首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Nodal signaling patterns the organizer   总被引:5,自引:0,他引:5  
Spemann's organizer plays an essential role in patterning the vertebrate embryo. During gastrulation, organizer cells involute and form the prechordal plate anteriorly and the notochord more posteriorly. The fate mapping and gene expression analyses in zebrafish presented in this study reveal that this anteroposterior polarity is already initiated in the organizer before gastrulation. Prechordal plate progenitors reside close to the blastoderm margin and express the homeobox gene goosecoid, whereas notochord precursors are located further from the margin and express the homeobox gene floating head. The nodal-related genes cyclops and squint are expressed at the blastoderm margin and are required for prechordal plate and notochord formation. We show that differential activation of the Nodal signaling pathway is essential in establishing anteroposterior pattern in the organizer. First, overexpression of cyclops and squint at different doses leads to the induction of floating head at low doses and the induction of both goosecoid and floating head at higher doses. Second, decreasing Nodal signaling using different concentrations of the antagonist Antivin inhibits goosecoid expression at low doses and blocks expression of both goosecoid and floating head at higher doses. Third, attenuation of Nodal signaling in zygotic mutants for the EGF-CFC gene one-eyed pinhead, an essential cofactor for Nodal signaling, leads to the loss of goosecoid expression and expansion of floating head expression in the organizer. Concomitantly, cells normally fated to become prechordal plate are transformed into notochord progenitors. Finally, activation of Nodal signaling at different times suggests that prechordal plate specification requires sustained Nodal signaling, whereas transient signaling is sufficient for notochord development. Together, these results indicate that differential Nodal signaling patterns the organizer before gastrulation, with the highest level of activity required for anterior fates and lower activity essential for posterior fates.  相似文献   

2.
The EGF-CFC protein one-eyed pinhead is essential for nodal signaling   总被引:25,自引:0,他引:25  
The zebrafish EGF-CFC gene one-eyed pinhead (oep) is required zygotically for the formation of the ventral neuroectoderm, endoderm, and prechordal plate. Here we report that embryos lacking both maternal and zygotic Oep activity are defective in germ layer formation, organizer development, and the positioning of the anterior-posterior axis. An identical phenotype is displayed by double mutants for the nodal-related genes squint and cyclops. Mutations in oep eliminate the response to Squint and Cyclops overexpression but are suppressed by expression of Activin and activated forms of the type I receptor ActRIB and Smad2. Expression of the murine EGF-CFC gene cripto rescues oep mutants. These results suggest a conserved role for EGF-CFC proteins as essential extracellular cofactors for Nodal signaling during vertebrate development.  相似文献   

3.
In vertebrates, specification of the dorso-ventral axis requires Wnt signaling, which leads to formation of the Nieuwkoop center and the Spemann organizer (dorsal organizer), through the nuclear accumulation of beta-catenin. Zebrafish bozozok/dharma (boz) and squint (sqt), which encode a homeodomain protein and a Nodal-related protein, respectively, are required for the formation of the dorsal organizer. The zygotic expression of boz and sqt in the dorsal blastoderm and dorsal yolk syncytial layer (YSL) was dependent on the maternally derived Wnt signal, and their expression at the late blastula and early gastrula stages was dependent on the zygotic expression of their own genes. The dorsal organizer genes, goosecoid (gsc) and chordin (din), were ectopically expressed in wild-type embryos injected with boz or sqt RNA. The expression of gsc strictly depended on both boz and sqt while the expression of din strongly depended on boz but only partially depended on sqt and cyclops (cyc, another nodal-related gene). Overexpression of boz in embryos defective in Nodal signaling elicited the ectopic expression of din but not gsc and resulted in dorsalization, implying that boz could induce part of the organizer, independent of the Nodal proteins. Furthermore, boz; sqt and boz;cyc double mutants displayed a severely ventralized phenotype with anterior truncation, compared with the single mutants, and boz;sqt;cyc triple mutant embryos exhibited an even more severe phenotype, lacking the anterior neuroectoderm and notochord, suggesting that Boz/Dharma and the Nodal-related proteins cooperatively regulate the formation of the dorsal organizer.  相似文献   

4.
5.
We identified a zebrafish homologue of Dickkopf-1 (Dkk1), which was previously identified in Xenopus as a Wnt inhibitor with potent head-inducing activity. Zebrafish dkk1 is expressed in the dorsal marginal blastoderm and also in the dorsal yolk syncytial layer after mid-blastula transition. At later blastula stages, the expression expands to the entire blastoderm margin. During gastrulation, dkk1-expressing cells are confined to the embryonic shield and later to the anterior axial mesendoderm, prospective prechordal plate. Embryos, in which dkk1 was ectopically expressed, exhibited enlarged forebrain, eyes, and axial mesendoderm such as prechordal plate and notochord. dkk1 expression in the dorso-anterior mesendoderm during gastrulation was prominently reduced in zebrafish mutants bozozok (boz), squint (sqt), and one-eyed pinhead (oep), which all display abnormalities in the formation and function of the Spemann organizer and axial mesendoderm. dkk1 expression was normal in these embryos during the blastula period, indicating that zygotic functions of these genes are required for maintenance but not establishment of dkk1 expression. Overexpression of dkk1 suppressed defects in the development of forebrain, eyes, and notochord in boz mutants. Overexpression of dkk1 promoted anterior neuroectoderm development in the embryos injected with antivin RNA, which lack most of the mesoderm and endoderm, suggesting that Dkk1 can affect regionalization of neuroectoderm independently of dorso-anterior mesendoderm. These data indicate that Dkk1, expressed in dorsal mesendoderm, functions in the formation of both the anterior nervous system and the axial mesendoderm in zebrafish.  相似文献   

6.
Cripto is the founding member of the family of EGF-CFC genes, a class of extracellular factors essential for early vertebrate development. In this study we show that injection of Cripto recombinant protein in mid to late zebrafish Maternal-Zygotic one-eyed pinhead (MZoep) blastulae was able to fully rescue the mutant phenotype, thus providing the first direct evidence that Cripto activity can be added extracellularly to recover oep-encoded function in zebrafish early embryos. Moreover, 15 point mutations and two deletion mutants were generated to assess in vivo their functional relevance by comparing the ability of cripto wild-type and mutant RNAs to rescue the zebrafish MZoep mutant. From this study we concluded that the EGF-CFC domain is sufficient for Cripto biological activity and identified ten point mutations with a functional defective phenotype, two of which, located in the EGF-like domain, correspond to loss-of-function mutations. Finally, we have developed a three-dimensional structural model of Cripto protein and used it as a guide to predict amino acid residues potentially implicated in protein-protein interaction.  相似文献   

7.
The dorsal ectoderm of the vertebrate gastrula was proposed by Nieuwkoop to be specified towards an anterior neural fate by an activation signal, with its subsequent regionalization along the anteroposterior (AP) axis regulated by a graded transforming activity, leading to a properly patterned forebrain, midbrain, hindbrain and spinal cord. The activation phase involves inhibition of BMP signals by dorsal antagonists, but the later caudalization process is much more poorly characterized. Explant and overexpression studies in chick, Xenopus, mouse and zebrafish implicate lateral/paraxial mesoderm in supplying the transforming influence, which is largely speculated to be a Wnt family member. We have analyzed the requirement for the specific ventrolaterally expressed Wnt8 ligand in the posteriorization of neural tissue in zebrafish wild-type and Nodal-deficient embryos (Antivin overexpressing or cyclops;squint double mutants), which show extensive AP brain patterning in the absence of dorsal mesoderm. In different genetic situations that vary the extent of mesodermal precursor formation, the presence of lateral wnt8-expressing cells correlates with the establishment of AP brain pattern. Cell tracing experiments show that the neuroectoderm of Nodal-deficient embryos undergoes a rapid anterior-to-posterior transformation in vivo during a short period at the end of the gastrula stage. Moreover, in both wild-type and Nodal-deficient embryos, inactivation of Wnt8 function by morpholino (MO(wnt8)) translational interference dose-dependently abrogates formation of spinal cord and posterior brain fates, without blocking ventrolateral mesoderm formation. MO(wnt8) also suppresses the forebrain deficiency in bozozok mutants, in which inactivation of a homeobox gene causes ectopic wnt8 expression. In addition, the bozozok forebrain reduction is suppressed in bozozok;squint;cyclops triple mutants, and is associated with reduced wnt8 expression, as seen in cyclops;squint mutants. Hence, whereas boz and Nodal signaling largely cooperate in gastrula organizer formation, they have opposing roles in regulating wnt8 expression and forebrain specification. Our findings provide strong support for a model of neural transformation in which a planar gastrula-stage Wnt8 signal, promoted by Nodal signaling and dorsally limited by Bozozok, acts on anterior neuroectoderm from the lateral mesoderm to produce the AP regional patterning of the CNS.  相似文献   

8.
Nodal signals, a subclass of the TGFbeta superfamily of secreted factors, induce formation of mesoderm and endoderm in vertebrate embryos. We have examined the possible dorsoventral and animal-vegetal patterning roles for Nodal signals by using mutations in two zebrafish nodal-related genes, squint and cyclops, to manipulate genetically the levels and timing of Nodal activity. squint mutants lack dorsal mesendodermal gene expression at the late blastula stage, and fate mapping and gene expression studies in sqt(-/-); cyc(+/+) and sqt(-/-); cyc(+/-) mutants show that some dorsal marginal cells inappropriately form hindbrain and spinal cord instead of dorsal mesendodermal derivatives. The effects on ventrolateral mesendoderm are less severe, although the endoderm is reduced and muscle precursors are located nearer to the margin than in wild type. Our results support a role for Nodal signals in patterning the mesendoderm along the animal-vegetal axis and indicate that dorsal and ventrolateral mesoderm require different levels of squint and cyclops function. Dorsal marginal cells were not transformed toward more lateral fates in either sqt(-/-); cyc(+/-) or sqt(-/-); cyc(+/+) embryos, arguing against a role for the graded action of Nodal signals in dorsoventral patterning of the mesendoderm. Differential regulation of the cyclops gene in these cells contributes to the different requirements for nodal-related gene function in these cells. Dorsal expression of cyclops requires Nodal-dependent autoregulation, whereas other factors induce cyclops expression in ventrolateral cells. In addition, the differential timing of dorsal mesendoderm induction in squint and cyclops mutants suggests that dorsal marginal cells can respond to Nodal signals at stages ranging from the mid-blastula through the mid-gastrula.  相似文献   

9.
Mammalian lefty and zebrafish antivin form a subgroup of the TGF beta superfamily. We report that mouse mutants for lefty2 have an expanded primitive streak and form excess mesoderm, a phenotype opposite to that of mutants for the TGF beta gene nodal. Analogously, overexpression of Antivin or Lefty2 in zebrafish embryos blocks head and trunk mesoderm formation, a phenotype identical to that of mutants caused by loss of Nodal signaling. The lefty2 mutant phenotype is partially suppressed by heterozygosity for nodal. Similarly, the effects of Antivin and Lefty2 can be suppressed by overexpression of the nodal-related genes cyclops and squint or the extracellular domain of ActRIIB. Expression of antivin is dependent on Nodal signaling, revealing a feedback loop wherein Nodal signals induce their antagonists Lefty2 and Antivin to restrict Nodal signaling during gastrulation.  相似文献   

10.
The floor plate is located at the ventral midline of the neural tube in vertebrates. Floor-plate development is severely impaired in zebrafish one-eyed pinhead (oep) mutants. oep encodes a membrane-bound protein with an epiblast growth factor (EGF) motif and functions autonomously in floor-plate precursors. To understand the cell behavior and cell-cell interaction during floor-plate development, the distribution and gene expression of wild-type and oep mutant cells in genetic mosaics were examined. When mutant shield cells were transplanted into a wild-type host, an ectopic neural tube with a floor plate was induced. However, the floor plate of the secondary axis was consistently devoid of mutant cells while its notochord was composed entirely of mutant cells. This indicates that oep shield cells adopt only a notochord fate in a wild-type environment. In reciprocal transplants (wild to oep), however, grafted shield cells frequently contributed to part of the floor-plate region of the secondary neural tube and expressed floor-plate markers. Careful examination of serial sections revealed that a mutant neural cell, when located next to the wild-type cells at the ventral midline, inhibited floor-plate differentiation of the adjacent wild-type cells. This inhibition was effective over an area only one- or two-cells wide along the anteroposterior axis. As the cells located at the ventral midline of the oep neural tube are thought to possess a neural character, similar to those located on either side of the floor plate in a wild-type embryo, this inhibition may play an important role during normal development in restricting the floor-plate region into the ventral-most midline by antagonizing homeogenetic signals from the floor-plate cells.  相似文献   

11.
12.
During vertebrate embryogenesis, a left-right axis is established. The heart, associated vessels and inner organs adopt asymmetric spatial arrangements and morphologies. Secreted growth factors of the TGF-beta family, including nodal, lefty-1 and lefty-2, play crucial roles in establishing left-right asymmetries [1] [2] [3]. In zebrafish, nodal signalling requires the presence of one-eyed pinhead (oep), a member of the EGF-CFC family of membrane-associated proteins [4]. We have generated a mutant allele of cryptic, a mouse EGF-CFC gene [5]. Homozygous cryptic mutants developed to birth, but the majority died during the first week of life because of complex cardiac malformations such as malpositioning of the great arteries, and atrial-ventricular septal defects. Moreover, laterality defects, including right isomerism of the lungs, right or left positioning of the stomach and splenic hypoplasia were observed. Nodal gene expression in the node was initiated in cryptic mutant mice, but neither nodal, lefty-2 nor Pitx2 were expressed in the left lateral plate mesoderm. The laterality defects observed in cryptic(-/-) mice resemble those of mice lacking the type IIB activin receptor or the homeobox-containing factor Pitx2 [6] [7] [8] [9], and are reminiscent of the human asplenic syndrome [10]. Our results provide genetic evidence for a role of cryptic in the signalling cascade that determines left-right asymmetry.  相似文献   

13.
Several membrane-associated proteins are known to modulate the activity and range of potent morphogenetic signals during development. In particular, members of the EGF-CFC family encode glycosyl-phosphatidylinositol (GPI)-linked proteins that are essential for activity of the transforming growth factor beta (TGFbeta) ligand Nodal, a factor that plays a central role in establishing the vertebrate body plan. Genetic and biochemical studies have indicated that EGF-CFC proteins function as cell-autonomous co-receptors for Nodal; by contrast, cell culture data have suggested that the mammalian EGF-CFC protein Cripto can act as a secreted signaling factor. Here we show that Cripto acts non-cell-autonomously during axial mesendoderm formation in the mouse embryo and may possess intercellular signaling activity in vivo. Phenotypic analysis of hypomorphic mutants demonstrates that Cripto is essential for formation of the notochordal plate, prechordal mesoderm and foregut endoderm during gastrulation. Remarkably, Cripto null mutant cells readily contribute to these tissues in chimeras, indicating non-cell-autonomy. Consistent with these loss-of-function analyses, gain-of-function experiments in chick embryos show that exposure of node/head process mesoderm to soluble Cripto protein results in alterations in cell fates toward anterior mesendoderm, in a manner that is dependent on Nodal signaling. Taken together, our findings support a model in which Cripto can function in trans as an intercellular mediator of Nodal signaling activity.  相似文献   

14.
A major approach to the study of development is to compare the phenotypes of normal and mutant individuals for a given genetic locus. Understanding the development of a complex metazoan therefore requires examination of many mutants. Relatively few organisms are being studied this way, and zebrafish is currently the best example of a vertebrate for which large-scale mutagenesis screens have successfully been carried out. The number of genes mutated in zebrafish that have been cloned expands rapidly, bringing new insights into a number of developmental pathways operating in vertebrates. Here, we discuss work on zebrafish mutants affecting gastrulation and patterning of the early embryo. Gastrulation is orchestrated by the dorsal organizer, which forms in a region where maternally derived beta-catenin signaling is active. Mutation in the zygotic homeobox gene bozozok disrupts the organizer genetic program and leads to severe axial deficiencies, indicating that this gene is a functional target of beta-catenin signaling. Once established, the organizer releases inhibitors of ventralizing signals, such as BMPs, and promotes dorsoanterior fates within all germ layers. In zebrafish, several mutations affecting dorsal-ventral (D/V) patterning inactivate genes functioning in the BMP pathway, stressing the central role of this pathway in the gastrula embryo. Cells derived from the organizer differentiate into several axial structures, such as notochord and prechordal mesoderm, which are thought to induce various fates in adjacent tissues, such as the floor plate, after the completion of gastrulation. Studies with mutants in nodal-related genes, in one-eyed pinhead, which is required for nodal signaling, and in the Notch pathway reveal that midline cell fate specification is, in fact, initiated during gastrulation. Furthermore, the organizer coordinates morphogenetic movements, and zebrafish mutants in T-box mesoderm-specific genes help clarify the mechanism of convergence movements required for the formation of axial and paraxial mesoderm.  相似文献   

15.
During gastrulation, germ layers are formed as prospective mesodermal and endodermal cells internalize and come to underlie the ectoderm [1-9]. Despite the pivotal role of gastrulation in animal development, the cellular interactions underlying this process are poorly understood. In zebrafish, mesoderm and endoderm formation requires the Nodal signals Cyclops and Squint and their cofactor One-eyed pinhead (Oep) [10-14]. We found that marginal cells in maternal-zygotic oep (MZoep) mutants do not internalize during gastrulation and acquire neural and tail fates at the expense of head and trunk mesendoderm. The lack of internalization in MZoep embryos and the cell-autonomous requirement for oep in Nodal signaling enabled us to test whether internalization can be achieved by individual cells or whether it depends on interactions within a group of cells. We found that individual MZoep mutant cells transplanted to the margin of wild-type blastula embryos initially internalize with their neighbors but are unable to contribute to the mesendoderm. In the reciprocal experiment, single wild-type cells transplanted to the margin of MZoep mutant embryos autonomously internalize and can express the mesendodermal markers axial/foxA2 and sox17. These results suggest that internalization and mesendoderm formation in zebrafish can be attained autonomously by single cells.  相似文献   

16.
Formation of the dorsal organizer (Spemann organizer) is an important process in early vertebrate development. In zebrafish, two molecular cascades—Bozozok/Dharma (Boz) and Nodal signaling—act in parallel to induce the dorsal organizer. However, the complete molecular mechanism regulating this event remains unclear. Here we report that zebrafish cell lines derived from various developmental stages can induce a secondary axis when they are implanted into the mid-blastula but not the early gastrula. The implanted cellsthemselves did not differentiate, but instead induced ectopic expression of dorsal organizer markers incells around the implanted cells and induced notochord formation in the secondary axis. These results indicate that cultured cell lines have the ability to induce a secondary axis through the initiation of dorsal organizer activity. However, ectopic expression of boz and sqt were not observed in cultured cells. In addition, implanted cell lines could induce the dorsal organizer even in maternal-zygotic one-eyed pinhead mutants, which are not responsive to Nodal signaling. Finally, the Nodal signaling pathway was not activatedfollowing implantation of cultured cells. Collectively, these data suggest that zebrafish cell lines induce the dorsal organizer independent of the boz and Nodal signaling pathways.  相似文献   

17.
18.
The embryonic midline in vertebrates has been implicated in left-right development, but the mechanisms by which it regulates left-right asymmetric gene expression and organ morphogenesis are unknown. Zebrafish embryos have three domains of left-right asymmetric gene expression that are useful predictors of organ situs. cyclops (nodal), lefty1 and pitx2 are expressed in the left diencephalon; cyclops, lefty2 and pitx2 are expressed in the left heart field; and cyclops and pitx2 are expressed in the left gut primordium. Distinct alterations of these expression patterns in zebrafish midline mutants identify four phenotypic classes that have different degrees of discordance among the brain, heart and gut. These classes help identify two midline domains and several genetic pathways that regulate left-right development. A cyclops-dependent midline domain, associated with the prechordal plate, regulates brain asymmetry but is dispensable for normal heart and gut left-right development. A second midline domain, associated with the anterior notochord, is dependent on no tail, floating head and momo function and is essential for restricting asymmetric gene expression to the left side. Mutants in spadetail or chordino give discordant gene expression among the brain, heart and gut. one-eyed pinhead and schmalspur are necessary for asymmetric gene expression and may mediate signaling from midline domains to lateral tissues. The different phenotypic classes help clarify the apparent disparity of mechanisms proposed to explain left-right development in different vertebrates.  相似文献   

19.
20.
Colas JF  Schoenwolf GC 《Gene》2000,255(2):205-217
EGF-CFC genes encode a novel class of extracellular, membrane-associated proteins that notably play an important role during vertebrate gastrulation. Whereas the two cysteine-rich domains that characterize these proteins, namely the extracellular EGF-like and the CFC domain, are known to be encoded by two evolutionarily conserved exons, it is generally assumed, based on weak primary sequence identity, that the remaining parts of the protein differ among vertebrates, suggesting that known members of the EGF-CFC family do not represent true orthologs. Here, by characterizing the full cDNA and genomic sequences of a new EGF-CFC gene in chick, and by comparing them with their counterparts in human (CRIPTO), mouse (cripto and cryptic), Xenopus (FRL-1) and zebrafish (one-eyed pinhead), we show that all EGF-CFC genes share an identical genomic organization over the entire coding region. Not only are the central two exons (coding for the EGF-like and CFC motifs) conserved, but also conserved are the total number of exons, their size, their intron phase and their correlation with discrete protein modules, in particular those modules that allow the EGF-CFC motif to become membrane-associated. Therefore, despite apparent divergence between their 5' and 3'-terminal exons, all known CRIPTO-related genes are structurally orthologous. We named this novel ortholog in bird, chick-cripto. We report the mRNA distribution of chick-cripto, which begins in the epiblast of the gastrula, with a pattern similar to EGF-CFC genes of other vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号