首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hall MC  Basten CJ  Willis JH 《Genetics》2006,172(3):1829-1844
Evolutionary biologists seek to understand the genetic basis for multivariate phenotypic divergence. We constructed an F2 mapping population (N = 539) between two distinct populations of Mimulus guttatus. We measured 20 floral, vegetative, and life-history characters on parents and F1 and F2 hybrids in a common garden experiment. We employed multitrait composite interval mapping to determine the number, effect, and degree of pleiotropy in quantitative trait loci (QTL) affecting divergence in floral, vegetative, and life-history characters. We detected 16 QTL affecting floral traits; 7 affecting vegetative traits; and 5 affecting selected floral, vegetative, and life-history traits. Floral and vegetative traits are clearly polygenic. We detected a few major QTL, with all remaining QTL of small effect. Most detected QTL are pleiotropic, implying that the evolutionary shift between these annual and perennial populations is constrained. We also compared the genetic architecture controlling floral trait divergence both within (our intraspecific study) and between species, on the basis of a previously published analysis of M. guttatus and M. nasutus. Eleven of our 16 floral QTL map to approximately the same location in the interspecific map based on shared, collinear markers, implying that there may be a shared genetic basis for floral divergence within and among species of Mimulus.  相似文献   

2.
Partial migration of some, but not all, members of a population is a common form of migration. We evaluated how migration costs influence which members migrate in 10 populations of two salmonid species. The migratory patterns of both species were evaluated based on the size at maturity for resident males, which is the threshold trait that determines the migratory tactics used within a population. In both species, this size was smaller in males located further from the sea, where migration costs are presumably higher. Moreover, the threshold sizes at maturity in males were correlated between both species. Our results suggest that migration costs are a significant convergent selective force on migratory tactics and life-history traits in nature.  相似文献   

3.
The high commercial value from the aquaculture of salmonid fishes has prompted many studies into the genetic architecture of complex traits and the need to identify genomic regions that have repeatable associations with trait variation both within and among species. We searched for quantitative trait loci (QTL) for body weight (BW), condition factor (CF) and age of sexual maturation (MAT) in families of Arctic charr (Salvelinus alpinus) from an Icelandic breeding program. QTL with genome-wide significance were detected for each trait on multiple Arctic charr (AC) linkage groups (BW: AC-4, AC-20; CF: AC-7, AC-20, AC-23, AC-36; MAT: AC-13/34, AC-39). In addition to the genome-wide significant QTL for both BW and CF on AC-20, linkage groups AC-4, AC-7, AC-8, and AC-16 contain QTL for both BW and CF with chromosome-wide significance. These regions had effects (albeit weaker) on MAT with the exception of the region on AC-8. Comparisons with a North American cultured strain of Arctic charr, as well as North American populations of Atlantic salmon (Salmo salar), and rainbow trout (Oncorhynchus mykiss), reveal some conservation in QTL location and structure, particularly with respect to the joint associations of QTL influencing BW and CF. The detection of some differences in genetic architecture between the two aquaculture strains of Arctic charr may be reflective of the differential evolutionary histories experienced by these fishes, and illustrates the importance of including different strains to investigate genetic variation in a species where the intent is to use that variation in selective breeding programs.  相似文献   

4.
Birds employ numerous strategies to cope with seasonal fluctuations in high-quality habitat availability. Long distance migration is a common tactic; however, partial migration is especially common among broadly distributed species. Under partial migration systems, a portion of a species migrates, whereas the remainder inhabits breeding grounds year round. In this study, we identified effects of migratory behavior variation on genetic structure and diversity of American Kestrels (Falco sparverius), a widespread partial migrant in North America. American Kestrels generally migrate; however, a resident group inhabits the southeastern United States year round. The southeastern group is designated as a separate subspecies (F. s. paulus) from the migratory group (F. s. sparverius). Using mitochondrial DNA and microsatellites from 183 and 211 individuals, respectively, we illustrate that genetic structure is stronger among nonmigratory populations, with differentiation measures ranging from 0.060 to 0.189 depending on genetic marker and analysis approach. In contrast, measures from western North American populations ranged from 0 to 0.032. These findings suggest that seasonal migratory behavior is also associated with natal and breeding dispersal tendencies. We likewise detected significantly lower genetic diversity within nonmigratory populations, reflecting the greater influence of genetic drift in small populations. We identified the signal of population expansion among nonmigratory populations, consistent with the recent establishment of higher latitude breeding locations following Pleistocene glacial retreat. Differentiation of F. s. paulus and F. s. sparverius reflected subtle differences in allele frequencies. Because migratory behavior can evolve quickly, our analyses suggest recent origins of migratory American Kestrel populations in North America.  相似文献   

5.
Rainbow and steelhead trout (Oncorhynchus mykiss), among other salmonid fishes, exhibit tremendous life history diversity, foremost of which is variation in migratory propensity. While some individuals possess the ability to undertake an anadromous marine migration, others remain resident in freshwater throughout their life cycle. Those that will migrate undergo tremendous physiological, morphological, and behavioral transformations in a process called smoltification which transitions freshwater-adapted parr to marine-adapted smolts. While the behavior, ecology, and physiology of smoltification are well described, our understanding of the proximate genetic mechanisms that trigger the process are not well known. Quantitative genetic analyses have identified several genomic regions associated with smoltification and migration-related traits within this species. Here we investigate the divergence in gene expression of 18 functional and positional candidate genes for the smoltification process in the brain, gill, and liver tissues of migratory smolts, resident parr, and precocious mature male trout at the developmental stage of out-migration. Our analysis reveals several genes differentially expressed between life history classes and validates the candidate nature of several genes in the parr-smolt transformation including Clock1α, FSHβ, GR, GH2, GHR1, GHR2, NDK7, p53, SC6a7, Taldo1, THRα, THRβ, and Vdac2.  相似文献   

6.
Genetic architecture of a selection response in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
Quantitative trait locus (QTL) mapping has become an established and effective method for studying the genetic architecture of complex traits. In this report, we use a QTL mapping approach in combination with data from a large selection experiment in Arabidopsis thaliana to explore a response to selection of experimental populations with differentiated genetic backgrounds. Experimental populations with genetic backgrounds derived from ecotypes Landsberg and Niederzenz were exposed to multiple generations of fertility and viability selection. This selection resulted in phenotypic shifts in a number of life-history and fitness-related characters including early development time, flowering time, dry biomass, longevity, and fruit production. Quantitative trait loci were mapped for these traits and their positions were compared to previously characterized allele frequency changes in the experimental populations (Ungerer et al. 2003). Quantitative trait locus positions largely colocalized with genomic regions under strong and consistent selection in populations with differentiated genetic backgrounds, suggesting that alleles for these traits were selected similarly in differentiated genetic backgrounds. However, one QTL region exhibited a more variable response; being positively selected on one genetic background but apparently neutral in another. This study demonstrates how QTL mapping approaches can be combined with map-based population genetic data to study how selection acts on standing genetic variation in populations.  相似文献   

7.
Quantitative approaches are now widely used to study the genetic architecture of complex traits. However, most studies have been conducted in single mapping populations, which sample only a fraction of the natural allelic variation available within a gene pool and can identify only a subset of the loci controlling the traits. To enable the progress towards an understanding of the global genetic architecture of a broad range of complex traits, we have developed and characterised six new Arabidopsis thaliana recombinant inbred populations. To evaluate the utility of these populations for integrating analyses from multiple populations, we identified quantitative trait loci (QTL) controlling flowering time in vernalized plants growing in 16 h days. We used the physical positions of markers to align the linkage maps of our populations with those of six existing populations. We identified seven QTL in genomic locations coinciding with those identified in previous studies and in addition a further eight QTL were identified. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

8.
Extensive individual variation in spatial behaviour is a common feature among species that exhibit migratory life cycles. Nowhere is this more evident than in salmonid fishes; individual fish may complete their entire life cycle in freshwater streams, others may migrate variable distances at sea and yet others limit their migrations to larger rivers or lakes before returning to freshwater streams to spawn. This review presents evidence that individual variation in migratory behaviour and physiology in salmonid fishes is controlled by developmental thresholds and that part of the variation in proximal traits activating the development of alternative migratory tactics is genetically based. We summarize evidence that alternative migratory tactics co‐exist within populations and that all individuals may potentially adopt any of the alternative phenotypes. Even though intra‐specific genetic divergence of migratory tactics is uncommon, it may occur if female competition for oviposition sites results in spawning segregation of alternative phenotypes. Because of their polygenic nature, alternative migratory tactics are considered as threshold traits. Threshold traits have two characteristics: an underlying 'liability' trait that varies in a continuous fashion, and a threshold value which is responsible for the discreetness observed in phenotypic distribution. We review evidence demonstrating that body size is an adequate proxy for the liability trait controlling the decision to migrate, but that the same phenotypic outcome (anadromy or residency) may be reached by different developmental pathways. The evidence suggesting a significant heritable component in the development of alternative migratory tactics is subsequently reviewed, leading us to conclude that alternative migratory tactics have considerable potential to respond to selection and evolve. We review what is known about the proximal physiological mechanisms mediating the translation of the continuous value of the liability trait into a discontinuous migratory tactic. We conclude by identifying several avenues for future research, including testing the frequency‐dependent selection hypothesis, establishing the relative importance of adaptive phenotypic plasticity in explaining some geographic gradients in migratory behaviour and identifying the physiological and genetic basis of the switching mechanisms responsible for alternative migratory tactics.  相似文献   

9.
Intraspecific diversity is central to the management and conservation of exploited species, yet knowledge of how this diversity is distributed and maintained in the genome of many marine species is lacking. Recent advances in genomic analyses allow for genome‐wide surveys of intraspecific diversity and offer new opportunities for exploring genomic patterns of divergence. Here, we analysed genome‐wide polymorphisms to measure genetic differentiation between an offshore migratory and a nonmigratory population and to define conservation units of Atlantic Cod (Gadus morhua) in coastal Labrador. A total of 141 individuals, collected from offshore sites and from a coastal site within Gilbert Bay, Labrador, were genotyped using an ~11k single nucleotide polymorphism array. Analyses of population structure revealed strong genetic differentiation between migratory offshore cod and nonmigratory Gilbert Bay cod. Genetic differentiation was elevated for loci within a chromosomal rearrangement found on linkage group 1 (LG1) that coincides with a previously found double inversion associated with migratory and nonmigratory ecotype divergence of cod in the northeast Atlantic. This inverted region includes several genes potentially associated with adaptation to differences in salinity and temperature, as well as influencing migratory behaviour. Our work provides evidence that a chromosomal rearrangement on LG1 is associated with parallel patterns of divergence between migratory and nonmigratory ecotypes on both sides of the Atlantic Ocean.  相似文献   

10.
Patterns of phenotypic variation within and among species can be shaped and constrained by trait genetic architecture. This is particularly true for complex traits, such as butterfly wing patterns, that consist of multiple elements. Understanding the genetics of complex trait variation across species boundaries is difficult, as it necessitates mapping in structured populations and can involve many loci with small or variable phenotypic effects. Here, we investigate the genetic architecture of complex wing pattern variation in Lycaeides butterflies as a case study of mapping multivariate traits in wild populations that include multiple nominal species or groups. We identify conserved modules of integrated wing pattern elements within populations and species. We show that trait covariances within modules have a genetic basis and thus represent genetic constraints that can channel evolution. Consistent with this, we find evidence that evolutionary changes in wing patterns among populations and species occur in the directions of genetic covariances within these groups. Thus, we show that genetic constraints affect patterns of biological diversity (wing pattern) in Lycaeides, and we provide an analytical template for similar work in other systems.  相似文献   

11.
In salmonid fishes, life-history changes may often be coupled to early individual growth trajectories. We identified quantitative trait loci (QTL) for body weight (BW), condition factor (K) and age at sexual maturation (MT) in two full-sib families of Arctic charr (Salvelinus alpinus) to ascertain if QTL for MT were confounded with BW QTL intervals. Three significant QTL for BW, three QTL for MT and one significant QTL for K were identified. A BW QTL with major effect was localized to linkage group 8 (AC-8) and explained more than 34% of the phenotypic variation. Markers on AC-8 have previously been identified as being associated with variation in fork length and BW in this species. Similarly, a major QTL (PEV = 23%) with an influence on the female MT was localized to AC-23. Some of these regions are homologous to those in the genomes of rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar), where similar QTL effects have been detected. Our results also suggest the conservation of MT QTL on the homeologous linkage group pair AC-3/24 in Arctic charr. We further identified chromosomal regions that harbor QTL for multiple traits. In particular, markers on AC-4, -20 and -36 had detectable QTL for all traits studied. Significant MT QTL detected on AC-23, -24, and -27 were autonomous of any BW QTL regions, suggesting that the regulation of MT may be more independent of BW control within this species than in other species of salmonids.  相似文献   

12.
Gardner KM  Latta RG 《Molecular ecology》2007,16(20):4195-4209
We review genetic correlations among quantitative traits in light of their underlying quantitative trait loci (QTL). We derive an expectation of genetic correlation from the effects of underlying loci and test whether published genetic correlations can be explained by the QTL underlying the traits. While genetically correlated traits shared more QTL (33%) on average than uncorrelated traits (11%), the actual number of shared QTL shared was small. QTL usually predicted the sign of the correlation with good accuracy, but the quantitative prediction was poor. Approximately 25% of trait pairs in the data set had at least one QTL with antagonistic effects. Yet a significant minority (20%) of such trait pairs have net positive genetic correlations due to such antagonistic QTL 'hidden' within positive genetic correlations. We review the evidence on whether shared QTL represent single pleiotropic loci or closely linked monotropic genes, and argue that strict pleiotropy can be viewed as one end of a continuum of recombination rates where r=0. QTL studies of genetic correlation will likely be insufficient to predict evolutionary trajectories over long time spans in large panmictic populations, but will provide important insights into the trade-offs involved in population and species divergence.  相似文献   

13.
Across a range of organisms, related species or even populations of the same species exhibit strikingly different scales and patterns of movement. A significant proportion of the phenotypic variance in migratory traits is genetic, but the genes involved in shaping these phenotypes are still unknown. Although recent achievements in genomics will evolve migratory genetics research from a phenotypic to a molecular approach, fully sequenced and annotated genomes of migratory species are still lacking. Consequently, many of the genes involved in migration are unavailable as candidates. Migration is central to the life-history adaptations of many animals. Here, we review current understanding of the genetic architecture of migratory traits and discuss the significant implications this will have for other areas of biology, including population responses to climate change, speciation and conservation management.  相似文献   

14.
Purebred dogs are a valuable resource for genetic analysis of quantitative traits. Quantitative traits are complex, controlled by many genes that are contained within regions of the genome known as quantitative trait loci (QTL). The genetic architecture of quantitative traits is defined by the characteristics of these genes: their number, the magnitude of their effects, their positions in the genome and their interactions with each other. QTL analysis is a valuable tool for exploring genetic architecture, and highlighting regions of the genome that contribute to the variation of a trait within a population.  相似文献   

15.
QTL mapping and the genetic basis of adaptation: recent developments   总被引:6,自引:0,他引:6  
Zeng ZB 《Genetica》2005,123(1-2):25-37
Quantitative trait loci (QTL) mapping has been used in a number of evolutionary studies to study the genetic basis of adaptation by mapping individual QTL that explain the differences between differentiated populations and also estimating their effects and interaction in the mapping population. This analysis can provide clues about the evolutionary history of populations and causes of the population differentiation. QTL mapping analysis methods and associated computer programs provide us tools for such an inference on the genetic basis and architecture of quantitative trait variation in a mapping population. Current methods have the capability to separate and localize multiple QTL and estimate their effects and interaction on a quantitative trait. More recent methods have been targeted to provide a comprehensive inference on the overall genetic architecture of multiple traits in a number of environments. This development is important for evolutionary studies on the genetic basis of multiple trait variation, genotype by environment interaction, host–parasite interaction, and also microarray gene expression QTL analysis.  相似文献   

16.
Speciation processes are largely determined by the relative strength of divergent selection versus the magnitude of gene flow. The barn swallow (Hirundo rustica) has a broad geographic distribution that encompasses substantial geographic variation in morphology and behavior. The European (H. r. rustica) and East-Mediterranean (H. r. transitiva) subspecies are closely related, despite differing in morphological and life-history traits. To explore patterns of genetic differentiation and gene flow, we compared morphological and genetic variation among the nonmigratory breeding population of H. r. transitiva from Israel and the migratory population of H. r. rustica that passes through Israel and compared it with the genetic differentiation between H. r. transitiva from Israel and a breeding population of H. r. rustica from the United Kingdom that uses a different migratory flyway. Mitochondrial haplotype network analysis suggests that the European and East-Mediterranean populations are intermixed, although there was low but significant genetic differentiation between the subspecies based on both mitochondrial (F(ST) = 0.025-0.033) and microsatellite (F(ST) = 0.009-0.014) loci. Coalescent-based analyses suggest recent divergence and substantial gene flow between these populations despite their differences in morphological and behavioral traits. The results suggest that these subspecies are undergoing a differentiation process in the face of gene flow, with selection possibly operating on sexually selected traits.  相似文献   

17.
Within a group of interbreeding organisms, the balance of gene flow among populations and microevolutionary forces acting within populations is expected to result in clinal transitions in the phenotypes possessed by members of differentiated populations. Discontinuous variation between geographically adjacent populations suggests the presence of a significant barrier to gene flow. Here I present genetic evidence for restricted gene flow between migratory and nonmigratory populations of prairie warblers. The nonmigratory form of this species is restricted to coastal mangroves in Florida and is morphologically distinguishable from the typical, migratory form that occurs across the remainder of the eastern United States. Pairs of migratory populations exhibited little population subdivision (ΦST ? 0.09), whereas pairs of migratory and nonmigratory populations are much more differentiated (ΦST = 0.27–0.42). A phylogenetic analysis of mitochondrial DNA haplotypes did not offer evidence of long-term isolation of migratory and nonmigratory populations. Together with the population genetic analysis, the phylogenetic relationship of haplotypes suggests that isolation between these forms must have arisen relatively recently in their history. Evidence for significant population structure is unexpected, given the geographic proximity of migratory and nonmigratory populations, the capacity for long-distance movements (e.g., migration) by prairie warblers, and several previous studies of population structure in North American birds. However, the findings are consistent with the geographic distribution of morphological and behavioral variation and demonstrate that significant boundaries between populations of vagile organisms may be relatively cryptic.  相似文献   

18.
19.
Understanding the genetic basis of traits involved in adaptation is a major challenge in evolutionary biology but remains poorly understood. Here, we use genome-wide association mapping using a custom 50 k single nucleotide polymorphism (SNP) array in a natural population of collared flycatchers to examine the genetic basis of clutch size, an important life-history trait in many animal species. We found evidence for an association on chromosome 18 where one SNP significant at the genome-wide level explained 3.9% of the phenotypic variance. We also detected two suggestive quantitative trait loci (QTLs) on chromosomes 9 and 26. Fitness differences among genotypes were generally weak and not significant, although there was some indication of a sex-by-genotype interaction for lifetime reproductive success at the suggestive QTL on chromosome 26. This implies that sexual antagonism may play a role in maintaining genetic variation at this QTL. Our findings provide candidate regions for a classic avian life-history trait that will be useful for future studies examining the molecular and cellular function of, as well as evolutionary mechanisms operating at, these loci.  相似文献   

20.
Quantitative approaches conducted in a single mapping population are limited by the extent of genetic variation distinguishing the parental genotypes. To overcome this limitation and allow a more complete dissection of the genetic architecture of complex traits, we built an integrated set of 15 new large Arabidopsis thaliana recombinant inbred line (RIL) populations optimized for quantitative trait loci (QTL) mapping, having Columbia as a common parent crossed to distant accessions. Here we present 5 of these populations that were validated by investigating three traits: flowering time, rosette size, and seed production as an estimate of fitness. The large number of RILs in each population (between 319 and 377 lines) and the high density of evenly spaced genetic markers scored ensure high power and precision in QTL mapping even under a minimal phenotyping framework. Moreover, the use of common markers across the different maps allows a direct comparison of the QTL detected within the different RIL sets. In addition, we show that following a selective phenotyping strategy by performing QTL analyses on genotypically chosen subsets of 164 RILs (core populations) does not impair the power of detection of QTL with phenotypic contributions >7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号