pacific sites between about 8 and 10 m.y. ago. This decrease is strongly correlated with a temporary increase in the 13C composition of Pacific deep waters. Calcite dissolution increased during this same period in the deep North Pacific.Nannoplankton records of Late Miocene climate in the tropics are distinctly different from those at higher, south temperate latitudes. Tropical records show a sharp warming in the earliest Late Miocene after a generally cool late Middle Miocene. This was followed by a temporary cooling, nearly to Middle Miocene levels, about 7 m.y. ago. Toward the end of the Late Miocene, the tropical Pacific warmed again and remained warm into the Pliocene. Warming of temperate climates occurred much later. Not until latest Miocene did the southern the Pliocene. Warming of temperate climates occurred much later. Not until latest Miocene did the southern temperate latitudes warm appreciably. Southern subpolar climate cooled continuously through the Late Miocene. We attribute the resulting increases in the latitudinal climatic contrast across the southern Pacific Ocean to the development and migration of a strong subtropical convergence.On the basis of the nannoplankton oceanographic records we postulate that beginning about 10.5 m.y. ago Pacific surface circulation became primarily zonal and the production of deep and bottom waters in the Southern Ocean increased sharply. This produced a northward decrease in calcite preservation, an increase in benthic 13C, and a strong climatic gradient across southern latitudes. The period of most vigorous deep Pacific circulation ended 7 m.y. ago in response, we speculate, to the reduced ocean salinities during the Messinian.  相似文献   

8.
9.
The first record of the knifejaw family Oplegnathidae in the Atlantic Ocean and in South America is reported. It comes from the lowermost beds of the Early Miocene Gaiman Formation at the lower Río Chubut valley, central-eastern Patagonia. The family Oplegnathidae does not occur in the Atlantic today, but it was widespread in comparison to other knifejaw fishes, such as scarids and odacids. Several aquatic vertebrates were extirpated from the southern Atlantic Ocean in the Late Neogene. This record establishes a minimal age (Early Miocene) for the extirpation of the family Oplegnathidae in the Atlantic Ocean.  相似文献   

10.
During the Late Miocene the Mediterranean experienced a period of extreme salinity fluctuations known as the Messinian Salinity Crisis (MSC). The causes of these high amplitude changes in salinity are not fully understood but are thought to be the result of restriction of flow between the Mediterranean and Atlantic, eustatic sea level change and climate. Results from a new Atmospheric General Circulation Model (AGCM) simulation of Late Miocene climate for the Mediterranean and adjacent regions are presented here. The model, HadAM3, was forced by a Late Miocene global palaeogeography, higher CO2 concentrations and prescribed sea surface temperatures. The results show that fluvial freshwater fluxes to the Mediterranean in the Late Miocene were around 3 times greater than for the present day. Most of this water was derived from North African rivers, which fed the Eastern Mediterranean. This increase in runoff arises from a northward shift in the intertropical convergence zone caused by a reduced latitudinal gradient in global sea surface temperatures. The northwards drainage of the Late Miocene Chad Basin also contributes. Numerical models designed to explore Late Miocene salt precipitation regimes in the Mediterranean, which typically make use of river discharge fluxes within a few tens of percent of present-day values, may therefore be grossly underestimating these fluxes.Although the AGCM simulated Late Miocene river discharge is high, the model predicts a smaller net hydrologic budget (river discharge plus precipitation minus evaporation) than for present day. We discuss a possible mechanism by which this change in the hydrologic budget, coupled with a reduced connection between the Mediterranean and the global ocean, could cause the salinity fluctuations of the MSC.  相似文献   

11.
Late Neogene stable isotope stratigraphy and planktonic foraminiferal biostratigraphy have been examined in a high sedimentation rate core (E67-135, Shell Oil Co.) drilled at 725 m water depth in the De Soto Canyon, Gulf of Mexico. The 305 m core contains sections that are Late Miocene, Early Pliocene, Late Pliocene, and Quaternary in age, and is rich in well-preserved assemblages of planktonic foraminifera.A biostratigraphy has been established based on the ranges of 34 selected species of foraminifera. The core 3orrelates with sections from the Gulf of Mexico, the Caribbean Sea, and the subtropical North and South Atlantic Oceans using, as datums, the evolutionary appearances of Globorotalia miocenica Palmer and Globorotalia margaritae evoluta Cita, the extinction of Globorotalia miocenica and the first appearance of Globorotalia truncatulinoides (d'Orbigny).Oxygen and carbon isotope stratigraphy is based on analysis of the benthonic foraminifer, Uvigerina d'Orbigny. Isotopic trends are similar to those observed in the Pacific and Atlantic Oceans. From Early Pliocene to Late Pleistocene time, average δ18O values increase (2.42‰ to 3.36‰) and exhibit a wider range of values (0.71‰ in Early Pliocene compared to 1.65‰ in Late Pleistocene sediments), probably reflecting Late Neogene climatic deterioration. The ratio 13C12C decreases significantly by ?0.21‰ from the Late Miocene to the Early Pliocene. A decrease in δ13C is observed in other cores and is probably related to changing oceanic circulation patterns in Late Miocene time.  相似文献   

12.
Twenty-seven radiolarian species and species groups are identified and used in this study. Their stratigraphic ranges span from Late Miocene to modern times and they appear to have distributions which have changed little over this interval of time. Census data for these 27 taxa in surface sediment samples are used to define six assemblages (Q-mode factors). The distribution of these assemblages are similar to modern water-mass distributions and can be statistically related to modern sea-surface temperatures.Census data on these same 27 taxa have been collected in the Upper Miocene intervals of six Pacific sites. These faunal data are described in terms of the modern radiolarian assemblages; and based on the multiple regression equations relating the modern assemblages to modern temperatures, estimates of Late Miocene temperatures are made. The estimated temperatures indicate that there is an overall cooling trend in the later part of the Miocene (magnetic Chron 8 to Chron 5), punctuated by several distinct cooling events. In August the low-latitude sites appear to be slightly cooler, and the mid-latitude sites warmer than in modern times. In February both the low- and mid-latitude sites appear to be warmer than modern temperatures at the same locations. The relatively warm temperatures near the base of the interval studied may be associated with the passage of warm tropical Atlantic waters into the eastern Pacific via the Isthmus of Panama. The general cooling trend seen in these records is thought to be associated with the gradual closure of these straits and the increased influence of the high southern latitudes.  相似文献   

13.
Aim We examined the phylogeography of the cold‐temperate macroalgal species Fucus distichus L., a key foundation species in rocky intertidal shores and the only Fucus species to occur naturally in both the North Pacific and the North Atlantic. Location North Pacific and North Atlantic oceans (42° to 77° N). Methods We genotyped individuals from 23 populations for a mitochondrial DNA (mtDNA) intergenic spacer (IGS) (n = 608) and the cytochrome c oxidase subunit I (COI) region (n = 276), as well as for six nuclear microsatellite loci (n = 592). Phylogeographic structure and connectivity were assessed using population genetic and phylogenetic network analyses. Results IGS mtDNA haplotype diversity was highest in the North Pacific, and divergence between Pacific haplotypes was much older than that of the single cluster of Atlantic haplotypes. Two ancestral Pacific IGS/COI clusters led to a widespread Atlantic cluster. High mtDNA and microsatellite diversities were observed in Prince William Sound, Alaska, 11 years after severe disturbance by the 1989 Exxon Valdez oil spill. Main conclusions At least two colonizations occurred from the older North Pacific populations to the North Atlantic between the opening of the Bering Strait and the onset of the Last Glacial Maximum. One colonization event was from the Japanese Archipelago/eastern Aleutians, and a second was from the Alaskan mainland around the Gulf of Alaska. Japanese populations probably arose from a single recolonization event from the eastern Aleutian Islands before the North Pacific–North Atlantic colonization. In the North Atlantic, the Last Glacial Maximum forced the species into at least two known glacial refugia: the Nova Scotia/Newfoundland (Canada) region and Andøya (northern Norway). The presence of two private haplotypes in the central Atlantic suggests the possibility of colonization from other refugia that are now too warm to support F. distichus. With the continuing decline in Arctic ice cover as a result of global climate change, renewed contact between North Pacific and North Atlantic populations of Fucus species is expected.  相似文献   

14.
Kelp aquaculture is globally developing steadily as human food source, along with other applications. One of the newer crop species is Saccharina latissima, a northern hemisphere kelp inhabiting temperate to arctic rocky shores. To protect and document its natural genetic variation at the onset of this novel aquaculture, as well as increase knowledge on its taxonomy and phylogeography, we collected new genetic data, both nuclear and mitochondrial, and combined it with previous knowledge to estimate genetic connectivity and infer colonization history. Isolation‐with‐migration coalescent analyses demonstrate that gene flow among the sampled locations is virtually nonexistent. An updated scenario for the origin and colonization history of S. latissima is developed as follows: We propose that the species (or species complex) originated in the northwest Pacific, crossed to the northeast Pacific in the Miocene, and then crossed the Bering Strait after its opening ~5.5 Ma into the Arctic and northeast Atlantic. It subsequently crossed the Atlantic from east to west. During the Pleistocene, it was compressed in the south with evidence for northern refugia in Europe. Postglacial recolonization led to secondary contact in the Canadian Arctic. Saccharina cichorioides is shown to probably belong to the S. latissima species complex and to derive from ancestral populations in the Asian North Pacific. Our novel approach of comparing inferred gene flow based on coalescent analysis versus Wright's island model suggests that equilibrium levels of differentiation have not yet been reached in Europe and, hence, that genetic differentiation is expected to increase further if populations are left undisturbed.  相似文献   

15.
The marine tropics contain five major biogeographic regions (East Pacific, Atlantic, Indian Ocean, Indo-Australian Archipelago (IAA) and Central Pacific). These regions are separated by both hard and soft barriers. Reconstructing ancestral vicariance, we evaluate the extent of temporal concordance in vicariance events across three major barriers (Terminal Tethyan Event (TTE), Isthmus of Panama (IOP), East Pacific Barrier, EPB) and two incomplete barriers (either side of the IAA) for the Labridae, Pomacentridae and Chaetodontidae. We found a marked lack of temporal congruence within and among the three fish families in vicariance events associated with the EPB, TTE and IOP. Vicariance across hard barriers separating the Atlantic and Indo-Pacific (TTE, IOP) is temporally diffuse, with many vicariance events preceding barrier formation. In marked contrast, soft barriers either side of the IAA hotspot support tightly concordant vicariance events (2.5 Myr on Indian Ocean side; 6 Myr on Central Pacific side). Temporal concordance in vicariance points to large-scale temporally restricted gene flow during the Late Miocene and Pliocene. Despite different and often complex histories, both hard and soft barriers have comparably strong effects on the evolution of coral reef taxa.  相似文献   

16.
The partial skull and mandible of an unidentified halitheriine dugongid, collected from the Early Miocene Nye Mudstone in Lincoln County, Oregon, USA, is the earliest record of the Sirenia in the eastern Pacific Ocean. It is probably earlier than Early or Middle Miocene sirenians recently found in Peru, and is definitely earlier than any known from California or Baja California. However, it appears to be slightly younger than fossil sirenian remains recently reported from Late Oligocene rocks in Japan. The Oregon specimen is also the most northern record of the Sirenia on the west coast of North America prior to the Pleistocene although other sirenians did evidently reach and surpass such latitudes by the Late Miocene when a dispersal took place from America to the North Pacific coasts of the Old World. The Oregon specimen probably represents sirenians that spread to the North Pacific from the Caribbean, quite possibly prior to the Miocene. The Nye Mudstone was deposited during the warmest period of the Neogene on the coast of Oregon, and it does not seem necessary to postulate a greater degree of cold-tolerance for the Oregon sirenian than is exhibited by living sea cows.  相似文献   

17.
Nuclear deoxyribonucleic acid sequences from approximately 15,000 salmon louse expressed sequence tags (ESTs), the complete mitochondrial genome (16,148bp) of salmon louse, and 16S ribosomal ribonucleic acid (rRNA) and cytochrome oxidase subunit I (COI) genes from 68 salmon lice collected from Japan, Alaska, and western Canada support a Pacific lineage of Lepeophtheirus salmonis that is distinct from that occurring in the Atlantic Ocean. On average, nuclear genes are 3.2% different, the complete mitochondrial genome is 7.1% different, and 16S rRNA and COI genes are 4.2% and 6.1% different, respectively. Reduced genetic diversity within the Pacific form of L. salmonis is consistent with an introduction into the Pacific from the Atlantic Ocean. The level of divergence is consistent with the hypothesis that the Pacific form of L. salmonis coevolved with Pacific salmon (Onchorhynchus spp.) and the Atlantic form coevolved with Atlantic salmonids (Salmo spp.) independently for the last 2.5–11 million years. The level of genetic divergence coincides with the opportunity for migration of fish between the Atlantic and Pacific Ocean basins via the Arctic Ocean with the opening of the Bering Strait, approximately 5 million years ago. The genetic differences may help explain apparent differences in pathogenicity and environmental sensitivity documented for the Atlantic and Pacific forms of L. salmonis. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Greenland is a continental island in the northern part of the North Atlantic where the foliose Bangiales flora is poorly known. It is an important area for the study of algal biogeography because of the region’s glacial history, in which Greenland has been alternately exposed to or isolated from the North Pacific via the Bering Strait. A molecular study using 3′ rbcL + 5′ rbcL–S sequences was undertaken to assess the diversity of foliose Bangiales on the west coast of Greenland and rbcL sequences were used to study the Greenland flora in a larger phylogenetic and floristic context. New and historic collections document seven species in four genera from the west coast of Greenland. All species had a close link to North Pacific species, being either conspecific with them or North Atlantic–North Pacific vicariant counterparts.  相似文献   

19.
Aim To test whether the radiation of the extremely rich Cape flora is correlated with marine‐driven climate change. Location Middle to Late Miocene in the south‐east Atlantic and the Benguela Upwelling System (BUS) off the west coast of South Africa. Methods We studied the palynology of the thoroughly dated Middle to Late Miocene sediments of Ocean Drilling Program (ODP) Site 1085 retrieved from the Atlantic off the mouth of the Orange River. Both marine upwelling and terrestrial input are recorded at this site, which allows a direct correlation between changes in the terrestrial flora and the marine BUS in the south‐east Atlantic. Results Pollen types from plants of tropical affinity disappeared, and those from the Cape flora gradually increased, between 10 and 6 Ma. Our data corroborate the inferred dating of the diversification in Aizoaceae c. 8 Ma. Main conclusions Inferred vegetation changes for the Late Miocene south‐western African coast are the disappearance of Podocarpus‐dominated Afromontane forests, and a change in the vegetation of the coastal plain from tropical grassland and thicket to semi‐arid succulent vegetation. These changes are indicative of an increased summer drought, and are in step with the development of the southern BUS. They pre‐date the Pliocene uplift of the East African escarpment, suggesting that this did not play a role in stimulating vegetation change. Some Fynbos elements were present throughout the recorded period (from 11 Ma), suggesting that at least some elements of this vegetation were already in place during the onset of the BUS. This is consistent with a marine‐driven climate change in south‐western Africa triggering substantial radiation in the terrestrial flora, especially in the Aizoaceae.  相似文献   

20.
Aim Our aims were: (1) to reconstruct a molecular phylogeny of the cephalaspidean opisthobranch genus Bulla, an inhabitant of shallow sedimentary environments; (2) to test if divergence times are consistent with Miocene and later vicariance among the four tropical marine biogeographical provinces; (3) to examine the phylogenetic status of possible Tethyan relict species; and (4) to infer the timing and causes of speciation events. Location Tropical and warm‐temperate regions of the Atlantic, Indo‐West Pacific, Australasia and eastern Pacific. Methods Ten of the 12 nominal species of Bulla were sampled, in a total sample of 65 individuals, together with cephalaspidean outgroups. Phylogenetic relationships were inferred by Bayesian analysis of partial sequences of the mitochondrial cytochrome c oxidase I (COI) and 16S rRNA and nuclear 28S rRNA genes. Divergence times and rates of evolution were estimated using uncorrelated relaxed‐clock Bayesian methods with fossil calibrations (based on literature review and examination of fossil specimens), implemented in beast . The geographical pattern of speciation was assessed by estimating the degree of overlap between sister lineages. Results Four clades were supported: Indo‐West Pacific (four species), Australasia (one species), Atlantic plus eastern Pacific (three species) and Atlantic (two species), with estimated mean ages of 35–46 Ma. Nominal species were monophyletic, but deep divergences were found within one Indo‐West Pacific and one West Atlantic species. Species‐level divergences occurred in the Miocene or earlier. The age of a sister relationship across the Isthmus of Panama was estimated at 7.9–32.1 Ma, and the divergence of a pair of sister species on either side of the Atlantic Ocean occurred 20.4–27.2 Ma. Main conclusions Fossils suggest that Bulla originated in the Tethys realm during the Middle Eocene. Average ages of the four main clades fall in the Eocene, and far pre‐date the 18–19 Ma closure of the Tethys Seaway. This discrepancy could indicate earlier vicariant events, selective extinction or errors of calibration. Similarly, the transisthmian divergence estimate far pre‐dates the uplift of the Panamanian Isthmus at about 3 Ma. Speciation events occurred in the Miocene, consistent with tectonic events in the central Indo‐West Pacific, isolation of the Arabian Sea by upwelling and westward trans‐Atlantic dispersal. Differences in habitat between sister species suggest that ecological speciation may also have played a role. The basal position of the Australasian species supports its interpretation as a Tethyan relict.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号