首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently reported that a sequence variant in the cell-cycle-checkpoint kinase CHEK2 (CHEK2 1100delC) is a low-penetrance breast cancer-susceptibility allele in noncarriers of BRCA1 or BRCA2 mutations. To investigate whether other CHEK2 variants confer susceptibility to breast cancer, we screened the full CHEK2 coding sequence in BRCA1/2-negative breast cancer cases from 89 pedigrees with three or more cases of breast cancer. We identified one novel germline variant, R117G, in two separate families. To evaluate the possible association of R117G and two germline variants reported elsewhere, R145W and I157T with breast cancer, we screened 737 BRCA1/2-negative familial breast cancer cases from 605 families, 459 BRCA1/2-positive cases from 335 families, and 723 controls from the United Kingdom, the Netherlands, and North America. All three variants were rare in all groups, and none occurred at significantly elevated frequency in familial breast cancer cases compared with controls. These results indicate that 1100delC may be the only CHEK2 allele that makes an appreciable contribution to breast cancer susceptibility.  相似文献   

2.
Previous studies of families with multiple cases of breast cancer have indicated that a frameshift alteration in the CHEK2 gene, 1100delC, is associated with an elevated frequency of breast cancer in such families, but the risk associated with the variant in other situations is uncertain. To evaluate the breast cancer risk associated with this variant, 10,860 breast cancer cases and 9,065 controls from 10 case-control studies in five countries were genotyped. CHEK2*1100delC was found in 201 cases (1.9%) and 64 controls (0.7%) (estimated odds ratio 2.34; 95% CI 1.72–3.20; P=.0000001). There was some evidence of a higher prevalence of CHEK2*1100delC among cases with a first-degree relative affected with breast cancer (odds ratio 1.44; 95% CI 0.93–2.23; P=.10) and of a trend for a higher breast cancer odds ratio at younger ages at diagnosis (P=.002). These results confirm that CHEK2*1100delC confers an increased risk of breast cancer and that this risk is apparent in women unselected for family history. The results are consistent with the hypothesis that CHEK2*1100delC multiplies the risks associated with susceptibility alleles in other genes to increase the risk of breast cancer.  相似文献   

3.
Because of genetic heterogeneity, the identification of breast cancer-susceptibility genes has proven to be exceedingly difficult. Here, we define a new subset of families with breast cancer characterized by the presence of colorectal cancer cases. The 1100delC variant of the cell cycle checkpoint kinase CHEK2 gene was present in 18% of 55 families with hereditary breast and colorectal cancer (HBCC) as compared with 4% of 380 families with non-HBCC (P<.001), thus providing genetic evidence for the HBCC phenotype. The CHEK2 1100delC mutation was, however, not the major predisposing factor for the HBCC phenotype but appeared to act in synergy with another, as-yet-unknown susceptibility gene(s). The unequivocal definition of the HBCC phenotype opens new avenues to search for this putative HBCC-susceptibility gene.  相似文献   

4.
A single founder allele of the CHEK2 gene has been associated with predisposition to breast and prostate cancer in North America and Europe. The CHEK2 protein participates in the DNA damage response in many cell types and is therefore a good candidate for a multisite cancer susceptibility gene. Three founder alleles are present in Poland. Two of these result in a truncated CHEK2 protein, and the other is a missense substitution of an isoleucine for a threonine. We ascertained the prevalence of each of these alleles in 4,008 cancer cases and 4,000 controls, all from Poland. The majority of the common cancer sites were represented. Positive associations with protein-truncating alleles were seen for cancers of the thyroid (odds ratio [OR] 4.9; P=.0006), breast (OR 2.2; P=.02), and prostate (OR 2.2; P=.04). The missense variant I157T was associated with an increased risk of breast cancer (OR 1.4; P=.02), colon cancer (OR 2.0; P=.001), kidney cancer (OR 2.1; P=.0006), prostate cancer (OR 1.7; P=.002), and thyroid cancer (OR 1.9; P=.04). The range of cancers associated with mutations of the CHEK2 gene may be much greater than previously thought.  相似文献   

5.
Frequencies of the 538insC mutation in the BRCA1 gene and the 1100delC mutation in the CHEK2 gene were compared in the group of breast cancer patients and the large-scale sample, consisting of 7920 DNA specimens from healthy residents of the city of Novosibirsk. Higher frequencies of these mutations in the patient group compared to the control sample (1.95 versus 0.25% for BRCA1 5382insC, and 1.78 versus 0.40% for CHEK2 1100delC) were observed, pointing to their association with susceptibility to breast cancer (OR = = 7.86, 95% CI 3.51-17.30 and OR =4.46, 95% C1 2.04-9.49, respectively).  相似文献   

6.
Checkpoint kinase 2 gene (CHEK2) alterations increase risk of several cancer types. We analyzed selected CHEK2 alterations in 270 Czech pancreatic cancer patients and in 683 healthy controls. The pancreatic cancer risk was higher in individuals who inherited rare alterations in CHEK2 region involving forkhead-associated domain other than I157T (OR = 5.14; 95% CI = 0.94–28.23) but the observed association was non-significant (p = 0.057). The most frequent I157T mutation did not alter the pancreatic cancer risk and neither the followed deletion of 5395 bp nor c.1100delC were found in any of pancreatic cases. We conclude that the I157T, other alterations in its proximity, del5395 and c.1100delC in CHEK2 do not predispose to pancreatic cancer risk in the Czech population.  相似文献   

7.
Signal transduction via guanine nucleotide binding proteins (G proteins) is involved in cardiovascular, neural, endocrine, and immune cell function. Regulators of G protein signaling (RGS proteins) speed the turn-off of G protein signals and inhibit signal transduction, but the in vivo roles of RGS proteins remain poorly defined. To overcome the redundancy of RGS functions and reveal the total contribution of RGS regulation at the Galpha(i2) subunit, we prepared a genomic knock-in of the RGS-insensitive G184S Gnai2 allele. The Galpha(i2)(G184S) knock-in mice show a dramatic and complex phenotype affecting multiple organ systems (heart, myeloid, skeletal, and central nervous system). Both homozygotes and heterozygotes demonstrate reduced viability and decreased body weight. Other phenotypes include shortened long bones, a markedly enlarged spleen, elevated neutrophil counts, an enlarged heart, and behavioral hyperactivity. Heterozygous Galpha(i2)(+/G184S) mice show some but not all of these abnormalities. Thus, loss of RGS actions at Galpha(i2) produces a dramatic and pleiotropic phenotype which is more evident than the phenotype seen for individual RGS protein knockouts.  相似文献   

8.

Background

Chromosomal breakage followed by faulty DNA repair leads to gene amplifications and deletions in cancers. However, the mere assessment of the extent of genomic changes, amplifications and deletions may reduce the complexity of genomic data observed by array comparative genomic hybridization (array CGH). We present here a novel approach to array CGH data analysis, which focuses on putative breakpoints responsible for rearrangements within the genome.

Results

We performed array comparative genomic hybridization in 29 primary tumors from high risk patients with breast cancer. The specimens were flow sorted according to ploidy to increase tumor cell purity prior to array CGH. We describe the number of chromosomal breaks as well as the patterns of breaks on individual chromosomes in each tumor. There were differences in chromosomal breakage patterns between the 3 clinical subtypes of breast cancers, although the highest density of breaks occurred at chromosome 17 in all subtypes, suggesting a particular proclivity of this chromosome for breaks. We also observed chromothripsis affecting various chromosomes in 41% of high risk breast cancers.

Conclusions

Our results provide a new insight into the genomic complexity of breast cancer. Genomic instability dependent on chromosomal breakage events is not stochastic, targeting some chromosomes clearly more than others. We report a much higher percentage of chromothripsis than described previously in other cancers and this suggests that massive genomic rearrangements occurring in a single catastrophic event may shape many breast cancer genomes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-579) contains supplementary material, which is available to authorized users.  相似文献   

9.
BackgroundThe cell cycle checkpoint kinase 2 (CHEK2) protein participates in the DNA damage response in many cell types. Germline mutations in CHEK2 (1100delC, IVS2+1G>A and I157T) have been impaired serine/threonine kinase activity and associated with a range of cancer types. This hospital-based case–control study aimed to investigate whether CHEK2 1100delC, IVS2+1G>A and I157T mutations play an important role in the development of colorectal cancer (CRC) in Turkish population.MethodsA total of 210 CRC cases and 446 cancer-free controls were genotyped for CHEK2 mutations by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and allele specific-polymerase chain reaction (AS-PCR) methods.ResultsWe did not find the CHEK2 1100delC, IVS2+1G>A and I157T mutations in any of the Turkish subjects.ConclusionOur result demonstrate for the first time that CHEK2 1100delC, IVS2+1G>A and I157T mutations have not been agenetic susceptibility factor for CRC in the Turkish population. Overall, our data suggest that genotyping of CHEK2 mutations in clinical settings in the Turkish population should not be recommended. However, independent studies are need to validate our findings in a larger series, as well as in patients of different ethnic origins.  相似文献   

10.
Alterations in DNA copy number contribute to the development and progression of cancers and are common in epithelial tumors. We have used array Comparative Genomic Hybridization (aCGH) to visualize DNA copy number alterations across the genomes of lung tumors in the Kras(LA2) model of lung cancer. Copy number gain involving the Kras locus, as focal amplification or whole chromosome gain, is the most common alteration in these tumors and with a prevalence that increased significantly with increasing tumor size. Furthermore, Kras amplification was the only major genomic event among the smallest lung tumors, suggesting that this alteration occurs early during the development of mutant Kras-driven lung cancers. Recurring gains and deletions of other chromosomes occur progressively more frequently among larger tumors. These results are in contrast to a previous aCGH analysis of lung tumors from Kras(LA2) mice on a mixed genetic background, in which relatively few DNA copy number alterations were observed regardless of tumor size. Our model features the Kras(LA2) allele on the inbred FVB/N mouse strain, and in this genetic background, there is a highly statistically significant increase in level of genomic instability with increasing tumor size. These data suggest that recurring DNA copy alterations are important for tumor progression in the Kras(LA2) model of lung cancer and that the requirement for these alterations may be dependent on the genetic background of the mouse strain.  相似文献   

11.
12.
Alu-PCR is a relatively simple technique that can be used to investigate genomic instability in cancer. This technique allows identification of the loss, gain or amplification of gene sequences based on the analysis of segments between two Alu elements coupled with quantitative and qualitative analyses of the profiles obtained from tumor samples, surgical margins and blood. In this work, we used Alu-PCR to identify gene alterations in ten patients with invasive ductal breast cancer. Several deletions and insertions were identified, indicating genomic instability in the tumor and adjacent normal tissue. Although not associated with specific genes, the alterations, which involved chromosomal bands 1p36.23, 1q41, 11q14.3, 13q14.2, occurred in areas of well-known genomic instability in breast and other types of cancer. These results indicate the potential usefulness of Alu-PCR in identifying altered gene sequences in breast cancer. However, caution is required in its application since the Alu primer can produce non-specific amplification.  相似文献   

13.
《Genomics》2020,112(2):1151-1161
Genomic instability is a hallmark of cancer that plays a pivotal role in breast cancer development and evolution. A number of existing prognostic gene expression signatures for breast cancer are based on proliferation-related genes. Here, we identified a 17-marker panel associated with genome stability. A total of 136 primary breast carcinomas were stratified by genome stability. Matched gene expression profiles showed an innate segregation based on genome stability. We identified a 17-marker panel stratifying the training and validation cohorts into high- and low-risk patients. The 17 genes associated with genomic instability strongly impacted clinical outcome in breast cancer. Pathway analyses determined chromosome organisation, cell cycle regulation, and RNA processing as the underlying biological processes, thereby offering options for drug development and treatment tailoring. Our work supports the applicability of the 17-marker panel to improve clinical outcome prediction for breast cancer patients based on a signature accounting for genomic instability.  相似文献   

14.
chaos1 (for chromosome aberrations occurring spontaneously 1) is a recessive mutation that was originally identified in a phenotype-based screen for chromosome instability mutants in mice. Mutant animals exhibit significantly higher frequencies of spontaneous and radiation- or mitomycin C-induced micronucleated erythrocytes, indicating a potential defect in homologous recombination or interstrand cross-link repair. The chaos1 allele was genetically associated with a missense mutation in Polq, which encodes DNA polymerase theta;. We demonstrate here that chaos1 is a mutant allele of Polq by using two genetic approaches: chaos1 mutant phenotype correction by a bacterial artificial chromosome carrying wild-type Polq and a failed complementation test between chaos1 and a Polq-disrupted allele generated by gene targeting. To investigate the potential involvement of Polq in DNA double-strand break repair, we introduced chaos1 into an Atm (for ataxia telangiectasia mutated)-deficient background. The majority ( approximately 90%) of double-homozygous mice died during the neonatal period. Surviving double mutants exhibited synergistic phenotypes such as severe growth retardation and enhanced chromosome instability. However, remarkably, double mutants had delayed onset of thymic lymphoma, significantly increasing life span. These data suggest a unique role of Polq in maintaining genomic integrity, which is probably distinctive from the major homologous recombination pathway regulated by ATM.  相似文献   

15.
CHEK2 (previously known as "CHK2") is a cell-cycle-checkpoint kinase that phosphorylates p53 and BRCA1 in response to DNA damage. A protein-truncating mutation, 1100delC in exon 10, which abolishes the kinase function of CHEK2, has been found in families with Li-Fraumeni syndrome (LFS) and in those with a cancer phenotype that is suggestive of LFS, including breast cancer. In the present study, we found that the frequency of 1100delC was 2.0% among an unselected population-based cohort of 1,035 patients with breast cancer. This was slightly, but not significantly (P=.182), higher than the 1.4% frequency found among 1,885 population control subjects. However, a significantly elevated frequency was found among those 358 patients with a positive family history (11/358 [3.1%]; odds ratio [OR] 2.27; 95% confidence interval [CI] 1.11-4.63; P=.021, compared with population controls). Furthermore, patients with bilateral breast cancer were sixfold more likely to be 1100delC carriers than were patients with unilateral cancer (95% CI 1.87-20.32; P=.007). Analysis of the 1100delC variant in an independent set of 507 patients with familial breast cancer with no BRCA1 and BRCA2 mutations confirmed a significantly elevated frequency of 1100delC (28/507 [5.5%]; OR 4.2; 95% CI 2.4-7.2; P=.0002), compared with controls, with a high frequency also seen in patients with only a single affected first-degree relative (18/291 [6.2%]). Finally, tissue microarray analysis indicated that breast tumors from patients with 1100delC mutations show reduced CHEK2 immunostaining. The results suggest that CHEK2 acts as a low-penetrance tumor-suppressor gene in breast cancer and that it makes a significant contribution to familial clustering of breast cancer-including families with only two affected relatives, which are more common than families that include larger numbers of affected women.  相似文献   

16.
The F box protein Skp2 is oncogenic. Skp2 and Skp2B, an isoform of Skp2 are overexpressed in breast cancer. However, little is known regarding the mechanism by which Skp2B promotes the occurrence and development of breast cancer. Here, we determined the expression and clinical outcomes of Skp2 in breast cancer samples and cell lines using breast cancer database, and investigated the role of Skp2 and Skp2B in breast cancer cell growth, apoptosis and cell cycle arrest. We obtained Skp2 is significantly overexpressed in breast cancer samples and cell lines, and high Skp2 expression positively correlated with poor prognosis of breast cancer. Both Skp2 and Skp2B could promote breast cancer cell proliferation, inhibit cell apoptosis, change the cell cycle distribution and induce the increased S phase cells and therefore induce cell proliferation in breast cancer cells. Moreover, the 2 isoforms could both suppress PIG3 expression via independent pathways in the breast cancer cells. Skp2 suppressed p53 and inhibited PIG3-induced apoptosis, while Skp2B attenuated the function of PIG3 by inhibiting PHB. Our results indicate that Skp2 and Skp2B induce breast cancer cell development and progression, making Skp2 and Skp2B potential molecular targets for breast cancer therapy.  相似文献   

17.
Over the last decade or so, sophisticated technological advances in array-based genomics have firmly established the contribution of structural alterations in the human genome to a variety of complex developmental disorders, and also to diseases such as cancer. In fact, multiple 'novel' disorders have been identified as a direct consequence of these advances. Our understanding of the molecular events leading to the generation of these structural alterations is also expanding. Many of the models proposed to explain these complex rearrangements involve DNA breakage and the coordinated action of DNA replication, repair and recombination machinery. Here, and within the context of Genomic Disorders, we will briefly overview the principal models currently invoked to explain these chromosomal rearrangements, including Non-Allelic Homologous Recombination (NAHR), Fork Stalling Template Switching (FoSTeS), Microhomology Mediated Break-Induced Repair (MMBIR) and Breakage-fusion-bridge cycle (BFB). We will also discuss an unanticipated consequence of certain copy number variations (CNVs) whereby the CNVs potentially compromise fundamental processes controlling genomic stability including DNA replication and the DNA damage response. We will illustrate these using specific examples including Genomic Disorders (DiGeorge/Veleocardiofacial syndrome, HSA21 segmental aneuploidy and rec (3) syndrome) and cell-based model systems. Finally, we will review some of the recent exciting developments surrounding specific CNVs and their contribution to cancer development as well as the latest model for cancer genome rearrangement; 'chromothripsis'.  相似文献   

18.
A number of studies demonstrated that mutations in the CHEK2 gene can increase the risk of oncologic diseases, including breast cancer and that the mutational distribution s depends on the genetic structure of populations. In our study we compared the prevalence of c.1100delC, c.444+1G>A, del5395, p.I157T, and p.R145W CHEK2 mutations in 977 breast cancer patients (Russians, Tatars, Bashkirs, Ukrainians, and individual representatives of other ethnic groups) and in women without any oncologic pathology (n = 1069) from the Republic of Bashkortostan. We found CHEK2 del5395 mutation with a frequency of 1.23% (12/977) in breast-cancer patients, whereas in the control group it frequency was 0.09% (1/1069) (OR: 13.28, CI 95%: 1.72–102.33, p = 0.003). Frequencies of c.1100delC and c.444+1G>A mutations in patients and controls were 0.4%, 0.4% (4/977) and 0.09% (1/1069), 0.2% (2/1069), respectively. The p.I157T substitution in CHEK2 gene was the most widespread variant in two studied cohorts (approximately 5%); however, differences in the frequencies between cases and controls did not reach statistical significance. Truncating mutations were mainly found in women of Slavic origin. All three mutations were found in Russians and Ukrainians. CHEK2 mutations c.1100delC and c.444+1G>A were not found in Bashkirs and Tatars; however, the CHEK2 del5395 deletion was present in Tatars.  相似文献   

19.
Epidemiologic data suggest a link between nursing by asthmatic mothers and increased risk of allergy in babies. We sought to experimentally test the potential contribution of breast milk mediator(s) in a mouse model of maternal transmission of asthma risk by evaluating the effect of adoptive nursing on asthma susceptibility in the offspring. We measured airway hyperresponsiveness (AHR) and allergic airway inflammation (AI) after an intentionally suboptimal OVA Ag sensitization, tested the allergen independence of the maternal effect by using a second allergen, casein, for sensitization of the baby mice, and tested the potential role of cytokines by measuring their levels in breast milk. Offspring of asthmatic, but not normal, mothers showed AHR and AI, indicating a maternal transfer of asthma risk. After adoptive nursing, both groups (litters born to asthmatic mothers and nursed by normal mothers, and normal babies nursed by asthmatic mothers) showed AHR (enhanced pause after methacholine aerosol, 50 mg/ml, 3.7 +/- 0.7, 4.2 +/- 0.5, respectively, vs 1.1 +/- 0.1 normal controls, n = 25, p < 0.01) and AI, seen as eosinophilia on histology and bronchoalveolar lavage (40.7 +/- 4.5%, 28.7 +/- 3.7%, vs 1.0 +/- 0.5% normals, n = 25, p < 0.01) after OVA sensitization. Similar results using casein allergen were observed. Multiplex assays for cytokines (IFN-gamma, IL-2, IL-4, IL-5, TNF-alpha, and IL-13) in breast milk were negative. Breast milk is sufficient, but not necessary, to mediate allergen-independent maternal transmission of asthma risk to offspring.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号