首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the synthesis and biological activity of a series of side-chain-constrained RGD peptides containing the (2S,3R) or (2S,3S) beta-methyl aspartic acid within the RGD sequence. These compounds have been assayed for binding to the integrin receptors alpha(IIb)beta3 and alpha(v)beta3 and the results demonstrate the importance of the side-chain orientation of this particular residue within the RGD sequence. Based on our findings, the (2S,3S) beta-methylated analogues of our RGD sequences maintain their binding potency to the integrin receptors while the (2S,3R) beta-methylated analogues exhibit a drastically reduced binding affinity. Our studies demonstrate that the three-dimensional orientation of the aspartyl side chain is a very important parameter for integrin binding and that small changes that affect the side-chain orientations give rise to drastic changes in binding affinity. These results provide important information for the design of more potent RGD mimetics.  相似文献   

2.
Mimetics of the RGD tripeptide are described that are potent, selective antagonists of the integrin receptor, alpha(v)beta(3). The use of the 5,6,7,8-tetrahydro[1,8]naphthyridine group as a potency-enhancing N-terminus is demonstrated. Two 3-substituted-3-amino-propionic acids previously contained in alpha(IIb)beta(3) antagonists were utilized to enhance binding affinity and functional activity for the targeted receptor. Further affinity increases were then achieved through the use of cyclic glycyl amide bond constraints.  相似文献   

3.
The integrin alpha(v)beta(3), vitronectin receptor, is expressed in a number of cell types and has been shown to mediate adhesion of osteoclasts to bone matrix, vascular smooth muscle cell migration, and angiogenesis. We recently disclosed the discovery of a tripeptide Arg-Gly-Asp (RGD) mimic, which has been shown to be a potent inhibitor of the integrin alpha(v)beta(3) and has excellent anti-angiogenic properties including its suppression of tumor growth in animal models. In other investigations involving RGD mimics, only compounds containing the S-isomers of the beta-amino acids have been shown to be potent. We were surprised to find the potencies of analogs containing enantiomerically pure S-isomers of beta-amino acids which were only marginally better than the corresponding racemic mixtures. We therefore synthesized RGD mimics containing R-isomers of beta-amino acids and found them to be relatively potent inhibitors of alpha(v)beta(3). One of the compounds was examined in tumor models in mice and has been shown to significantly reduce the rate of growth and the size of tumors.  相似文献   

4.
The binding of fibronectin (Fn) to several integrins involves the Arg-Gly-Asp (RGD) tripeptide sequence. However, linear synthetic RGD peptides do not completely mimic the cell attachment activity of intact Fn or certain large Fn fragments. This suggests that the integrin-Fn interaction involves a more extended surface of Fn than that provided by the RGD sequence. To test this possibility, three novel monoclonal anti-Fn antibodies that inhibit its binding to a purified integrin, alpha IIb beta 3, were developed. The epitopes of these three antibodies mapped to a region at least 55 residues amino-terminal of the RGD sequence. Further, recombinant fragments of Fn containing these epitopes and lacking the RGD site also inhibited the binding of Fn to purified alpha IIb beta 3. These fragments, which spanned Fn residues 1359-1436, bound to alpha IIb beta 3 in a divalent cation-dependent manner. In addition, this region of Fn bound specifically to alpha IIb beta 3 on thrombin-stimulated but not resting platelets. These results demonstrate the presence of additional sequences in Fn that interact with integrin alpha IIb beta 3 and suggest that multiple sites in Fn are involved in its recognition by this integrin.  相似文献   

5.
A small library of cyclic RGD pentapeptide mimics incorporating stereoisomeric 5,6- and 5,7-fused bicyclic lactams was synthesized. This library was found to contain high-affinity ligands for the alpha(v)beta3 integrin. The aim of this study was to investigate activity, selectivity, and structure of these ligands in order to identify new specific alpha(v)-integrin antagonists that could be evaluated as tumor angiogenesis inhibitors. In vitro screening, including receptor-binding assays to purified alpha(v)beta3, alpha(v)beta5, and alpha5beta1 integrins, and platelet aggregation assay, revealed ST1646 as a potent, highly selective alpha(v)beta3/alpha(v)beta5 integrin antagonist. Structure determination of the cyclic RGD pentapeptide mimics performed by a combination of NMR spectroscopy, and molecular mechanics and dynamics calculations showed a strong dependence of the RGD cyclopeptide conformation on lactam ring size and stereochemistry. ST1646 revealed the highest ability within the library to adopt the proper RGD orientation required for binding to the alpha(v)beta3 integrin, as deduced from the recently solved crystal structure of the extracellular segment of integrin alpha(v)beta3 in complex with a cyclic pentapeptide ligand.  相似文献   

6.
Integrin alpha(v)beta(3) is an adhesion molecule involved in tumor invasion, angiogenesis, and metastasis. There is substantial interest in developing novel agents that bind to integrin alpha(v)beta(3). Here we report the synthesis and characterization of a fluorescent integrin alpha(v)beta(3) probe and its use in a nonradioactive, simple, sensitive fluorescence polarization (FP) assay to quantify binding to integrin alpha(v)beta(3). For assay validation, the FP assay was compared to a cell adhesion assay. In the two assays, probe binding to integrin alpha(v)beta(3) showed a similar dependence on probe concentration. The FP assay was successfully applied to measure the binding affinity to integrin alpha(v)beta(3) of several cyclic peptides containing the Arg-Gly-Asp (RGD) motif. The FP assay we describe here may be appropriate for high-throughput screening for integrin alpha(v)beta(3)-binding ligands used for anti-integrin therapy or noninvasive imaging of integrin expression.  相似文献   

7.
The NC1 domains of human type IV collagen, in particular alpha3NC1, are inhibitors of angiogenesis and tumor growth (Petitclerc, E., Boutaud, A., Prestayko, A., Xu, J., Sado, Y., Ninomiya, Y., Sarras, M. P., Jr., Hudson, B. G., and Brooks, P. C. (2000) J. Biol. Chem. 275, 8051-8061). The recombinant alpha3NC1 domain contained a RGD site as part of a short collagenous sequence at the N terminus, designated herein as RGD-alpha3NC1. Others, using synthetic peptides, have concluded that this RGD site is nonfunctional in cell adhesion, and therefore, the anti-angiogenic activity is attributed exclusively to alpha(v)beta(3) integrin interactions with non-RGD motifs of the RGD-alpha3NC1 domain (Maeshima, Y., Colorado, P. C., and Kalluri, R. (2000) J. Biol. Chem. 275, 23745-23750). This nonfunctionality is surprising given that RGD is a binding site for alpha(v)beta(3) integrin in several proteins. In the present study, we used the alpha3NC1 domain with or without the RGD site, expressed in HEK 293 cells for native conformation, as an alternative approach to synthetic peptides to assess the functionality of the RGD site and non-RGD motifs. Our results demonstrate a predominant role of the RGD site for endothelial adhesion and for binding of alpha(v)beta(3) and alpha(v)beta(5) integrins. Moreover, we demonstrate that the two non-RGD peptides, previously identified as the alpha(v)beta(3) integrin-binding sites of the alpha3NC1 domain, are 10-fold less potent in competing for integrin binding than the native protein, indicating the importance of additional structural and/or conformational features of the alpha3NC1 domain for integrin binding. Therefore, the RGD site, in addition to non-RGD motifs, may contribute to the mechanisms of endothelial cell adhesion in the human vasculature and the anti-angiogenic activity of the RGD-alpha3NC1 domain.  相似文献   

8.
Glycoprotein (GP) IIb-IIIa is the major fibrinogen receptor on platelets and participates in platelet aggregation at the site of a wound. Integrin alpha v beta 3, which contains an identical beta-subunit, is expressed on endothelial cells and also serves as a fibrinogen receptor. Here, we demonstrate by several criteria that purified GPIIb-IIIa and integrin alpha v beta 3 bind to distinct sites on fibrinogen. First, a plasmin-generated fragment of fibrinogen lacking the RGD sequence at residues 572-574 retained the ability to bind GPIIb-IIIa, but failed to bind integrin alpha v beta 3. Second, a monoclonal antibody which exclusively recognizes the RGD sequence at fibrinogen A alpha chain residues 572-574 abolished interaction between integrin alpha v beta 3 and fibrinogen, but had only a minimal effect on fibrinogen binding to GPIIb-IIIa. Finally, we show that the difference in recognition of sites on fibrinogen by these two integrins is probably a consequence of their remarkably different ligand binding properties. Peptides corresponding to fibrinogen gamma chain residues 400-411 effectively blocked RGD sequence and fibrinogen binding by GPIIb-IIIa, but had no effect on the ability of integrin alpha v beta 3 to bind these ligands. We also show that integrin alpha v beta 3 has a higher affinity than GPIIb-IIIa for a synthetic hexapeptide containing the RGD sequence. In fact, this RGD-containing peptide was 150-fold more effective at blocking fibrinogen binding to integrin alpha v beta 3 than to GPIIb-IIIa. Collectively, our results demonstrate that integrins alpha v beta 3 and GPIIb-IIIa display qualitative and quantitative differences in their ligand binding properties, as is evident by their ability to interact with synthetic peptides. The ultimate result of these differences is the recognition of distinct sites on fibrinogen by the two integrins. These observations may have relevance in the processes of hemostasis and wound healing.  相似文献   

9.
The integrin alpha(v)beta(3) is the major receptor mediating the attachment of osteoclasts to the extracellular matrix in bone and plays a critical role in bone resorption and bone remodeling. Most of the ligands interacting with the alpha(v)beta(3) receptor contain an Arg-Gly-Asp (RGD) motif. Recently, we have identified two small RGD peptides, containing a benzophenone moiety at either the carboxyl or amino terminus, that photo-cross-linked within the beta(3)[99-118] [Bitan, G., et al. (1999) Biochemistry 38, 3414-3420] or the beta(3)[167-171] [Bitan, G., et al. (2000) Biochemistry 39, 11014-11023] sequence, respectively, of the alpha(v)beta(3) receptor in a selective fashion. Here, we report the synthesis of a photoreactive analogue of echistatin (a 49-amino acid peptide), a potent RGD-containing antagonist of the alpha(v)beta(3) receptor both in vitro and in vivo. This bioactive analogue is substituted at position 45 with a p-benzoyl moiety (pBz(2)), located within the flexible C-terminal domain and removed 20 amino acid residues from the R(24)GD(26) triad. This C-terminal domain was reported to contribute to receptor binding affinity by acting as an auxiliary binding site. The radiolabeled (125)I-[Arg(35),Lys(45)(N(epsilon)-pBz(2))]-echistatin photo-cross-links effectively to a site within the beta(3)[209-220] sequence. Residues in this domain have been reported to be part of the metal ion-dependent adhesion site (MIDAS). Receptor fragments overlapping this domain were reported to bind to fibrinogen and block fibrinogen binding to alpha(IIb)beta(3), the platelet integrin receptor. Taken together, position 45 in echistatin, located within an auxiliary binding site in echistatin, cross-links to a site distinct from the two previously reported sites, beta(3)[99-118] and beta(3)[167-171], which cross-link to photophores flanking the RGD triad. These cross-linking data support the hypothesis that the ligand-bound conformation of the integrin beta(3) subunit differs from the known conformation of I domains.  相似文献   

10.
Two highly homologous dimeric disintegrins, CC5 and CC8, have been isolated from the venom of the North African sand viper Cerastes cerastes. CC5 is a homodimer containing an RGD motif in its subunits. CC8 is a heterodimer. The CC8A and CC8B subunits contain RGD and WGD tripeptide sequence in their respective integrin-binding loops. Both CC5 and CC8 inhibited platelet aggregation and the adhesion of cells expressing integrins alphaII(b)beta3, alpha(v)beta3, and alpha5beta1 to appropriate ligands. However, the inhibitory activity of CC8 was at least 1 order of magnitude higher than that of CC5. Enhanced activity of CC8 over CC5 was also observed in the induction of LIBS epitopes on beta1 and beta3 integrins. Synthetic peptides in which the arginyl residue of the RGD motif had been replaced with tryptophans exhibited increased inhibitory activity toward integrins alpha5beta1, alphaII(b)beta3, and alpha(v)beta3. Moreover, alanine substitution of the aspartic acid of the WGD motif of these peptides decreased their inhibitory ability, whereas the same substitution in the RGD sequence almost completely abolished the activity of the peptides. We conclude that the WGD motif enhances the inhibitory activity of disintegrins toward alphaII(b)beta3, alpha(v)beta3, and alpha5beta1 integrins.  相似文献   

11.
We describe the synthesis and structure/activity relationship of RGD mimetics that are potent inhibitors of the integrin alpha(v)beta3. Indol-1-yl propionic acids containing a variety of basic moieties at the 5-position, as well as substitutions alpha and beta to the carboxy terminus were synthesized and evaluated. Novel compounds with improved potency have been identified.  相似文献   

12.
There are key differences between the amino acid residues of the RGD loops and the C termini of echistatin, a potent antagonist of alpha(IIb)beta(3), alpha(v)beta(3) and alpha(5)beta(1), and eristostatin, a similar disintegrin selectively inhibiting alpha(IIb)beta(3). In order to identify echistatin motifs required for selective recognition of alpha(v)beta(3) and alpha(5)beta(1) integrins, we expressed recombinant echistatin, eristostatin, and 15 hybrid molecules. We tested them for their ability to inhibit adhesion of different cell lines to fibronectin and von Willebrand factor and to express ligand-induced binding site epitope. The results showed that Asp(27) and Met(28) support recognition of both alpha(v)beta(3) and alpha(5)beta(1). Replacement of Met(28) with Asn completely abolished echistatin's ability to recognize each of the integrins, while replacement of Met(28) with Leu selectively decreased echistatin's ability to recognize alpha(5)beta(1) only. Eristostatin in which C-terminal WNG sequence was substituted with HKGPAT exhibited new activity with alpha(5)beta(1), which was 10-20-fold higher than that of wild type eristostatin. A hypothesis is proposed that the C terminus of echistatin interacts with separate sites on beta(1) and beta(3) integrin molecules.  相似文献   

13.
14.
The best-characterized receptors for adenoviruses (Ads) are the coxsackievirus-Ad receptor (CAR) and integrins alpha(v)beta(5) and alpha(v)beta(3), which facilitate entry. The alpha(v) integrins recognize an Arg-Gly-Asp (RGD) motif found in some extracellular matrix proteins and in the penton base in most human Ads. Using a canine adenovirus type 2 (CAV-2) vector, we found that CHO cells that express CAR but not wild-type CHO cells are susceptible to CAV-2 transduction. Cells expressing alpha(M)beta(2) integrins or major histocompatibility complex class I (MHC-I) molecules but which do not express CAR were not transduced. Binding assays showed that CAV-2 attaches to a recombinant soluble form of CAR and that Ad type 5 (Ad5) fiber, penton base, and an anti-CAR antibody partially blocked attachment. Using fluorescently labeled CAV-2 particles, we found that in some cells nonpermissive for transduction, inhibition was at the point of internalization and not attachment. The transduction efficiency of CAV-2, which lacks an RGD motif, surprisingly mimicked that of Ad5 when tested in cells selectively expressing alpha(v)beta(5) and alpha(v)beta(3) integrins. Our results demonstrate that CAV-2 transduction is augmented by CAR and possibly by alpha(v)beta(5), though transduction can be CAR and alpha(v)beta(3/5) independent but is alpha(M)beta(2), MHC-I, and RGD independent, demonstrating a transduction mechanism which is distinct from that of Ad2/5.  相似文献   

15.
Small constrained non-peptidic molecules consisting of a polyfunctionalized rigid core, carrying appendages corresponding to arginine and aspartic acid side chains, have been recently reported to be promising for drug development. In this work, the 5,6-dihydropyridin-2-one was envisaged as a scaffold to turn into potential integrin ligands, introducing a carboxylic acid and a basic appendage. The synthesis and the antiadhesion activity of a small library of peptidomimetics capable to recognize alpha(v)beta(3) and alpha(5)beta(1) integrins has been herein reported.  相似文献   

16.
Hemostasis and thrombosis (blood clotting) involve fibrinogen binding to integrin alpha(IIb)beta(3) on platelets, resulting in platelet aggregation. alpha(v)beta(3) binds fibrinogen via an Arg-Asp-Gly (RGD) motif in fibrinogen's alpha subunit. alpha(IIb)beta(3) also binds to fibrinogen; however, it does so via an unstructured RGD-lacking C-terminal region of the gamma subunit (gammaC peptide). These distinct modes of fibrinogen binding enable alpha(IIb)beta(3) and alpha(v)beta(3) to function cooperatively in hemostasis. In this study, crystal structures reveal the integrin alpha(IIb)beta(3)-gammaC peptide interface, and, for comparison, integrin alpha(IIb)beta(3) bound to a lamprey gammaC primordial RGD motif. Compared with RGD, the GAKQAGDV motif in gammaC adopts a different backbone configuration and binds over a more extended region. The integrin metal ion-dependent adhesion site (MIDAS) Mg(2+) ion binds the gammaC Asp side chain. The adjacent to MIDAS (ADMIDAS) Ca(2+) ion binds the gammaC C terminus, revealing a contribution for ADMIDAS in ligand binding. Structural data from this natively disordered gammaC peptide enhances our understanding of the involvement of gammaC peptide and integrin alpha(IIb)beta(3) in hemostasis and thrombosis.  相似文献   

17.
Protein microarray is an emerging technology that makes high-throughput analysis possible for protein-protein interactions and analysis of proteome and biomarkers in parallel. The authors investigated the application of a novel protein microarray chip, ProteoChip, in new drug discovery. Integrin alpha(v)beta(3) microarray immobilized on the ProteoChip was employed to screen new active peptides against the integrin from multiple hexapeptide sublibraries of a positional scanning synthetic peptide combinatorial library (PS-SPCL). The integrin alpha(v)beta(3)-vitronectin interaction was successfully demonstrated on the integrin microarray in a dose-dependent manner and was inhibited not only by the synthetic RGD peptide but also by various integrin antagonists on the integrin microarray chip. Novel peptide ligands with high affinity to the integrin were also identified from the peptide libraries with this chip-based screening system by a competitive inhibition assay in a simultaneous and high-throughput fashion. The authors have confirmed antiangiogenic functions of the novel peptides thus screened through an in vitro and in vivo angiogenesis assay. These results provide evidence that the ProteoChip is a promising tool for high-throughput screening of lead molecules in new drug development.  相似文献   

18.
Akula SM  Pramod NP  Wang FZ  Chandran B 《Cell》2002,108(3):407-419
Human herpesvirus-8 (HHV-8) is implicated in the pathogenesis of Kaposi's sarcoma. HHV-8 envelope glycoprotein B possesses the RGD motif known to interact with integrin molecules, and HHV-8 infectivity was inhibited by RGD peptides, antibodies against RGD-dependent alpha3 and beta1 integrins, and by soluble alpha3beta1 integrin. Expression of human alpha3 integrin increased the infectivity of virus for Chinese hamster ovary cells. Anti-gB antibodies immunoprecipitated the virus-alpha3 and -beta1 complexes, and virus binding studies suggest a role for alpha3beta1 in HHV-8 entry. Further, HHV-8 infection induced the integrin-mediated activation of focal adhesion kinase (FAK). These findings implicate a role for alpha3beta1 integrin and the associated signaling pathways in HHV-8 entry into the target cells.  相似文献   

19.
Tumor metastasis involves many stage-specific adhesive interactions. The expression of several cell adhesion molecules, notably the integrin alpha(v)beta(3), has been associated with the metastatic potential of tumor cells. In this study, we used a novel in vitro assay to examine the role of alpha(v)beta(3) in the transmigration of melanoma cells through a monolayer of human lung microvascular endothelial cells. Confocal microscopy revealed the presence of the integrin alpha(v)beta(3) on melanoma membrane protrusions and pseudopods penetrating the endothelial junction. alpha(v)beta(3) was also enriched in heterotypic contacts between endothelial cells and melanoma cells. Transendothelial migration of melanoma cells was inhibited by either a cyclic Arg-Gly-Asp peptide or the anti-alpha(v)beta(3) monoclonal antibody LM609. Although both platelet endothelial cell adhesion molecule-1 and L1 are known to bind integrin alpha(v)beta(3), only L1 serves as a potential ligand for alpha(v)beta(3) during melanoma transendothelial migration. Also, polyclonal antibodies against L1 partially inhibited the transendothelial migration of melanoma cells. However, addition of both L1 and alpha(v)beta(3) antibodies did not show additive effects, suggesting that they are components of the same adhesion system. Together, the data suggest that interactions between the integrin alpha(v)beta(3) on melanoma cells and L1 on endothelial cells play an important role in the transendothelial migration of melanoma cells.  相似文献   

20.
Tumor endothelial marker (TEM) 5 is a member of the adhesion family of G-protein-coupled receptors and up-regulated in endothelial cells during tumor and physiologic angiogenesis. Here, we report that TEM5 is expressed on the surface of endothelial cells. A soluble TEM5 (sTEM5) fragment is shed by endothelial cells during capillary-like network formation and upon growth factor stimulation. We found that sTEM5 binds to several glycosaminoglycans. Furthermore, sequence analysis and functional and biochemical studies revealed that sTEM5 contains a cryptic RGD-binding site for integrin alpha(v)beta3. Matrix metalloprotease 9-processed, but not full-length, sTEM5 mediated endothelial cell adhesion by direct interaction with integrin alpha(v)beta3. Adhesion to proteolytically processed sTEM5 (ppsTEM5) or glycosaminoglycan-bound ppsTEM5 promoted survival of growth factor deprived endothelial cells. ppsTEM5-mediated cell survival was inhibited by a function blocking integrin alpha(v)beta3 antibody. Based on our results we conclude that sTEM5 is shed by endothelial cells during angiogenesis and binds to glycosaminoglycans present on extracellular matrix and cell surface proteoglycans. Further proteolytic processing of sTEM5 leads to exposure of its RGD motif mediating endothelial cell survival by linking integrin alpha(v)beta3 to glycosaminoglycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号