共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of 30-min intravenous infusions of ethanol (about 50 mm blood concentration), acetaldehyde (about 100 μm blood concentration), and acetate (equimolar dose to acetaldehyde) were studied in normal and adrenalectomized rats. Blood glucose, plasma free fatty acids (FFA), plasma immunoreactive insulin, and glucagon and hepatic glycogen concentrations were measured. Ethanol itself in the presence of 4-methylpyrazole (4-MP) produced no marked changes in the parameters measured. Its infusion without 4-MP reduced plasma insulin by 35% in the normal rats, but not in the adrenalectomized rats, with no simultaneous changes in blood glucose. Acetaldehyde infusion produced hyperglycemia and relatively slight hyperinsulinemia in the normal rats, but not in the adrenalectomized rats. Equimolar acetate was not as potent a stimulator of glycogenolysis as acetaldehyde. Plasma FFA concentrations were markedly reduced by ethanol (without 4-MP), acetaldehyde and acetate both in the normal and adrenalectomized rats, but in the presence of 4-MP ethanol was without effect. The results indicate that metabolites of ethanol (mostly acetaldehyde) produced during ethanol oxidation in vivo are responsible for the stimulation of glycogenolysis through the release of catecholamines from the adrenal glands. The ethanol-induced decrease in plasma FFA is also attributable to the metabolites of ethanol, acetaldehyde having a more potent depressing action than acetate. The mode of inhibition of lipolysis is not related to hormonal factors. 相似文献
2.
Human leukocyte elastase has been crystallized in complex with recombinant Pro44-eglin c in the orthorhombic space group P2(1)2(1)2(1). The cell constants are a = 126.1 A, b = 127.8 A, c = 69.4 A, alpha = beta = gamma = 90 degrees. The crystals diffract to at least 2.5 A resolution and are suitable for crystallographic structure analysis. 相似文献
3.
Leprêtre C Scovassi AI Shah GM Torriglia A 《The international journal of biochemistry & cell biology》2009,41(5):1046-1054
Poly(ADP-ribose) polymerase-1 (PARP-1) is an important regulator of apoptosis. Its over-activation at the onset of apoptosis can inhibit the action of apoptotic endonucleases like caspase-activated DNase and DNAS1L3. Therefore, controlled PARP-1 proteolysis during caspase-dependent apoptosis is considered essential to promote DNA degradation. Yet, little is known about the interplay of PARP-1 and endonucleases that operate during caspase-independent cell death. Here we show that in the long-term cultured HeLa cells which undergo caspase-independent death, PARP-1 co-immunoprecipitates with leukocyte elastase inhibitor-derived DNase II (L-DNase II), an acid DNase implicated in this death pathway and activated by serine proteases. Our results indicate that, despite having putative poly(ADP-ribose)-acceptor sites, LEI/L-DNase II is neither significantly poly(ADP-ribosyl)ated nor inhibited by PARP-1 during caspase-independent apoptosis. Unexpectedly, caspase-independent apoptosis induced by hexa-methylene amiloride, LEI/L-DNase II can activate PARP-1 and promote its auto-poly(ADP-ribosyl)ation, thus inhibiting PARP-1 activity. Moreover, overexpression of LEI blocks the pro-survival effect of PARP-1 in this model of cell death. Our results provide the original evidence for a new mechanism of PARP-1 activity regulation in the caspase-independent death pathway involving LEI/L-DNase II. 相似文献
4.
The equilibrium unfolding-refolding process of the elastase-alpha 1-proteinase inhibitor complex, induced by guanidinium chloride, was followed by spectroscopic methods. A reversible transition with a midpoint at 2.04 +/- 0.04 M guanidinium chloride was observed by fluorescence. This transition was attributed to elastase on the basis of circular dichroism and uv absorption difference data obtained for the covalent complex and for the free proteins. The conformational stability of elastase in the complex was analyzed considering the approximation of a two-state transition. The free energy of denaturation delta GH2O was 4.2 kcal.mol-1 for complexed elastase compared to 10.5 kcal.mol-1 for the free enzyme. Such a decrease in the stability of elastase suggests that, after forming the covalent complex with the inhibitor, the enzyme undergoes not only the expected local modifications of the active site, but also an extensive structural reorganization. 相似文献
5.
6.
Development of an apoptosis endonuclease assay. 总被引:3,自引:0,他引:3
M M Compton 《DNA and cell biology》1991,10(2):133-141
A biochemical hallmark of cells undergoing programmed cell death, or apopotosis, is the endonucleolytic cleavage of genomic DNA at internucleosomal sites. To study further the nuclease involved in this process, an assay system was developed to measure internucleosomal DNA degradation. Micrococcal nuclease (MNase), a bacterial enzyme that cleaves chromatin at internucleosomal intervals, was used to validate the assay procedure. Thymocyte nuclear proteins obtained from glucocorticoid-treated chickens, a source of internucleosomal DNA-degrading activity, were incubated with chicken red blood cell nuclei, and genomic DNA was subsequently extracted and analyzed by agarose gel electrophoresis. Generation of internucleosomal DNA degradation products by the thymocyte protein extract required ATP and was both time and protein concentration dependent. This nuclease activity could be inhibited by EDTA, EGTA, alkylating agents, or heat denaturation. Addition of purified proteinases, RNases, or other types of nucleases to the assay failed to generate discrete internucleosomal lengths of DNA, thus confirming the nuclease specificity of this assay. On the basis of these data, we believe that this assay system will be instrumental in isolating and characterizing the nuclease(s) associated with apoptosis. 相似文献
7.
M E Englert M J Landes J E Birnbaum A L Oronsky S S Kerwar 《Biochemical and biophysical research communications》1980,96(1):498-505
The spent medium of cultured inflamed synovial tissue contains a potent inhibitor of leukocyte elastase. This leukocyte elastase inhibitor has no effect on leukocyte cathepsin G and pancreatic elastase is only marginally affected. The inhibitor is a glycoprotein, stable to heat, acid and reductive alkylation. Pretreatment of the inhibitor with either trypsin or chymotrypsin results in its inactivation. 相似文献
8.
Perani P Zeggai S Torriglia A Courtois Y 《Biochemical and biophysical research communications》2000,274(3):841-844
Leukocyte elastase inhibitor (LEI) is a cytosolic component of lung macrophages and blood leukocytes that inhibits neutrophil elastase. LEI is a member of the serpin superfamily, these proteins, mostly protease inhibitors, are thought to undergo a conformational change upon complex formation with proteinase that involves partial insertion of the hinge region of the reactive centre loop into a beta-sheet of the inhibitor. In this work three mutations were produced in the hinge region of elastase inhibitor that abolish the inhibition activity of LEI and transform the protein in a substrate of the elastase. This result demonstrates that the inhibitory mechanism of serpin is common to LEI. 相似文献
9.
Wei L Lai Z Gan X Alliston KR Zhong J Epp JB Tu J Perera AB Van Stipdonk M Groutas WC 《Archives of biochemistry and biophysics》2004,429(1):60-70
We describe herein the design and in vitro biochemical evaluation of a novel class of mechanism-based inhibitors of human leukocyte elastase (HLE) that inactivate the enzyme via an unprecedented enzyme-induced sulfonamide fragmentation cascade. The inhibitors incorporate in their structure an appropriately functionalized saccharin scaffold. Furthermore, the inactivation of the enzyme by these inhibitors was found to be time-dependent and to involve the active site. Biochemical, HPLC, and mass spectrometric studies show that the interaction of these inhibitors with HLE results in the formation of a stable acyl complex and is accompanied by the release of (L) phenylalanine methyl ester. The data are consistent with initial formation of a Michaelis-Menten complex and subsequent formation of a tetrahedral intermediate with the active site serine (Ser(195)). Collapse of the tetrahedral intermediate with tandem fragmentation results in the formation of a highly reactive conjugated sulfonyl imine which can either react with water to form a stable acyl enzyme and/or undergo a Michael addition reaction with an active site nucleophilic residue (His(57)). It is also demonstrated herein that this class of compounds can be used in the design of inhibitors of serine proteases having either a neutral or basic primary substrate specificity. Thus, the results suggest that these inhibitors constitute a potential general class of mechanism-based inhibitors of (chymo)trypsin-like serine proteases. 相似文献
10.
Benzene is an established haematotoxic and genotoxic carcinogen. DNA methyltransferase inhibitor, 5-aza (5-aza-2'-eoxycytidine) and histone deacetylase inhibitor, TSA (trichostatin A) are two kinds of key epigenetic modification reagents. Although apoptosis has been considered as the key cytotoxicity mechanism, the effects of these epigenetic reagents on benzene-induced apoptosis have not been reported. In this study, BMCs (bone marrow cells) from rats were incubated with benzene and then with either 5-aza, TSA alone or the combination of the two drugs. Apoptosis and mRNA expression were detected by annexin V/PI (propidium iodide) staining assay and real-time PCR, respectively. Results showed that benzene caused cell apoptosis accompanied with bcl-2 mRNA decrease, caspase-3 and bax mRNA increase. Moreover, benzene-induced apoptosis and the decrease of bcl-2 mRNA were both reversed by both 5-aza and TSA, but the role of TSA was significantly larger than 5-aza. More interestingly, these increases in benzene-induced caspase-3 and bax mRNA expression were obviously suppressed by 5-aza but not by TSA. In conclusion, 5-aza inhibited benzene-induced apoptosis through down-regulating of caspase-3 and bax and up-regulating bcl-2 mRNA expression, whereas the effect of TSA on apoptosis dominatingly affected bcl-2 mRNA expression, and 5-aza together with TSA had no synergic effect on benzene-induced apoptosis. 相似文献
11.
X-ray crystal structure of the complex of human leukocyte elastase (PMN elastase) and the third domain of the turkey ovomucoid inhibitor. 总被引:10,自引:5,他引:10 下载免费PDF全文
Orthorhombic crystals diffracting beyond 1.7 A resolution, have been grown from the stoichiometric complex formed between human leukocyte elastase (HLE) and the third domain of turkey ovomucoid inhibitor (OMTKY3). The crystal and molecular structure has been determined with the multiple isomorphous replacement technique. The complex has been modeled using the known structure of OMTKY3 and partial sequence information for HLE, and has been refined. The current crystallographic R-value is 0.21 for reflections from 25 to 1.8 A resolution. HLE shows the characteristic polypeptide fold of trypsin-like serine proteinases and consists of 218 amino acid residues. However, several loop segments, mainly arranged around the substrate binding site, have unique conformations. The largest deviations from the other vertebrate proteinases of known spatial structure are around Cys168. The specificity pocket is constricted by Val190, Val216 and Asp226 to preferentially accommodate medium sized hydrophobic amino acids at P1. Seven residues of the OMTKY3-binding segment are in specific contact with HLE. This interaction and geometry around the reactive site are similar as observed in other complexes. It is the first serine proteinase glycoprotein analysed, having two sugar chains attached to Asn159 and to residue 109. 相似文献
12.
The refined 2.3 A crystal structure of human leukocyte elastase in a complex with a valine chloromethyl ketone inhibitor 总被引:4,自引:0,他引:4
The stoichiometric complex formed between human leukocyte elastase and a synthetic MeO-Suc-Ala-Ala-Pro-Val chloromethyl ketone inhibitor was co-crystallized and its X-ray structure determined, using Patterson search methods. Its structure has been crystallographically refined to a final R value of 0.145 (8.0 and 2.3 A). The enzyme structure is very similar to that recently observed in a complex formed with the ovomucoid third domain from turkey [(1986) EMBO J. 5,2453-2458]. The rms deviation of all alpha-carbon atoms is 0.32 A. The peptidic inhibitor is bound in a similar overall conformation as the ovomucoid binding segment. Covalent bonds are formed between Val-P1 of the inhibitor and His-57 NE2 and Ser-195 OG of the enzyme. The carbonyl carbon is tetrahedrally deformed to a hemiketal. The valine side chain is arranged in the S1 pocket in the g-conformation. 相似文献
13.
The urinary trypsin inhibitor was recently shown to inhibit human leukocyte elastase. Complexes of human urinary trypsin inhibitor with human leukocyte elastase or human trypsin were produced and subjected to gel filtration. The complexes were found to be sufficiently stable up to 24 h incubation (at least 70% recovery). When human serum was added, elastase and trypsin dissociated from the urinary trypsin inhibitor and associated with alpha 1-proteinase inhibitor or alpha 2-macroglobulin. The addition of alpha 1-proteinase inhibitor to a complex of urinary trypsin inhibitor and leukocyte elastase caused a rapid dissociation of the complex (kdiss = 3.2 X 10(-2) s-1). 相似文献
14.
Sharma N Kaur J Xu H Zur Nieden N Rancourt D 《Molecular reproduction and development》2008,75(7):1136-1142
We have recently identified and characterized two implantation serine proteinase genes, ISP1 and ISP2, which give rise to a dimeric proteinase, ISP that facilitates embryo invasion during peri-implantation period. As many proteinases have cognate serpins that regulate their proteolytic activity, we have been investigating anti-tryptases, expressed during this window of implantation. Here, we report the differential expression of secretory leukocyte protease inhibitor (SLPI) in uterine endometrium around the implantation period. The co-localization of SLPI and ISP suggests the possibility that SLPI is an ISP serpin and that expression of SLPI may lead to a reduction in ISP activity. The expression of SLPI is down regulated during the window of embryo-uterine receptivity. Our results are consistent with a model suggesting that the drop in SLPI expression may help to refine the opening of the window of implantation, by allowing the proteolytic activity of embryo invasive serine proteinases such as the ISPs. 相似文献
15.
Whisstock JC Pike RN Jin L Skinner R Pei XY Carrell RW Lesk AM 《Journal of molecular biology》2000,301(5):1287-1305
Antithrombin, uniquely among plasma serpins acting as proteinase inhibitors in the control of the blood coagulation cascade, circulates in a relatively inactive form. Its activation by heparin, and specifically by a pentasaccharide core of heparin, has been shown to involve release of the peptide loop containing the reactive centre from partial insertion in the A sheet of the molecule. Here we compare the structures of the circulating inactive form of antithrombin with the activated structure in complex with heparin pentasaccharide. We show that the rearrangement of the reactive centre loop that occurs upon activation is part of a widespread conformational change involving a realignment of the two major domains of the molecule. We also examine natural mutants that possess high affinity for heparin pentasaccharide, and relate the kinetics of their interaction with heparin pentasaccharide to the structural transitions occuring in the activation process. 相似文献
16.
We report here the x-ray structure of a covalent serpin-proteinase complex, alpha1-proteinase inhibitor (alpha1PI) with porcine pancreatic elastase (PPE), which differs from the only other x-ray structure of such a complex, that of alpha1PI with trypsin, in showing nearly complete definition of the proteinase. alpha1PI complexes with trypsin, PPE, and human neutrophil elastase (HNE) showed similar rates of deacylation and enhanced susceptibility to proteolysis by exogenous proteinases in solution. The differences between the two x-ray structures therefore cannot arise from intrinsic differences in the inhibition mechanism. However, self-proteolysis of purified complex resulted in rapid cleavage of the trypsin complex, slower cleavage of the PPE complex, and only minimal cleavage of the HNE complex. This suggests that the earlier alpha1 PI-trypsin complex may have been proteolyzed and that the present structure is more likely to be representative of serpin-proteinase complexes. The present structure shows that active site distortion alone is sufficient for inhibition and suggests that enhanced proteolysis is not necessarily exploited in vivo. 相似文献
17.
Isabele da Costa Angelo Patricia Silva Gôlo Wendell Marcello de Souza Perinotto Mariana Guedes Camargo Caio Junior Balduíno Coutinho-Rodrigues Isabelle Batista Campanhon 《Biocontrol Science and Technology》2014,24(3):351-360
The understanding of tick physiology and immune system is important to improve the effective control of this ectoparasite. Invertebrates' innate immune response is activated when the organism is challenged with pathogens. The present study describes the changes of serine proteinase inhibitors (serpins) and in the number of circulating haemocytes involved in cellular immune defence of Rhipicephalus microplus engorged females challenged with the entomopathogenic fungi Metarhizium anisopliae or Beauveria bassiana, or with the non-entomopathogenic fungus Fusarium oxysporum. The cell-free haemolymph was separated from haemocytes by centrifugation and cells were re-suspended in phosphate buffer pH 7.2. The proteins of haemocytes were analysed by SDS-PAGE and the segments of the 1D gel were submitted to protein digestion with trypsin. The peptides were analysed by liquid chromatography coupled with electrospray tandem mass spectrometry (LC-ESI-MS/MS). The analysis by mass spectrometry allowed the identification of several proteins through the search in the database built based on public banks of Ixodidae and Argasidae. In haemocytes, many proteins were identified highlighting serpins. The results showed that the entomopathogenic fungi M. anisopliae or B. bassiana reduced the amount of serpins, while F. oxysporum increased. The present study reports, for the first time, the variation of serpins in haemocytes of R. microplus engorged females infected by fungi. 相似文献
18.
《Journal of molecular graphics》1996,14(3):158-167
The three-dimensional interaction of the enzyme-activated (suicide) inhibitor AA 231-1 [N(2-chloromethyl)-3,3-difluoro-azetidin-2-one] with human leukocyte elastase has been studied using computer graphics and molecular mechanics. Systematic conformational analyses and energy minimizations have been performed for the inhibitor AA 231-1 and its presumed complexes formed during the enzymatic process of inactivation, i.e., the Michaelis complex, the acyl-enzyme, and the inactivated enzyme with the covalently bound inhibitor. The β-lactam ring characteristics of modeled AA 231-1 were in agreement with crystallo-graphic data of related structures. Lowest energy conformatinos were found when the angle between the planes of the β-lactam ring and that of its phenyl substituent was about −60 or 60°. To study the interaction with the enzyne, the enzyme-inhibitor complexes were constructed by docking the inhibitor in the active site using enzyme coordinates from an X-ray crystallographic structure. The whole enzyme structure was used for conformational analyses and energy mechanics. Favorable conformations for the Michaelis complex have been obtained in which the carbonyl oxygen of the inhibitor was located in the oxyanion hole and the hydroxyl of Ser195 was in position to interact with the β-lactam carbonyl carbon on the α face of AA 231-1. Simulations of the approach of the benzylic carbon by the nucleophilic amino acid His40 or His57 through an SN2 displacement on the halomethyl group of AA 231-1 were performed. The results agreed with the alkylation of the imidazole nitroge Nϵ2 of His57 leading to the inactivated enzyme (bis-adduct form). 相似文献
19.
20.
X-Linked inhibitor of apoptosis protein is involved in mutant SOD1-mediated neuronal degeneration 总被引:4,自引:0,他引:4
Ishigaki S Liang Y Yamamoto M Niwa J Ando Y Yoshihara T Takeuchi H Doyu M Sobue G 《Journal of neurochemistry》2002,82(3):576-584
Mutations in the superoxide dismutase 1 (SOD1) gene cause the degeneration of motor neurons in familial amyotrophic lateral sclerosis (FALS). An apoptotic process including caspase-1 and -3 has been shown to participate in the pathogenesis of FALS transgenic (Tg) mouse model. Here we report that IAP proteins, potent inhibitors of apoptosis, are involved in the FALS Tg mouse pathologic process. The levels of X-linked inhibitor of apoptosis protein (XIAP) mRNA and protein were significantly decreased in the spinal cord of symptomatic G93A-SOD1 Tg mice compared with littermates. In contrast, the levels of cIAP-1 mRNA and protein were increased in symptomatic G93A-SOD1 Tg mice, whereas the levels of cIAP-2 mRNA and protein were unchanged. In situ hybridization showed that the expression of XIAP was remarkably reduced in the motor neurons of Tg mice, and the expression of cIAP-1 was strongly increased in the reactive astrocytes of Tg mice. Overexpression of XIAP markedly inhibited the cell death and caspase-3 activity in the neuro2a cells expressing mutant SOD1. Deletional mutant analysis revealed that the N-terminal domain of XIAP, the BIR1-2 domains, was essential for this inhibitory activity. These results suggest that XIAP plays a role in the apoptotic mechanism in the progression of disease in mutant SOD1 Tg mice and holds therapeutic possibilities for FALS. 相似文献