首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
SV40 T/t antigen-induced liver tumors from transgenic mice were analyzed by Restriction Landmark Genomic Scanning (RLGS). Using NotI as the restriction landmark, RLGS targets CpG islands found in gene-rich regions of the genome. Since many RLGS landmarks are mapped, the candidate gene approach can be used to help determine which genes are altered in tumors. RLGS analysis revealed one tumor-specific amplification mapping close to CcnA2 (cyclin A2) and Fgf2 (fibroblast growth factor 2). Southern analysis confirmed that both oncogenes are amplified in this tumor and in a second, independent liver tumor. Whereas Fgf2 RNA is undetectable in tumors, CcnA2 RNA and cyclin A2 protein was overexpressed in 25 and 50% of tumors, respectively. Combining RLGS with the candidate gene approach indicates that cyclin A2 amplification and overexpression is a likely selected event in transgenic mouse liver tumors. Our results also indicate that our mouse model for liver tumorigenesis in mice accurately recapitulates events observed in human hepatocellular carcinoma.  相似文献   

3.
Aberrant promoter methylation and associated chromatin changes are primarily studied in human malignancies. Thus far, mouse models for human cancer have been rarely utilized to study the role of DNA methylation in tumor onset and progression. It would be advantageous to use mouse tumor models to a greater extent to study the role and mechanism of DNA methylation in cancer because mouse models allow manipulation of the genome, study of samples/populations with a homogeneous genetic background, the possibility of modulating gene expression in vivo, the statistical power of using large numbers of tumor samples, access to various tumor stages, and the possibility of preclinical trials. Therefore, it is likely that the mouse will emerge as an increasingly utilized model to study DNA methylation in cancer. To foster the use of mouse models, we developed an arrayed mouse NotI-EcoRV genomic library, with clones from three commonly used mouse strains (129SvIMJ, FVB/NJ, and C57BL/6J). A total of 23,040 clones representing an estimated three- to fourfold coverage of the mouse genome were arrayed in 60 x 384-well plates. We developed restriction landmark genomic scanning (RLGS) mixing gels with 32 plates to enable the cloning of methylated sequences from RLGS profiles run with NotI-EcoRV-HinfI. RLGS was used to study aberrant methylation in two mouse models that overexpressed IL-15 or c-Myc and developed either T/NK-cell leukemia or T-cell lymphomas, respectively. Careful analysis of 198 sequences showed that 188 (94.9%) identified CpG-island sequences, 132 sequences (66.7%) had homology to the 5' regions of known genes or mRNAs, and all 132 NotI-EcoRV clones were located at the same CpG islands with the predicted promoter sequences. We have also developed a modified pGL3-based luciferase vector that now contains the NotI, AscI, and EcoRV restriction sites and allows the rapid cloning of NotI-EcoRV library fragments in both orientations. Luciferase assays using NotI-EcoRV clones confirmed that the library is enriched for promoter sequences. Thus, this library will support future genetic and epigenetic studies in mouse models.  相似文献   

4.
5.
Restriction landmark genome scanning (RLGS) is an effective genome-scanning technique capable of identifying DNA amplification and aberrant DNA methylation. Previously published methods for the cloning of human DNA fragments from RLGS gels have been successful only for high-copy-number fragments (repetitive elements or DNA amplifications). We present here the first technique capable of efficiently cloning single-copy human DNA fragments ("spots") identified in RLGS profiles. This technique takes advantage of a plasmid-based, human genomic DNA, NotI/EcoRV boundary library. The library is arrayed in microtiter plates. When clones from a single plate are pooled and mixed with genomic DNA, the resultant RLGS gel is a normal profile with a defined set of spots showing enhanced intensity for that particular plate. This was performed for a set of 32 plates as well as their pooled rows and columns. Thus, we have mapped individual RLGS spots to exact plate, row, and column addresses in the library and have thereby obtained immediate access to these clones. The feasibility of the technique is demonstrated in examples of cloning methylated DNA fragments identified in human breast tumor and testicular tumor RLGS profiles and in the cloning of an amplified DNA fragment identified in a human medulloblastoma RLGS profile.  相似文献   

6.
7.
Methylation of CpG islands associated with genes can affect the expression of the proximal gene, and methylation of non-associated CpG islands correlates to genomic instability. This epigenetic modification has been shown to be important in many pathologies, from development and disease to cancer. We report the development of a novel high-resolution microarray that detects the methylation status of over 25 000 CpG islands in the human genome. Experiments were performed to demonstrate low system noise in the methodology and that the array probes have a high signal to noise ratio. Methylation measurements between different cell lines were validated demonstrating the accuracy of measurement. We then identified alterations in CpG islands, both those associated with gene promoters, as well as non-promoter-associated islands in a set of breast and ovarian tumors. We demonstrate that this methodology accurately identifies methylation profiles in cancer and in principle it can differentiate any CpG methylation alterations and can be adapted to analyze other species.  相似文献   

8.
9.
To understand the effect of trisomic chromosome 21 on the cause of Down syndrome (DS), DNA methylation in the CpG island, which regulates the expression of adjacent genes, was investigated with the DNAs of chromosome 21 isolated from DS patients and their parents. A methylation-sensitive enzyme, BssHII, was used to digest DNAs of chromosome 21, and the resulting DNA fragments were subjected to RLGS (restriction landmark genomic scanning). Surprisingly, the CpG island of the h2-calponin gene was shown to be specifically methylated by comparative studies with RLGS and Southern blot analysis. In association with this methylation, h2-calponin gene expression was attenuated to the normal level, although other genes in the DS region of chromosome 21 were expressed dose dependently at 1.5 times the normal level. These results and the high miscarriage rate associated with trisomy 21 embryos imply that the altered in vivo methylation that attenuates downstream gene expression, which is otherwise lethal, permits the generation of DS neonates. The h2-calponin gene detected by the RLGS procedure may be one such gene that is attenuated.  相似文献   

10.
11.
《Epigenetics》2013,8(1):33-45
To identify epigenetically-regulated genes in breast cancer, MCF-7 cells were exposed to 250nM 5-aza or 5-aza + 50nM TSA for 3 weeks followed by a 5 week recovery period after treatment withdrawal and gene expression patterns were examined by microarray analysis. We identified 20 genes that are associated with a >2-fold increase in expression in response to the demethylating treatment but returned to control levels after treatment withdrawal. RT-PCR verified that the genes identified were expressed at low or undetectable levels in control MCF-7 cells, but increased expression in treated cells. Most of these putative epigentically-regulated genes in MCF-7 cells do not contain CpG islands. In fact, these genes could be classified based upon their promoter CpG features, including genes with: (i) typical CpG features (CpG islands), (ii) intermediate CpG features (weak CpG islands), and (iii) atypical CpG features (no CpG islands). Prototype genes from each class (including CpG-deficient genes) were shown to be methylation-sensitive (subject to CpG methylation and responsive to demethylating agents), suggesting that not all gene targets of DNA methylation in breast cancer will contain a CpG island. Based upon the results of the current study and observations from the literature, we propose expansion of the current model for methylation-dependent regulation of gene expression to include genes lacking typical CpG islands. The expanded model we propose recognizes that all promoter CpG dinucleotides represent legitimate targets for DNA methylation and that the methylation of specific CpG dinucleotides in critical domains of regulatory regions can result in gene silencing.   相似文献   

12.
Effective procedures have been developed for constructing NotI linking libraries starting from chromosome-specific genomic libraries. Fifteen different single copy and two rDNA NotI linking clones from human chromosome 21 were identified in two libraries. Their chromosomal origin was confirmed, and regional location established using hybrid cell panels. Hybridization experiments with these probes revealed pairs of genomic NotI fragments, each ranging in size from less than 0.05 to 4.0 Mb. Many fragments displayed cell type variation. The total size of the NotI fragments detected in a human fibroblast cell line (GM6167) and mouse hybrid cell containing chromosome 21 as its only human component (WAV17) were approximately 32 and 34 Mb, respectively. If these fragments were all non-overlapping, this would correspond to about 70% of the 50-Mb content estimated for the whole chromosome. The linking clones will be enormously useful in the subsequent construction of a NotI restriction map of this chromosome. Characterization of these clones indicates the presence of numerous additional sites for other enzymes that recognize sequences containing CpG. Thus most NotI linking clones appear to derive from CpG islands and probably identify the 5' end of genes.  相似文献   

13.
Shen L  Kondo Y  Guo Y  Zhang J  Zhang L  Ahmed S  Shu J  Chen X  Waterland RA  Issa JP 《PLoS genetics》2007,3(10):2023-2036
The role of CpG island methylation in normal development and cell differentiation is of keen interest, but remains poorly understood. We performed comprehensive DNA methylation profiling of promoter regions in normal peripheral blood by methylated CpG island amplification in combination with microarrays. This technique allowed us to simultaneously determine the methylation status of 6,177 genes, 92% of which include dense CpG islands. Among these 5,549 autosomal genes with dense CpG island promoters, we have identified 4.0% genes that are nearly completely methylated in normal blood, providing another exception to the general rule that CpG island methylation in normal tissue is limited to X inactivation and imprinted genes. We examined seven genes in detail, including ANKRD30A, FLJ40201, INSL6, SOHLH2, FTMT, C12orf12, and DPPA5. Dense promoter CpG island methylation and gene silencing were found in normal tissues studied except testis and sperm. In both tissues, bisulfite cloning and sequencing identified cells carrying unmethylated alleles. Interestingly, hypomethylation of several genes was associated with gene activation in cancer. Furthermore, reactivation of silenced genes could be induced after treatment with a DNA demethylating agent or in a cell line lacking DNMT1 and/or DNMT3b. Sequence analysis identified five motifs significantly enriched in this class of genes, suggesting that cis-regulatory elements may facilitate preferential methylation at these promoter CpG islands. We have identified a group of non-X-linked bona fide promoter CpG islands that are densely methylated in normal somatic tissues, escape methylation in germline cells, and for which DNA methylation is a primary mechanism of tissue-specific gene silencing.  相似文献   

14.
Rat trophoblast giant cells each contain at least 100 times more genomic DNA per nucleus than diploid cells. This unusual phenomenon appears to be of interest in relation to the molecular mechanism of cell differentiation and gene expression in the placenta. In the present study, we analyzed the CpG islands of trophoblast giant cells by restriction landmark genomic scanning (RLGS) using the methylation-sensitive landmark enzymes, Not I and Bss HII. More than 1,000 and 1,900 spots were detected by RLGS using Not I and Bss HII, respectively, in the placental junctional zone, where more than 90% of genomic DNA is present in the cells with higher DNA content. Of these, 97% (1,009 spots) and 99% (1,911 spots) of the spots found in the junctional zone showed an identical pattern and identical intensity with those of diploid cell controls, for which genomic DNA was extracted from the labyrinth zone and maternal kidney. Therefore, the giant cells are basically polyploid. More importantly, 24 tissue-specific spots were detected by RLGS using Not I. Subsequent cloning and sequencing of four typical spots of the genomic DNA confirmed that these DNA fragments contained abundant CpG dinucleotides and showed characteristics of CpG islands. Of these 24 spots, there were ten spots specific for the placenta, and three of them were specific for the junctional zone, indicating that methylation status of CpG islands in the placental tissue differed between the junctional zone and labyrinth zone. These results suggest that multiple rounds of endoreduplication and modification of CpG islands by cytosine methylation occur during the differentiation process of giant cells. Dev. Genet. 22:132–140, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
16.
17.
Multiplex methylation-sensitive PCR and methylation-specific PCR were employed in studying the methylation of CpG islands in the p16/CDKN2A and p14/ARF promoter and the first exon regions in non-small cell lung cancer (54 samples) and acute B-cell lymphoblastic leukemia (61 samples). Differences in methylation were detected between types of neoplasia as well as between CpG islands studied within the same types of tumors. High level of the p16/CDKN2A first exon CpC island methylation was revealed in non-small cell lung cancer (68%) and in acute B-cell lymphoblastic leukemia (55%) and the CpG island of p14/ARF first exon was nonmethylated in these types of tumors. The methylation of CpG-rich fragments of genes p16/CDKN2A and p14/ARF promoters was analysed. As was found out, CpG islands located in 5' areas of one and the same gene can differ in methylation frequencies. The comparison of sensitivity between methylation-specific PCR and methylation-sensitive PCR used in the methylations studies was carried out.  相似文献   

18.
DNA motifs associated with aberrant CpG island methylation   总被引:5,自引:0,他引:5  
Epigenetic silencing involving the aberrant methylation of promoter region CpG islands is widely recognized as a tumor suppressor silencing mechanism in cancer. However, the molecular pathways underlying aberrant DNA methylation remain elusive. Recently we showed that, on a genome-wide level, CpG island loci differ in their intrinsic susceptibility to aberrant methylation and that this susceptibility can be predicted based on underlying sequence context. These data suggest that there are sequence/structural features that contribute to the protection from or susceptibility to aberrant methylation. Here we use motif elicitation coupled with classification techniques to identify DNA sequence motifs that selectively define methylation-prone or methylation-resistant CpG islands. Motifs common to 28 methylation-prone or 47 methylation-resistant CpG island-containing genomic fragments were determined using the MEME and MAST algorithms (). The five most discriminatory motifs derived from methylation-prone sequences were found to be associated with CpG islands in general and were nonrandomly distributed throughout the genome. In contrast, the eight most discriminatory motifs derived from the methylation-resistant CpG islands were randomly distributed throughout the genome. Interestingly, this latter group tended to associate with Alu and other repetitive sequences. Used together, the frequency of occurrence of these motifs successfully discriminated methylation-prone and methylation-resistant CpG island groups with an accuracy of 87% after 10-fold cross-validation. The motifs identified here are candidate methylation-targeting or methylation-protection DNA sequences.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号