首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In the present study we have investigated the presence and distribution of calreticulin in plant protoplasts. Calreticulin was purified from plant homogenates using a selective ammonium sulfate precipitation procedure developed for the purification of mammalian calreticulins and shown to bind calcium in45Ca2+ overlay assays. The protein was localized to plant cell endoplasmic reticulum by the indirect immunofluorescence staining of protoplasts with anti-calreticulin antibodies. No calreticulin was observed within large vacuoles. We conclude that calreticulin is present in the endoplasmic reticulum of plant cells, where, by analogy to the mammalian endoplasmic reticulum, it may play a major role in Ca2+ binding and storage.Abbreviations ER endoplasmic reticulum - SR sarcoplasmic reticulum - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - PBS phosphate-buffered saline  相似文献   

2.
Modulation of cytosolic calcium levels in both plants and animals is achieved by a system of Ca2+-transport and storage pathways that include Ca2+ buffering proteins in the lumen of intracellular compartments. To date, most research has focused on the role of transporters in regulating cytosolic calcium. We used a reverse genetics approach to modulate calcium stores in the lumen of the endoplasmic reticulum. Our goals were two-fold: to use the low affinity, high capacity Ca2+ binding characteristics of the C-domain of calreticulin to selectively increase Ca2+ storage in the endoplasmic reticulum, and to determine if those alterations affected plant physiological responses to stress. The C-domain of calreticulin is a highly acidic region that binds 20–50 moles of Ca2+ per mole of protein and has been shown to be the major site of Ca2+ storage within the endoplasmic reticulum of plant cells. A 377-bp fragment encoding the C-domain and ER retention signal from the maize calreticulin gene was fused to a gene for the green fluorescent protein and expressed in Arabidopsis under the control of a heat shock promoter. Following induction on normal medium, the C-domain transformants showed delayed loss of chlorophyll after transfer to calcium depleted medium when compared to seedlings transformed with green fluorescent protein alone. Total calcium measurements showed a 9–35% increase for induced C-domain transformants compared to controls. The data suggest that ectopic expression of the calreticulin C-domain increases Ca2+ stores, and that this Ca2+ reserve can be used by the plant in times of stress.  相似文献   

3.
Calreticulin: not just another calcium-binding protein   总被引:15,自引:0,他引:15  
In this paper we review some of the rapidly expanding information about calreticulin, a Ca2+-binding/storage protein of the endoplasmic reticulum. The emphasis is placed on the structure and function of calreticulin. We believe that calreticulin is a multifunctional Ca2+-binding protein and that distinct functional properties of the protein may be localized to each of the three structural domains of calreticulin. Most evidence indicates that calreticulin is a resident endoplasmic reticulum protein. However, it can also be found outside of the endoplasmic reticulum compartment, i.e. in the nuclear envelope, in the nucleus, in the cytotoxic granules in T-lymphocytes and in acrosomal vesicles of sperm cells. The evidence reviewed here clearly suggests that calreticulin has other functions in addition to its role as a Ca2+ storage protein in the endoplasmic reticulum.Abbreviations SR sarcoplasmic reticulum - ER endoplasmic reticulum  相似文献   

4.
We isolated a calreticulin cDNA from the silkworm, Bombyx mori. The cDNA encodes 398 amino acid residues of B. mori calreticulin, with an endoplasmic reticulum retentional HDEL motif at its C-terminus and a predicted molecular mass of 45,801 Da. The B. mori calreticulin shows high protein homology with calreticulin from G. mellonella (88%), A. aegypti (71%), D. melanogaster (69%) and H. sapiens (63%). The highest level of mRNA expression of B. mori calreticulin was exhibited in the fat body of this insect. Although expression of B. mori calreticulin was affected by disturbances in intracellular calcium levels, other ER stress conditions such as inhibition of intracellular protein transport, reduction of disulfide formation, glycosylation inhibition, heat shock and oxidative stress did not disrupt induction of B. mori calreticulin.  相似文献   

5.
6.
Background information. Our previous studies have shown that calreticulin, a Ca2+‐binding chaperone located in the endoplasmic reticulum, affects cell—substratum adhesions via the induction of vinculin and N‐cadherin. Cells overexpressing calreticulin contain more vinculin than low expressers and make abundant contacts with the substratum. However, cells that express low levels of calreticulin exhibit a weak adhesive phenotype and make few, if any, focal adhesions. To date, the identity of the types of focal adhesions made by calreticulin overexpressing and low expressing cells has not been dissected. Results. The results of the present study show that calreticulin affects fibronectin matrix assembly in L fibroblast cell lines that differentially express the protein, and that these cells also differ profoundly in focal adhesion formation. Although the calreticulin overexpressing cells generate numerous interference‐reflection‐microscopy‐dark, vinculin‐ and paxillin‐containing classical focal contacts, as well as some fibrillar adhesions, the cells expressing low levels of calreticulin generate only a few weak focal adhesions. The fibronectin receptor was found to be clustered in calreticulin overexpressing cells, but diffusely distributed over the cell surface in low expressing cells. Plating L fibroblasts on fibronectin‐coated substrata induced extensive spreading in all cell lines tested. However, although calreticulin overexpressing cells were induced to form classical vinculin‐rich focal contacts, the low calreticulin expressing cells overcame their weak adhesive phenotype by induction of many tensin‐rich fibrillar adhesions, thus compensating for the low level of vinculin in these cells. Conclusions. We propose that calreticulin affects fibronectin production and, thereby, assembly, and it indirectly influences the formation and/or stability of focal contacts and fibrillar adhesions, both of which are instrumental in matrix assembly and remodelling.  相似文献   

7.
In the present study we have demonstrated the presence of calreticulin, a major Ca(2+)-sequestering protein of nonmuscle cells, in a variety of cell types in tissue culture. The protein localizes to the endoplasmic reticulum in most cell types and also to the nuclear envelope or nucleoli-like structures in some cell types. Calreticulin is enriched in the rough endoplasmic reticulum, suggesting a possible involvement in protein synthesis. Calreticulin terminates with the KDEL-COOH sequence, which is likely responsible for its endoplasmic reticulum localization. Unlike some other KDEL proteins, calreticulin expression is neither heat-shock nor Ca(2+)-shock dependent. Using a variety of metabolic inhibitors, we have shown that the pool of calreticulin in L6 cells has a relatively slow turnover and a stable intracellular distribution. In proliferating muscle cells in culture (both L6 and human skeletal muscle) calreticulin is present in the endoplasmic reticulum, and additional intranuclear staining is observed. When fusion of the L6 cells is inhibited with either a high serum concentration or TGF-beta or TPA, the nucleolar staining by anticalreticulin antibodies is diminished, although the presence of calreticulin in the endoplasmic reticulum remains unchanged. In contrast, in differentiated (i.e., fused) muscle cells neither intranuclear nor intracellular staining for calreticulin is present. We conclude, therefore, that calreticulin is abundant in the endoplasmic reticulum in proliferating myoblasts, while it is present in only small amounts in sarcoplasmic reticulum membranes in terminally differentiated myotubes. We propose a model for the domain structure of calreticulin that may explain the differential subcellular distribution of this protein. Because of its widespread distribution in nonmuscle tissues, we postulate that calreticulin is a multifunctional protein that plays an important role in Ca(2+) sequestering and thus that it is the nonmuscle analog of calsequestrin.  相似文献   

8.
Calreticulin is an endoplasmic reticulum resident molecule known to be involved in the folding and assembly of major histocompatibility complex (MHC) class I molecules. In the present study, expression of calreticulin was analyzed in human peripheral blood T lymphocytes. Pulse-chase experiments in [35S]methionine-labeled T cell blasts showed that calreticulin was associated with several proteins in the endoplasmic reticulum and suggested that it was expressed at the cell surface. Indeed, the 60-kDa calreticulin was labeled by cell surface biotinylation and precipitated from the surface of activated T cells together with a protein with an apparent molecular mass of 46 kDa. Cell surface expression of calreticulin by activated T lymphocytes was further confirmed by immunofluorescence and flow cytometry, studies that showed that both CD8+ and CD4+ T cells expressed calreticulin in the plasma membrane. Low amounts of cell surface calreticulin were detected in resting T lymphocytes. By sequential immunoprecipitation using the conformation independent monoclonal antibody HC-10, we provided evidence that the cell surface 46-kDa protein co-precipitated with calreticulin is unfolded MHC I. These results show for the first time that after T cell activation, significant amounts of calreticulin are expressed on the T cell surface, where they are found in physical association with a pool of beta2-free MHC class I molecules.  相似文献   

9.
G. Hause  M. -B. Schröder 《Protoplasma》1987,139(2-3):100-104
Summary Karyogamy during fertilization inTriticale starts about 60 minutes after pollination. It was studied in the egg and the central cell by electron microscopy. The fusion of the sperm cell nuclei with the egg and central cell nuclei begins with nuclear envelope fusion presumably with participation of the endoplasmic reticulum cisternae. Initially, fusion is restricted to small bridges between the nuclei. It is accompanied by the appearance of intracisternal lipid droplets.  相似文献   

10.
Calreticulin and calnexin are Ca2+-binding proteins with chaperone activity in the endoplasmic reticulum. These proteins have been eliminated by gene replacement in Dictyostelium, the only microorganism known to harbor both proteins; family members in Dictyostelium are located at the base of phylogenetic trees. A dramatic decline in the rate of phagocytosis was observed in double mutants lacking calreticulin and calnexin, whereas only mild changes occurred in single mutants. Dictyostelium cells are professional phagocytes, capable of internalizing particles by a sequence of activities: adhesion of the particle to the cell surface, actin-dependent outgrowth of a phagocytic cup, and separation of the phagosome from the plasma membrane. In the double-null mutants, particles still adhered to the cell surface, but the outgrowth of phagocytic cups was compromised. Green fluorescent protein-tagged calreticulin and calnexin, expressed in wild-type cells, revealed a direct link of the endoplasmic reticulum to the phagocytic cup enclosing a particle, such that the Ca2+ storage capacity of calreticulin and calnexin might directly modulate activities of the actin system during particle uptake.  相似文献   

11.
Calreticulin in the heart   总被引:1,自引:0,他引:1  
Calreticulin is a Ca2+ binding/storage chaperone resident protein of the endoplasmic reticulum. This protein plays a key role in the calreticulin/calnexin cycle and the quality control pathways in the endoplasmic reticulum. Calreticulin deficiency is lethal due to impaired cardiac development. However, over-expression of the protein in developing and postnatal heart leads to bradycardia, complete heart block and sudden death. Ultrastructural evidence indicates that the deficiency associated with the absence of calreticulin in the heart may be due to a defect in the development of the contractile apparatus and/or a defect in development of the conductive system as well as a metabolic abnormality. Collectively, we postulate that calreticulin and endoplasmic reticulum plays an important role in cardiac development and postnatal pathologies. (Mol Cell Biochem 263: 137–142, 2004)  相似文献   

12.

Background

Calreticulin, a Ca2+-buffering chaperone of the endoplasmic reticulum, is highly expressed in the embryonic heart and is essential for cardiac development. After birth, the calreticulin gene is sharply down regulated in the heart, and thus, adult hearts have negligible levels of calreticulin. In this study we tested the role of calreticulin in the adult heart.

Methodology/Principal Findings

We generated an inducible transgenic mouse in which calreticulin is targeted to the cardiac tissue using a Cre/loxP system and can be up-regulated in adult hearts. Echocardiography analysis of hearts from transgenic mice expressing calreticulin revealed impaired left ventricular systolic and diastolic function and impaired mitral valve function. There was altered expression of Ca2+ signaling molecules and the gap junction proteins, Connexin 43 and 45. Sarcoplasmic reticulum associated Ca2+-handling proteins (including the cardiac ryanodine receptor, sarco/endoplasmic reticulum Ca2+-ATPase, and cardiac calsequestrin) were down-regulated in the transgenic hearts with increased expression of calreticulin.

Conclusions/Significance

We show that in adult heart, up-regulated expression of calreticulin induces cardiomyopathy in vivo leading to heart failure. This is due to an alternation in changes in a subset of Ca2+ handling genes, gap junction components and left ventricle remodeling.  相似文献   

13.
Calreticulin is a lectin chaperone of the endoplasmic reticulum (ER). In calreticulin‐deficient cells, major histocompatibility complex (MHC) class I molecules travel to the cell surface in association with a sub‐optimal peptide load. Here, we show that calreticulin exits the ER to accumulate in the ER–Golgi intermediate compartment (ERGIC) and the cis‐Golgi, together with sub‐optimally loaded class I molecules. Calreticulin that lacks its C‐terminal KDEL retrieval sequence assembles with the peptide‐loading complex but neither retrieves sub‐optimally loaded class I molecules from the cis‐Golgi to the ER, nor supports optimal peptide loading. Our study, to the best of our knowledge, demonstrates for the first time a functional role of intracellular transport in the optimal loading of MHC class I molecules with antigenic peptide.  相似文献   

14.
S. Singh  M. D. Lazzaro  B. Walles 《Protoplasma》1998,203(3-4):144-152
Summary Placental cells line the ovarian transmitting tract inLilium regale and produce exudates for secretion. Sections through the highly lobed nuclei of these cells reveal the presence of membrane profiles which form vesicles with varying dimensions in cross section. Computer reconstruction of the nucleus reveals that the vesicle profiles form a complex reticulum of tubular cisternae, which spans the whole nucleus, enclosing a maze of continuous lumen space. Connections between the vesicles and the inner nuclear envelope are visible at various points along the nuclear envelope. This complex network of tubules which constitutes the reticulum arises from the inner nuclear membrane. The nuclear reticulum dramatically increases the inner-envelope surface area, comprising 82% of the total membrane perimeter of inner nuclear envelope and nuclear reticulum. The inner nuclear envelope invaginates into the nucleus forming the nuclear reticulum and the outer nuclear envelope evaginates into the endoplasmic reticulum (ER), indicating that there is a continuity between the lumens of the nuclear reticulum and the ER. The nuclear reticulum is labelled with zinc iodide-osmium tetroxide, a staining pattern identical to that seen in the ER. Positive reaction to the zinc iodide-osmium tetroxide indicates that the nuclear reticulum is a site for Ca2+ deposition. The nuclear reticulum forms an extension of the endomembrane system which reaches deep into the nucleoplasm. The lumenal continuity of this system means that there is a channel for communication from the cytoplasm into the nucleoplasm, and that this channel sequesters calcium.Abbreviations ER endoplasmic reticulum - TEM transmission electron microscope - ZIO zinc iodide-osmium tetroxide  相似文献   

15.
Summary Both tunicamycin, an inhibitor of N-linked glycosylation of proteins, and cyclopiazonic acid, which inhibits the Ca2+-dependent ATPase in the ER, influence the secretory pathway at the ER level and lead to a cessation of cell growth inMicrasterias. Electron microscopical investigations reveal that the mode of action of the two inhibitors differs. While tunicamycin treatment results in a disintegration of the Golgi bodies into small vesicles, cyclopiazonic acid prevents products being supplied from the ER, resulting in the dilatation of ER cisternae and a reduction in the number of Golgi cisternae, combined with a loss of dictyosomal activity. The disturbed cell wall formation under tunicamycin indicates that N-linked glycosylation of proteins is required for normal cell growth inMicrasterias. Moreover, our studies reveal that changes in cytoplasmic free calcium concentration, as a consequence of ATPase inhibition in the ER by cyclopiazonic acid, may inhibit wall material secretion by interrupting the normal ER-dictyosome association.Abbreviations CPA cyclopiazonic acid - ER endoplasmic reticulum - TM tunicamycin  相似文献   

16.
R. B. Mellor  J. M. Lord 《Planta》1978,141(3):329-332
Excised casto bean (Ricinus communis L.) endosperm tissue supplied with [14C]galactose incorporates radioactivity into particulate cell components. Fractionation of homogenates established that 14C-labeled trichloroacetic acid-insoluble material was located primarily in the microsomal and glyoxysomal fractions. The capacity of the tissue to incorporate [14C]galactose into organelle glycoprotein varied during seedling development, increasing during the first 3 days of germination and subsequently declining. The kinetics of incorporation into the major organelle fractions of 2-day old endosperm tissue showed that the endoplasmic reticulum was immediately labeled whereas a lag period preceded the labeling of glyoxysomes. Sub-fractionation of the isolated organelles established that the greatest proportion of the [14C]-galactose labeled glycoprotein was located in the membrane, although a significant incorporation into the matrix protein was also observed.The results indicate that the addition of the carbohydrate moiety to the polypeptide cores occurs in the endoplasmic reticulum during or immediately after their synthesis on membrane-bound ribosomes.Abbreviations ER endoplasmic reticulum - SDS sodium dodecyl sulphate - TCA trichloroacetic acid  相似文献   

17.
Hensel W 《Planta》1984,162(5):404-414
When roots of Lepidium sativum L. are immersed in a colchicine solution (10-4 mol l-1), the cortical microtubules of statocytes are affected such that the dense network ofmicrotubules at the distal cell edges, between the endoplasmic reticulum and the plasma membrane, disappears almost completely, whereas the microtubules, lining the anticlinal cell walls are reduced only to a limited extent. Upon inversion of colchicine-pretreated roots, the distal complex of endoplasmic reticulum sinks into the interior of the statocyte. Germination of seeds in the cold (3–4°C) leads to a retardation of statocyte development; the elaborated system of endoplasmic reticulum is lacking, and only a few microtubules are observable, lining the plasma membrane along the anticlinal cell walls. During an additional 4 h at 24°C, groups of microtubules develop near the plasma membrane in the distal one-third of the statocytes, coaligning with newly synthesized cisternae of the endoplasmic reticulum. It is proposed that, particularly at the distal statocyte pole, microtubules in coordination with cross-bridging structures, act in stabilizing the polar arrangement of the distal endoplasmic reticulum and, in turn, facilitate an integrated function of amyloplasts, endoplasmic reticulum and plasma membrane in graviperception.Abbreviations ER endoplasmic reticulum - MT microtubule  相似文献   

18.
In the endoplasmic reticulum, calreticulin acts as a chaperone and a Ca(2+)-signalling protein. At the cell surface, it mediates numerous important biological effects. The crystal structure of the human calreticulin globular domain was solved at 1.55 ? resolution. Interactions of the flexible N-terminal extension with the edge of the lectin site are consistently observed, revealing a hitherto unidentified peptide-binding site. A calreticulin molecular zipper, observed in all crystal lattices, could further extend this site by creating a binding cavity lined by hydrophobic residues. These data thus provide a first structural insight into the lectin-independent binding properties of calreticulin and suggest new working hypotheses, including that of a multi-molecular mechanism.  相似文献   

19.
Ca2+ is a signalling molecule involved in virtually every aspect of cell function. The endoplasmic reticulum (ER) is an important and dynamic organelle responsible for storage of the majority of intracellular Ca2+. Within the ER lumen are proteins that function as Ca2+ buffers and/or molecular chaperones including calreticulin, a multifunctional Ca2+-binding protein. Calreticulin-deficiency is lethal in utero due to impaired cardiac development. In the absence of calreticulin Ca2+ storage capacity in the ER and InsP3 receptor mediated Ca2+ release from ER are compromised. Remarkably, over-expression of constitutively active calcineurin in the hearts of calreticulin deficient mice rescues them from embryonic lethality and produces live calreticulin deficient animals. These observations provide first evidence that calreticulin is a key upstream regulator of calcineurin in the Ca2+-signalling cascade and they highlight the importance of ER during early stages of cellular commitment and tissue development during organogenesis.  相似文献   

20.
Calcium (Ca2+) is a universal signalling molecule involved in many aspects of cellular function. The majority of intracellular Ca2+ is stored in the endoplasmic reticulum and once Ca2+ is released from the endoplasmic reticulum, specific plasma membrane Ca2+ channels are activated, resulting in increased intracellular Ca2+. In the lumen of the endoplasmic reticulum, Ca2+ is buffered by Ca2+ binding chaperones such as calreticulin. Calreticulin-deficiency is lethal in utero due to impaired cardiac development and in the absence of calreticulin, Ca2+ storage capacity within the endoplasmic reticulum and inositol 1,4,5-trisphosphate (InsP3) receptor mediated Ca2+ release from the endoplasmic reticulum are compromised. Over-expression of constitutively active calcineurin in the heart rescues calreticulin-deficient mice from embryonic lethality. This observation indicates that calreticulin is a key upstream regulator of calcineurin in Ca2+-signalling pathways and highlights the importance of the endoplasmic reticulum and endoplasmic reticulum-dependent Ca2+ homeostasis for cellular commitment and tissue development during organogenesis. Furthermore, Ca2+ handling by the endoplasmic reticulum has profound effects on cell sensitivity to apoptosis. Signalling between calreticulin in the lumen of the endoplasmic reticulum and calcineurin in the cytoplasm may play a role in the modulation of cell sensitivity to apoptosis and the regulation of Ca2+-dependent apoptotic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号