首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acylpeptide hydrolase, a new class the serine-type peptidase, belongs to the , hydrolase group of proteins. The tetrameric enzyme showed varying degree of stability in the presence of 1–8 M urea. The enzyme displayed about 15% of its original activity when treated with 8 M urea for 1 h at 25°C. Complete recovery of the enzyme activity was observed on dialysis or dilution (50-fold) of the denatured enzyme. However, complete abolition of the enzyme activity was observed in the presence of 1 M GnHCl. Dialysis of the 1 M GnHCl-treated enzyme resulted in 15–20% recovery of the enzyme activity. The fluorescence emission spectra of the native enzyme at 337 nm showed a red shift up to 16 nm in 8 M urea and 18 nm in the presence of 4 M GnHCl. Native enzyme during far-UV circular dichroism spectroscopy exhibited predominantly -sheet structure. The enzyme lost its secondary structure at urea concentrations of 2 M and higher, whereas the tertiary structure was minimally perturbed below 4 M urea. However, in 1 M GnHCl the enzyme lost both its secondary and tertiary structures and the enzyme was found to dissociate into monomers of 70 kDa. Both monomeric and dimeric species were observed after 24-h dialysis of the enzyme denatured with GnHCl indicating the reassociation process. Both monomer and dimers forms recovered after dialysis were active.  相似文献   

2.
Recombinant human growth hormone (r-hGH) overexpressed in Escherichia coli forms inactive and insoluble aggregates as inclusion bodies in the cytoplasm. The efficient solubilization of inclusion bodies is critical for cost-effective production. Contrary to a previous report, in our production system, the solubilization method by alkaline treatment including 2 M urea was ineffective. Hence various buffers containing different concentrations of urea or guanidine hydrochloride (GnHCl) at neutral and alkaline pH were attempted. Efficient solubilization (about 90%) was observed in 100 mM Tris buffer, pH 8.0, with more than 4 M GnHCl, and at pH 12.5 with more than 2 M GnHCl, but not with about 8 M of urea. The r-hGH solubilized at pH 12.5 containing 2 M GnHCl was refolded by simple dilution and purified by DEAE Sepharose anion-exchange chromatography. The biological activity of the resulting r-hGH was comparable with commercially available r-hGH in in vitro cell proliferation assay using the hGH-dependent cell line.  相似文献   

3.
Multi-walled carbon nanotubes were used as refolding aid for xylanase unfolded with 8 M urea. The hydrophobic surface of the nanotubes enabled the binding, refolding, purification and simultaneous immobilization of the enzyme. While 55% activity could be regained while working with the denatured form of a purified preparation of xylanase, 92% activity could be obtained with the commercial preparation of xylanase in 8 M urea. These activities were obtained with refolded xylanase bound to the carbon nanotubes. Hence an immobilization efficiency of 0.92 was observed. The FT-IR spectroscopy showed that alpha-helical content of xylanase decreased from 17% to 14%, beta-sheet content increased from 53% to 61% and beta-turns decreased from 20% to 15% upon immobilization on the nanotubes. The refolded xylanase molecule bound to the carbon nanotube gave various secondary structure contents very similar to the bound (to carbon nanotubes) native xylanase.  相似文献   

4.
N K Puri 《FEBS letters》1991,292(1-2):187-190
Recombinant porcine growth hormone (rPGH) solubilized from bacterial inclusion bodies (IBs) using a cationic surfactant was oxidized to form disulphide bonds in a simple buffer solution containing 2-mercaptoethanol within an empirically derived optimal molar ratio of 2-mercaptoethanol:protein. A final yield of 55% monomeric rPGH was achieved at protein concentrations of up to 5 mg/ml without the need for removal of the 2-mercaptoethanol or the use of chaotrophic agents. In the absence of 2-mercaptoethanol only 15% monomeric rPGH was obtained, with the majority forming higher molecular weight aggregates. Using the procedure derived for porcine growth hormone, it may be possible to obtain high yields of native protein and overcome the need for using low protein concentrations and chaotrophic agents during in vitro refolding of other disulphide bonded recombinant proteins.  相似文献   

5.
We have investigated the effect of changing the column diameter and length on the size exclusion chromatography (SEC) refolding of beta-lactamase from Escherichia coli-derived inclusion bodies (IBs). Inclusion bodies were recovered and solubilised in 6 M GdnHCl and 5 mM DTT. Up to 16 mg of denatured, solubilised beta-lactamase was loaded onto size exclusion columns packed with Sephacryl S-300 media (fractionation range: 10(4)-1.5 x 10(6) Da). beta-Lactamase was refolded by eluting the loaded sample with 1 M urea in 0.05 M phosphate buffer, pH 7 at 23 degrees C. The following columns were studied: 26 x 400, 16 x 400 and 26 x 200 mm, with a range of mobile phase flow rates from 0.33 to 4.00 ml/min. beta-Lactamase was successfully refolded in all three columns and at all flow rates studied. The beta-lactamase activity peak coincided with the major protein peak. Reducing the column diameter had little effect on refolding performance. The enzyme activity recovered was relatively independent of the mobile phase linear velocity. Reducing the column length gave a poorer resolution of the protein peaks, but the enzyme activity peaks were well resolved. Calculation of the partition coefficients for beta-lactamase activity showed that the 26 x 400 column gave the greatest refolding performance.  相似文献   

6.
The head of the P22 bacteriophage is interrupted by a unique dodecameric portal vertex that serves as a conduit for the entrance and exit of the DNA. Here, the in vitro unfolding/refolding processes of the portal protein of P22 were investigated at different temperatures (1, 25, and 37 degrees C) through the use of urea and high hydrostatic pressure (HHP) combined with spectroscopic techniques. We have characterized an intermediate species, IU, which forms at 25 degrees C during unfolding or refolding of the portal protein in 2-4 M urea. IU readily forms amorphous aggregates, rendering the folding process irreversible. On the other hand, at 1 degrees C, a two-state process is observed (DeltaGf = -2.2 kcal/mol). When subjected to HHP at 25 or 37 degrees C, the portal monomer undergoes partial denaturation, also forming an intermediate species, which we call IP. IP also tends to aggregate but, differently from IU, aggregates into a ring-like structure as seen by size-exclusion chromatography and electron microscopy. Again, at 1 degrees C the unfolding induced by HHP proved to be reversible, with DeltaGf = -2.4 kcal/mol and DeltaV = 72 mL/mol. Interestingly, at 25 degrees C, the binding of the hydrophobic probe bis-ANS to the native portal protein destabilizes it and completely blocks its aggregation under HHP. These data are relevant to the process by which the portal protein assembles into dodecamers in vivo, since species such as IP must prevail over IU in order to guarantee the proper ring formation.  相似文献   

7.
The beta-->alpha transition of beta-lactoglobulin, a globular protein abundant in the milk of several mammals, is investigated in this work. This transition, induced by the cationic surfactant dodecyltrimethylammonium chloride (DTAC), is accompanied by partial unfolding of the protein. In this work, unfolding of bovine beta-lactoglobulin in DTAC is compared with its unfolding induced by the chemical denaturant guanidine hydrochloride (GnHCl). The final protein states attained in the two media have quite different secondary structure: in DTAC the alpha-helical content increases, leading to the so-called alpha-state; in GnHCl the amount of ordered secondary-structure decreases, resulting in a random coil-rich final state (denatured, or D, state). To obtain information on both mechanistic routes, in DTAC and GnHCl, and to characterize intermediates, the kinetics of unfolding were investigated in the two media. Equilibrium and kinetic data show the partial accumulation of an on-pathway intermediate in each unfolding route: in DTAC, an intermediate (I(1)) with mostly native secondary structure but loose tertiary structure appears between the native (beta) and alpha-states; in GnHCl, another intermediate (I(2)) appears between states beta and D. Kinetic rate constants follow a linear Chevron-plot representation in GnHCl, but show a more complex mechanism in DTAC, which acts like a stronger binding species.  相似文献   

8.
To test, at the level of individual amino acids, the conformation of an exchangeable apolipoprotein in aqueous solution and in the presence of an osmolyte trimethylamine-N-oxide (TMAO), six synthetic peptide analogues of human apolipoprotein C-1 (apoC-1, 57 residues) containing point mutations in the predicted alpha-helical regions were analyzed by circular dichroism (CD). The CD spectra and the melting curves of the monomeric wild-type and plasma apoC-1 in neutral low-salt solutions superimpose, indicating 31 +/- 4% alpha-helical structure at 22 degrees C that melts reversibly with T(m,WT) = 50 +/- 2 degrees C and van't Hoff enthalpy deltaH(v,WT)(Tm) = 18 +/- 2 kcal/mol. G15A substitution leads to an increased alpha-helical content of 42 +/- 4% and an increased T(m,G15A) = 57 +/- 2 degrees C, which corresponds to stabilization by delta deltaG(app) = +0.4 +/- 1.5 kcal/mol. G15P mutant has approximately 20% alpha-helical content at 22 degrees C and unfolds with low cooperativity upon heating to 90 degrees C. R23P and T45P mutants are fully unfolded at 0-90 degrees C. In contrast, Q31P mutation leads to no destabilization or unfolding. Consequently, the R23 and T45 locations are essential for the stability of the cooperative alpha-helical unit in apoC-1 monomer, G15 is peripheral to it, and Q31 is located in a nonhelical linker region. Our results suggest that Pro mutagenesis coupled with CD provides a tool for assigning the secondary structure to protein groups, which should be useful for other self-associating proteins that are not amenable to NMR structural analysis in aqueous solution. TMAO induces a reversible cooperative coil-to-helix transition in apoC-1, with the maximal alpha-helical content reaching 74%. Comparison with the maximal alpha-helical content of 73% observed in lipid-bound apoC-1 suggests that the TMAO-stabilized secondary structure resembles the functional lipid-bound apolipoprotein conformation.  相似文献   

9.
Addition of urea to solutions of Escherichia coli thioredoxin results in a cooperative unfolding of the protein centered at 6.7 M urea at 25 degrees C and 5.1 M urea at 2 degrees C and neutral pH as judged by changes in tryptophan fluorescence emission, far-ultraviolet circular dichroism, and exclusion chromatography. Kinetic profiles of changes in tryptophan fluorescence emission intensity were analyzed following either manual or stopped-flow mixing to initiate unfolding or refolding. Unfolding of the native protein occurs in a single kinetic phase whose time constant is markedly dependent on urea concentration. Refolding of the urea-denatured protein occurs in a multiplicity of kinetic phases whose time constants and fractional amplitudes are also dependent upon urea concentration. Urea gradient gel electrophoretic and exclusion chromatographic measurements suggest the transient accumulation of at least one and likely two compact nativelike intermediate conformations during refolding. Simulations of both electrophoretic and chromatographic results suggest that the intermediate conformations are generated by the concerted action of the middle and fast refolding phases.  相似文献   

10.
Refolding of reduced and denatured protein in vitro has been an important issue for both basic research and applied biotechnology. Refolding at low protein concentration requires large volumes of refolding buffer. Among various refolding methods, diafiltration is very useful to control the denaturant and red/ox reagents in a refolding solution. We constructed a refolding procedure of high lysozyme concentration (0.5-10 mg/ml) based on the linear reduction of the urea concentration during diafiltration under oxygen pressure. When the urea concentration in the refolding vessel was decreased from 4 M with a rate of 0.167 M/h, the refolding yields were 85% and 63% at protein concentrations, 5 mg/ml and 10 mg/ml, respectively, after 11 h. This method gave a high productivity of 40.1,microM/h of the refolding lysozyme. The change in refolding yields during the diafiltration could be simulated using the model of Hevehan and Clark.  相似文献   

11.
The purposes of this study were to establish the role of disulfide linkages in the secondary structure of apolipoprotein B, to investigate the effects of sulfhydryl blocking agents, denaturing agents, pH and storage on the conformation of apolipoprotein B and lipoprotein B, and to compare the conformation of water-soluble apolipoprotein B in the presence and absence of its lipids by using circular dichroism. Fresh lipoprotein B examined in Tris/EDTA at pH 9.0, 7.3 and 2.7 exhibited alpha-helical content of 24.4, 26.7 and 26.9%, and beta-pleated sheet 25.1, 15.4 and 18.0%, respectively. The carboxymethylated (CM-) lipoprotein B had similar alpha-helical contents, and lower contents of beta-sheets. Storage of lipoprotein B resulted in marked change of beta-sheets and gradual decrease in alpha-helical structure, in spite of the preventive measures taken for lipid peroxidation and proteolytic degradation. Exposure of apolipoprotein B to 6 M guanidine X HCl led to a complete disappearance of the alpha-helix with an increase in the beta-sheets to 35-40%, irrespective of the use of disulfide-reducing agents. By substituting 6 M urea for guanidine X HCl, the alpha-helical contents for both CM- and reduced CM-apolipoprotein B increased up to 7-9% with a concomitant decrease in beta-structure. When urea was replaced with aqueous buffers, these apolipoprotein B preparations regained their alpha-helical contents (25-27%) to the full extent originally present in the parent lipoprotein samples. No difference was observed between the secondary structure of CM- and reduced CM-apolipoprotein B. Furthermore, the conformation of apolipoprotein B did not vary with pH when pH was changed from 2.7 to 9.0. These results suggest that (1) the conformation of apolipoprotein B is more stable with respect to pH in the absence of lipids than in their presence, (2) intramolecular disulfide linkages play an insignificant role in the conformation of apolipoprotein B, and (3) the changes in alpha-helix structure of lipoprotein B or CM-lipoprotein B due to delipidization and denaturation are reversible.  相似文献   

12.
The infrared spectrum of a structural lipoprotein from the Escherichia coli outer membrane indicated the lipoprotein had an alpha-helical conformation but no sign for the existence of beta-structures. From circular dichroism spectra of the lipoprotein, the alpha-helical content of the protein was found to be as high as 88% in 0.01-0.03% sodium dodecyl sulfate in the presence of 10(-5) M Mg2+ at pH 7.1 and 23 degrees C. When sodium dodecyl sulfate concentration increased higher than 0.1%, the alpha-helical content of the lipoprotein decreased to about 57%. Divalent cations, such as Mg2+ and Mn2+, were found to increase the helical content of the lipoprotein. The high alpha-helical content of the lipoprotein was observed in a wide range of temperatures (23 to 55 degrees C). The significance of the high alpha-helical content of the lipoprotein is discussed in light of the three-dimensional molecular models of the lipoprotein proposed previously.  相似文献   

13.
Receptor-adhesive modular proteins are nongenetic proteins designed to contain ligand, spacer, coil, and linker modules and to interact strongly with integrins or other types of cell-surface receptors. We have designed, chemically synthesized, and characterized a 39-residue peptide chain having a 6-residue ligand module (Gly-Arg-Gly-Asp-Ser-Pro-) for adherence to Arg-Gly-Asp-binding integrin receptors, a 3-residue spacer module (-Gly-Tyr-Gly-) for flexibility, and a 30-residue coil module [-(Arg-Ile-Glu-Ala-Ile-Glu-Ala) 4-Arg-Cys-NH2] containing four 7-residue repeats for dimerization. This chain was designed to form a 78-residue noncovalent dimer (P39) by folding the coils of two chains into an alpha-helical coiled coil through hydrophobic interaction of eight pairs of Ile residues. Air oxidation of P39 gave P78, a 78-residue covalent dimer having a disulfide bridge linking its C termini. Raman spectroscopy indicated that both synthetic proteins have high alpha-helical content. Ultraviolet circular dichroic spectroscopy indicated that both dimers contain stable alpha-helical coiled coils. Its C-terminal disulfide bridge renders P78 significantly more stable than P39 to thermal denaturation or denaturation by urea. The coiled coil of P39 was 30% unfolded near 55 degrees C and half-unfolded in 8 M urea, while that of P78 was 30% unfolded only near 85 degrees C. These studies have demonstrated the feasibility of using these ligand, spacer, and coil modules to construct the designed coiled-coil proteins P39 and P78, a stage in the nanometric engineering of receptor-adhesive modular proteins.  相似文献   

14.
Unassisted refolding of urea unfolded rhodanese   总被引:4,自引:0,他引:4  
In vitro refolding after urea unfolding of the enzyme rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) normally requires the assistance of detergents or chaperonin proteins. No efficient, unassisted, reversible unfolding/folding transition has been demonstrated to date. The detergents or the chaperonin proteins have been proposed to stabilize folding intermediates that kinetically limit folding by aggregating. Based on this hypothesis, we have investigated a number of experimental conditions and have developed a protocol for refolding, without assistants, that gives evidence of a reversible unfolding transition and leads to greater than 80% recovery of native enzyme. In addition to low protein concentration (10 micrograms/ml), low temperatures are required to maximize refolding. Otherwise optimal conditions give less than 10% refolding at 37 degrees C, whereas at 10 degrees C the recovery approaches 80%. The unfolding/refolding phases of the transition curves are most similar in the region of the transition, and refolding yields are significantly reduced when unfolded rhodanese is diluted to low urea concentrations, rather than to concentrations near the transition region. This is consistent with the formation of "sticky" intermediates that can remain soluble close to the transition region. Apparently, nonnative structures, e.g. aggregates, can form rapidly at low denaturant concentrations, and their subsequent conversion to the native structure is slow.  相似文献   

15.
By comparing changes in enzyme activity with changes in spectral features for stem bromelain (EC.3.4.22.32) in the absence and presence of urea, Guanidine hydrochloride and ethanol; four intermediate states could be identified: two activity-enhanced state obtained in the presence of 5 M urea and 2 M GnHCl, termed X and X', respectively, and a third, similarly active state closely resembling the native protein in the presence of 8-9 M urea, termed Y. The enhanced activity of these states is due to local conformational changes accompanied by increased dynamics in the active site. Further, the enzyme does not lose its activity after substantial tertiary structure changes in 8-9 M urea (Y state), suggesting that active site containing domain is more resistant to chemical denaturation than the other structural domain. This makes stem bromelain and in general cysteine proteases an exception to the hypothesis that active site is the most labile part of enzyme.  相似文献   

16.
The biophysical characterization of nonfunctional protein aggregates at physiologically relevant temperatures is much needed to gain deeper insights into the kinetic and thermodynamic relationships between protein folding and misfolding. Dynamic and static laser light scattering have been employed for the detection and detailed characterization of apomyoglobin (apoMb) soluble aggregates populated at room temperature upon dissolving the purified protein in buffer at pH 6.0, both in the presence and absence of high concentrations of urea. Unlike the beta-sheet self-associated aggregates previously reported for this protein at high temperatures, the soluble aggregates detected here have either alpha-helical or random coil secondary structure, depending on solvent and solution conditions. Hydrodynamic diameters range from 80 to 130 nm, with semiflexible chain-like morphology. The combined use of low pH and high urea concentration leads to structural unfolding and complete elimination of the large aggregates. Even upon starting from this virtually monomeric unfolded state, however, protein refolding leads to the formation of severely self-associated species with native-like secondary structure. Under these conditions, kinetic apoMb refolding proceeds via two parallel routes: one leading to native monomer, and the other leading to a misfolded and heavily self-associated state bearing native-like secondary structure.  相似文献   

17.
The de novo design and biophysical characterization of two 60-residue peptides that dimerize to fold as parallel coiled-coils with different hydrophobic core clustering is described. Our goal was to investigate whether designing coiled-coils with identical hydrophobicity but with different hydrophobic clustering of non-polar core residues (each contained 6 Leu, 3 Ile, and 7 Ala residues in the hydrophobic core) would affect helical content and protein stability. The disulfide-bridged P3 and P2 differed dramatically in alpha-helical structure in benign conditions. P3 with three hydrophobic clusters was 98% alpha-helical, whereas P2 was only 65% alpha-helical. The stability profiles of these two analogs were compared, and the enthalpy and heat capacity changes upon denaturation were determined by measuring the temperature dependence by circular dichroism spectroscopy and confirmed by differential scanning calorimetry. The results showed that P3 assembled into a stable alpha-helical two-stranded coiled-coil and exhibited a native protein-like cooperative two-state transition in thermal melting, chemical denaturation, and calorimetry experiments. Although both peptides have identical inherent hydrophobicity (the hydrophobic burial of identical non-polar residues in equivalent heptad coiled-coil positions), we found that the context dependence of an additional hydrophobic cluster dramatically increased stability of P3 (Delta Tm approximately equal to 18 degrees C and Delta[urea](1/2) approximately equal to 1.5 M) as compared with P2. These results suggested that hydrophobic clustering significantly stabilized the coiled-coil structure and may explain how long fibrous proteins like tropomyosin maintain chain integrity while accommodating polar or charged residues in regions of the protein hydrophobic core.  相似文献   

18.
Ligand-dependent stabilization of the estrogen receptor (ER) is often postulated, with limited support from experimental data. We studied the thermal unfolding of recombinant ERalpha by circular dichroism (CD) spectroscopy. The T(M) of unfolding of ERalpha was 38 +/- 2.4 degrees C, and the van't Hoff enthalpy of unfolding was 31.7 +/- 3.4 kcal/mol in the absence of ligands. Addition of estradiol (E(2)) increased the T(M) to 43.6 +/- 2.3 degrees C, while addition of E(2) and an oligonucleotide harboring the estrogen response element (ERE) increased the T(M) to 47.9 +/- 1.6 degrees C. Addition of the antiestrogen 4-hydroxytamoxifen (HT) alone did not increase the T(M); however, a combination of HT and the ERE increased the T(M) to 48.9 +/- 1.0 degrees C. The ERE alone increased the T(M) to 46.1 +/- 0.9 degrees C. Addition of E(2) alone had no effect on the apparent enthalpy of unfolding; however, the ERE alone increased the apparent enthalpy from 31.7 to 36.1 kcal/mol. ERalpha samples containing the ERE also exhibited an increase in the negative ellipticity at 208 and 222 nm, relative to that of ligand-free ERalpha, suggesting a stabilization of the alpha-helix. CD data analysis further showed that the presence of the ERE caused a large increase in alpha-helical content of ERalpha in both the presence and absence of the ligands. This increase in alpha-helical content of ERalpha was not observed in the presence of a nonspecific oligonucleotide. These results show that the ERE can increase the thermal stability of ERalpha, enhance its alpha-helical content, and facilitate the cooperativity of the folding transition.  相似文献   

19.
Enzyme I of the bacterial phosphoenolpyruvate:sugar phosphotransferase system can be phosphorylated by PEP on an active-site histidine residue, localized to a cleft between an alpha-helical domain and an alpha/beta domain on the amino terminal half of the protein. The phosphoryl group on the active-site histidine can be passed to an active-site histidine residue of HPr. It has been proposed that the major interaction between enzyme I and HPr occurs via the alpha-helical domain of enzyme I. The isolated recombinant alpha-helical domain (residues 25-145) with approximately 80% alpha-helices as well as enzyme I deficient in that domain [EI(DeltaHD)] with approximately 50% alpha-helix content from M. capricolum were used to further elucidate the nature of the enzyme I-HPr complex. Isothermal titration calorimetry demonstrated that HPr binds to the alpha-helical domain and intact enzyme I with = 5 x 10(4) and 1.4 x 10(5) M(-)(1) at pH 7.5 and 25 degrees C, respectively, but not to EI(DeltaHD), which contains the active-site histidine of enzyme I and can be autophosphorylated by PEP. In vitro reconstitution experiments with proteins from both M. capricolum and E. coli showed that EI(DeltaHD) can donate its bound phosphoryl group to HPr in the presence of the isolated alpha-helical domain. Furthermore, M. capricolum recombinant C-terminal domain of enzyme I (EIC) was shown to reconstitute phosphotransfer activity with recombinant N-terminal domain (EIN) approximately 5% as efficiently as the HD-EI(DeltaHD) pair. Recombinant EIC strongly self-associates ( approximately 10(10) M(-)(1)) in comparison to dimerization constants of 10(5)-10(7) M(-)(1) measured for EI and EI(DeltaHD).  相似文献   

20.
Immunotoxins might be potential in treatment of cancer for their ability to kill selected cell populations. We constructed a novel immunotoxin hS83P34 by fusing N-terminal 34 amino acid fragment of human perforin to the C-terminus of humanized single-chain fragment variable antibody against CTLA4. The fusion protein was inductively expressed as inclusion bodies at a high level about 30% of total bacterial proteins. After washing with buffer containing 2 M urea, the purity of inclusion body was about 71%. The washed inclusion bodies were solubilized in 8 M urea and further purified to homogeneity (approximately 92% purity) by cation-exchange chromatography and Ni-agarose affinity chromatography under denaturing condition. The inclusion body refolding conditions were optimized following Pro-Matrix Protein Refolding Guide. After refolded in Tris buffer (pH 8.0) containing 1M urea, 0.8 M l-arginine, and 2 mM GSH:0.2 mM GSSG or 2 mM GSH:0.4 mM GSSG for 18h at 4 degrees C, over 90% proteins were recovered from inclusion bodies. In vitro dose-dependent cytotoxicity assay demonstrates that hS83P34 is only toxic to CTLA4-positive cells. IC(50) of hS83P34 for leukemic cells Raji and 6T-CEM are about 0.85 and 1.3 microM individually. Whereas, CTLA4-negative endothelial cell ECV-304 is resistant to hS83P34.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号