首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of an opioid antiulcerogenic hexapeptide dalargin on ornithine decarboxylase activity of duodenal mucosa has been studied in rats with experimental duodenal ulcers induced by cysteamine. The intraperitoneal injection of 12.5 micrograms/kg of dalargin inhibited ulcerogenesis and activated the enzyme. The effect of the peptide was antagonized by an opiate antagonist naloxone. 5000 micrograms/kg of dalargin failed to inhibit the ulcer formation or to activate ornithine decarboxylase. Since ornithine decarboxylase activation is a marker of intensified cell proliferation and tissue regeneration, our results suggest that the antiulcerogenic effect of dalargin is due to the enhancement of duodenal mucosa regeneration.  相似文献   

2.
Effect of dalargin, an opioid peptide (a synthetic analogue of Leu-enkephalin), on proliferation and intensity of DNA synthesis of C6 glioma cells was studied. Specific conditions of cultivation were selected, with a low control value of proliferation, which permitted to assess growth-stimulating effect of the peptide. Growth curves were plotted to assess peptide activity, which demonstrated that reaction was a many-phase process: a significant increase in cell number under peptide effect was observed only at the beginning of the logarithm phase and at the beginning of the prestationary phase of the growth curve. Cell number increased on average by 25-27% in the presence of dalargin as compared to control. Reaction of glioma DNA synthesis to dalargin also demonstrates complexity of the process: the peptide changes DNA synthesis, but as a rule, this process has a three-phase character and is not directly associated with the duration of cultivation in the presence of dalargin. Effect of naloxone, an opiate receptor blocker, was analysed to assess the receptor mechanism. It was found that reaction for naloxone and for combined effect of naloxone and dalargin was not the same.  相似文献   

3.
The interaction of beta-endorphin with opiate receptors was studied by using the radioiodinated, metabolically stable D-Ala2 derivative of human beta-endorphin. This analog binds specifically to rat brain membrane preparations with an apparent Kd of about 2.5 x 10-9 M. The ability of various enkephalin analogs, as well as opiate agonists and antagonists, to inhibit the binding of beta-endorphin clearly demonstrates that this peptide can bind to opiate receptors. However, the effects of various cations on the binding of 125I-[D-Ala2]beta-endorphin are markedly different from those found for enkephalin binding. Sodium ion at physiological concentrations decreases substantially the binding of enkephalins but only slightly decreases endorphin binding, whereas manganese enhances enkephalin binding but has no effect on endorphin binding. Moreover, potassium (100 mM) decreases the binding of beta-endorphin but does not affect enkephalin binding. These results suggest that beta-endorphin and enkephalin bind differently to the same receptor or bind to different receptors with overlapping specificity.  相似文献   

4.
The role of opiate receptors on cell division in corneal epithelium during administration of dalargin was analysed. Naloxone injection/200 micrograms/kg/decreased MI two times, DNA-synthesis 1.4 times over 24 hours. Naloxone prevented dalargin effect on cell proliferation. Another testimonies of dalargin opiate-binding mitogenic effect were the results of the study with dalargin analogues. They are agonists of opiate receptors too. These drugs, as well as dalargin, in a dose 10 micrograms/kg increased DNA-synthesis 1.5 times, MI and MIK 2.2 times. It turned out, that the administration of another two analogues of dalargin, which are not ligands of opiate receptors, probably do not cause an adequate increase of DNA-synthesis and mitotic index.  相似文献   

5.
The ompF gene codes for a major outer membrane protein of Escherichia coli. A plasmid was constructed in which the structural gene for human beta-endorphin is preceded by the upstream region of the ompF gene consisting of the promoter region and the coding regions for the signal peptide and the N terminus of the OmpF protein. When the plasmid was introduced into E. coli N99, and OmpF-beta-endorphin fused peptide was synthesized and secreted into the culture medium through both the cytoplasmic and outer membranes. The OmpF signal peptide was cleaved correctly during the secretion, indicating that the export of the fused protein across the cytoplasmic membrane was dependent on the signal peptide. The secretion into the culture medium was apparently selective. Neither beta-lactamase nor alkaline phosphatase (both are periplasmic proteins) appeared in the culture medium in significant amounts. The mode of passage of the fused peptide across the outer membrane is discussed.  相似文献   

6.
In our approach to beta-endorphin modeling, we have proposed that the biological properties of the natural peptide are determined by the combination of three basic structural units: a highly specific opiate recognition sequence at the NH2 terminus (residues 1-5) connected via a hydrophilic peptide link (residues 6-12) to a potential amphiphilic helix in the COOH-terminal residues 13-31. In the alpha-helical conformation the hydrophobic domain twists around the length of the helix and covers almost one-half of its surface. The other distinctive features of the helix include its basicity and the two aromatic residues Phe18 and Tyr27. In contrast to previous models we have studied, peptide 4 is a "negative" model in the sense that it was designed and examined in order to determine how the lack of a well defined amphiphilic structure affects the biological properties of beta-endorphin. For this purpose, peptide 4 retains the three structural units previously postulated for beta-endorphin, but the amino acids of the 13-31 region are arranged in such a way that no definite continuous hydrophobic zone could be formed in an alpha- or pi-helical conformation of this region. In aqueous buffered solutions, peptide 4 showed almost the same amount of alpha-helical structure as beta-endorphin, with a slight tendency toward less helicity in 50% aqueous 2,2,2-trifluoroethanol. In rat brain homogenate, peptide 4 was degraded slightly slower than beta-endorphin, in contrast to the apparently much higher stability of previous models under the same conditions. With regard to opiate receptor binding, peptide 4 was twice as potent as beta-endorphin in mu-receptor assays but half as potent in delta-receptor assays. The opiate potency of peptide 4 on the guinea pig ileum was higher than that of beta-endorphin. In contrast, in the rat vas deferens assay, which is very specific for beta-endorphin, the potency of peptide 4 was very low and could be shown not to be mediated by the same opiate mechanism or by the same opiate receptor. A comparison of these results with those of previous model peptides provides further evidence for the importance of an amphiphilic helical structure in beta-endorphin residues 13-31, which determines the resistance to proteolysis of the natural molecule and contributes to the delta- and mu-opiate receptor interaction. The amphiphilicity of this helical structure must also be essential for high opiate activity on the rat vas deferens (epsilon-receptors), whereas no such structural requirement appears to be necessary for interaction with the opiate receptors on the guinea pig ileum.  相似文献   

7.
Our approach to the modeling of beta-endorphin has been based on the proposal that three basic structural units can be distinguished in the natural peptide hormone: a highly specific opiate recognition sequence at the N terminus (residues 1-5) connected via a hydrophilic link (residues 6-12) to a potential amphiphilic helix in the C-terminal residues 13-31. Our previous studies showed the validity of this approach and have demonstrated the importance of the amphiphilic helical structure in the C terminus of beta-endorphin. The present model, peptide 5, has been designed in order to evaluate further the requirements of the amphiphilic secondary structure as well as to determine the importance of this basic structural element as compared to more specific structural features which might occur in the C-terminal segment. For these reasons, peptide 5 retains the three structural units previously postulated for beta-endorphin; the major difference with regard to previous models is that the whole C-terminal segment, residues 13-31, has been built using only D-amino acids. In aqueous buffered solutions as well as in 2,2,2-trifluoroethanol-containing solutions, the CD spectra of peptide 5 show the presence of a considerable amount of left-handed helical structure. Enzymatic degradation studies employing rat brain homogenate indicate that peptide 5 is stable in this milieu. In delta- and mu-opiate receptor-binding assays, peptide 5 shows a slightly higher affinity than beta-endorphin for both receptors while retaining the same delta/mu selectivity. In opiate assays on the guinea pig ileum, the potency of peptide 5 is twice that of beta-endorphin. In the rat vas deferens assay, which is very specific for beta-endorphin, peptide 5 displays mixed agonist-antagonist activity. Most remarkably, peptide 5 displays a potent opiate analgesic effect when injected intracerebroventricularly into mice. At equal doses, the analgesic effect of peptide 5 is less than that of beta-endorphin (10-15%) but longer lasting. In conjunction with our previous model studies, these results clearly demonstrate that the amphiphilic helical structure in the C terminus of beta-endorphin is of predominant importance with regard to activity in rat vas deferens and analgesic assays. The similarity between the in vitro and in vivo opiate activities of beta-endorphin and peptide 5, when compared to the drastic change in chirality in the latter model, demonstrates that even a left-handed amphiphilic helix formed by D-amino acids can function satisfactorily as a structural unit in a beta-endorphin-like peptide.  相似文献   

8.
The early events in the interaction of (125I)-Tyr27-beta-endorphin with human polymorphonuclear leucocytes were investigated. Using ultrastructural autoradiography we found that the labeled peptide specifically bound to the plasma membrane and was internalized within two minutes of incubation at 37 degrees C. Both processes could be inhibited by unlabeled beta-endorphin or by the opiate antagonist diprenorphine. This finding was confirmed by radioreceptorassays. With longer incubation times the specific association of the labeled beta-endorphin with the cells decreased. About 10% of the tracer was degraded within 10 min of incubation as shown by gel chromatography. The morphological changes induced by 125I-beta-endorphin in the granulocytes were investigated under the microscope. The labeled peptide had the same biological effect as unlabeled beta-endorphin.  相似文献   

9.
It is well established that beta-endorphin has a regulatory influence on the reproductive function at the level of the hypothalamic-pituitary axis. However, recent immunohistochemical evidence demonstrated that beta-endorphin is also present in the Leydig cells of fetal, neonatal and adult mice and hamsters. In addition, beta-endorphin synthesis was localized in the Leydig cells of adult rats, leading to the hypothesis of a direct function of the peptide in the reproductive organs. Our interest was to investigate the role of beta-endorphin at testicular level. We have demonstrated the presence of high-affinity opioid binding sites (Kd in the nanomolar range) in tubular homogenates and Sertoli cells in culture of adult (50 days) and immature (18 days post-natal) rat testes. Also, chronic beta-endorphin treatment of the Sertoli cells significantly inhibited basal and FSH-stimulated androgen-binding protein production, this effect being prevented by the universal opiate antagonist naloxone. No opiate binding was observed on Leydig cell cultures. Furthermore, we have demonstrated that acute or chronic beta-endorphin treatment does not affect testosterone production by Leydig cells in vitro, consistent with the absence of receptors on these cells. On the other hand, fetal Leydig cells (21 days fetal life) in culture produced considerable amounts of beta-endorphin. Also, fetal Leydig cells represented a preferred in vitro system to study beta-endorphin release since in adult cell culture a marked degradation of the peptide was detected (greater than 50%). beta-endorphin accumulation for 3 and 5 days was markedly increased by inhibitors of steroid biosynthesis (1.5-fold); a significant reduction by GnRH at both days (by 50-30%) was observed, while by dexamethasone the reduction was only noted after 5 days of treatment (by 50%). Acute stimulation (3 h) of control cells with hCG enhanced by 10-12-fold the beta-endorphin secretion. The hormone stimulation of beta-endorphin production was not mediated by testosterone. On the contrary, inhibition of Leydig cells steroid biosynthesis markedly increased basal and hCG-stimulated beta-endorphin production (150-200%), suggesting autocrine negative modulation of Leydig cell beta-endorphin by androgen and/or its metabolites. In contrast, dexamethasone reduced basal and hCG-stimulated beta-endorphin production (by 50%). Altogether these findings indicate that beta-endorphin produced within the Leydig cells may behave as a paracrine inhibitor of the Sertoli cell function and demonstrate that the peptide production is under direct control by gonadotropins and is modulated by steroids.  相似文献   

10.
Experiments on frogs with the use of the microelectrode techniques were made to study the effect of tenotomy and immobilization of a limb with a metal cast in the extension position on the properties of the membrane of muscle fibers. Two weeks after tenotomy there were no changes in the magnitude of the membrane rest potential, input resistance and time constant of the membrane of muscle fibers or in the pattern of its sensitivity to acetylcholine. Two and three weeks after the limb immobilization no changes in the membrane rest potential and passive electrical properties of the muscle membrane were recorded either. However, if the time elapsed after immobilization was 2 and 3 weeks, the zone of the sensitivity of muscle fibers to acetylcholine was slightly greater than in the control. It is suggested that the motor activity in the frog per se is not the determinant of the muscle fiber differentiation preset by the nervous system.  相似文献   

11.
Isolated longitudinal smooth muscle from guinea pig ileum exposed to a high potassium depolarizing medium exhibited a sustained increase in muscle tone and an increase in potassium efflux. When the concentration of calcium ion in the medium was elevated the increase in muscle tone was enhanced, but the change in potassium efflux was reduced slightly. Lowering the calcium concentration diminished the increase in muscle tone. Both cocaine and ethanol completely inhibited the sustained contraction of potassium-depolarized fibers. Addition of excess calcium ion reversed these inhibitions. Cocaine acted primarily like a competitive antagonist; and ethanol, like an indirect antagonist of calcium, ion. Under certain conditions acetylcholine potentiated the reversal by calcium ion of the drug-induced inhibitions. The two inhibitory drugs had dissimilar effects on potassium efflux from smooth muscle fibers immersed in Tyrode solution. Cocaine depressed and ethanol enhanced this membrane process. However, the increase in potassium efflux induced by acetylcholine was inhibited by ethanol. This inhibition also was reversed by increasing the concentration of calcium ion in the medium. The data suggested that calcium activates and cocaine and ethanol inhibit a cellular reaction which occurs beyond the point of membrane depolarization and is essential for smooth muscle contraction. Furthermore, calcium serves to depress membrane excitability, but appears to have a specific stimulatory role in the acetylcholine-induced increase in potassium efflux from longitudinal fibers.  相似文献   

12.
The resting membrane potential of fibers of the rat diaphragm was measured by a microelectrode technique 3 h after division of the phrenic nerve and incubation in culture medium for 5 days after denervation. The membrane potential was recorded in synaptic regions of fibers close to (2–3 mm) and distant from (9–11 mm) the site of nerve division. The membrane potential of the synaptic region of the close fibers 3 h after denervation became smaller, whereas that of the synaptic region of distant fibers did not change relative to the control. Placing the muscle 3 h after denervation into medium with carbamylcholine (1·10–8 M), cGMP (1·10–4 M), or dibutyryl-cGMP (1·10–6 M) led to hyperpolarization of the synaptic region of the close fibers but did not change the resting potential in the synaptic region of the distant fibers, and abolished differences between them. Five days after division of the nerve, incubation of the muscle in a solution with the above-mentioned substances did not affect the resting membrane potential. Nonquantal release of acetylcholine from motor nerve endings, assessed by the amplitude of hyperpolarization of the postsynaptic membrane, induced by application of curarine against the background of acetylcholine esterase inhibition, 3 h after denervation was identical in the synaptic region of the close and distant fibers and did not differ from the control. It is postulated that the postdenervation fall of membrane potential of rat muscle fibers is not due to disturbance of nonquantal secretion of acetylcholine from motor nerve endings.S. V. Kurashov Kazan' Medical Institute, Ministry of Health of the USSR. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 358–365, May–June, 1985.  相似文献   

13.
Removal of one, two and four amino-acid residues from the C-terminus of beta-endorphin ('lipotropin C-Fragment', lipotropin residues 61--91) led to the formation of peptides with progressively decreased analgesic potency; there was no change in the persistence of the analgesic effects. The four C-terminal residues are thus important for the activity of beta-endorphin, but not for the duration of action. Removal of eight amino-acid residues from the N-terminus provided a peptide that had no specific affinity for brain opiate receptors in vitro and was devoid of analgesic properties. The N-terminal sequence of beta-endorphin is therefore necessary for the production of analgesia, whereas the C-terminal residues confer potency. The N alpha-acetyl form of beta-endorphin had no specific affinity for brain opiate receptors in vitro and possessed no significant analgesic properties. Since lipotropin C'-Fragment (lipotropin residues 61--87) and the N alpha-acetyl derivative of beta-endorphin occur naturally in brain and pituitary and are only weakly active or inactive as opiates, it is suggested that proteolysis at the C-terminus and acetylation of the N-terminus of beta-endorphin may constitute physiological mechanisms for inactivation of this potent analgesic peptide.  相似文献   

14.
Standard microelectrode techniques were used to evaluate the effect of d-tubocurarine chloride on membrane potential of junctional and extrajunctional areas of muscle fibers in a potassium-free Ringer solution. The experiments were made on frogs after inactivation of acetylcholinesterase. d-Tubocurarine chloride hyperpolarized the membrane of muscle fibers only in the junctional area. Blockade of axoplasmic transport with colchicine did not affect the magnitude of the hyperpolarization response of the membrane end plate to the presence of d-tubocurarine chloride, but at the same time it significantly reduced the membrane rest potential of muscle fibers, and gave rise to the appearance of extrajunctional sensitivity to acetylcholine. It is concluded that the blockade of axoplasmic transport does not affect the pattern of non-quantum acetylcholine release from nerve terminals. Therefore, this is unlikely to cause denervation-like changes in the muscle under the conditions described.  相似文献   

15.
We report a detailed comparative immunocytochemical mapping of enkephalin, CCK and ACTH/beta-endorphin immunoreactive nerves in the central nervous system of rat and guinea pig. Enkephalin immunoreactivity was detected in many groups of nerve cell bodies, fibers and terminals in the limbic system, basal ganglia, hypothalamus, thalamus, brain stem and spinal cord. beta-endorphin and ACTH immunoreactivity was limited to a single group of nerve cell bodies in and around the arcuate nucleus and in fibers and terminals in the midline areas of the hypothalamus, thalamus and mesencephalic periaqueductal gray with lateral extensions to the amygdaloid area. Cholecystokinin immunoreactive nerve fibers and terminals displayed a distribution similar to that of enkephalin in many regions; but striking differences were also found. An immunocytochemical doublestaining technique, which allowed simultaneous detection of two different peptides in the same tissue section, showed that enkephalin-, CCK- and ACTH/beta-endorphin-immunoreactive nerves although closely intermingled in many brain areas, occurred separately. The distributions of nerve terminals containing these neuropeptides showed striking overlaps and also paralleled the distribution of opiate receptors. This may suggest that enkephalin, CCK, ACTH and beta-endorphin may interact with each other and with opiate receptors.  相似文献   

16.
An assay system is described to measure the specific binding of beta-endorphin to opiate sites (receptors) in rat brain membrane preparations using the tritiated hormone as the primary ligand. By this assay procedure, the radioreceptor activity of beta-endorphin and synthetic analogs with various chain lengths has been determined. The results suggest that both NH2- and COOH-terminal sequences of the molecule are involved in the interaction of beta-endorphin with opiate receptors.  相似文献   

17.
In experiments on rats, the influence was studied of dalargin on the elaboration and preservation of various homogeneous and heterogeneous conditioned reflexes (CRs) elaborated in single and multiple pairings. The effect of dalargin on the processes of learning and memory was compared with the action of the peptide on the activity of hypothalamic neurones. Administration of dalargin delayed the elaboration of maze defensive CRs and practically did not affect the elaboration of two-way avoidance. The preservation of CR also deteriorated under the influence of dalargin. Administration of dalargin 10 min before the CRs testing did not prevent their reproduction. When using CRs elaborated in a single pairing, dalargin disturbed the preservation of the drinking CR and improved that of passive avoidance CR. Dalargin in this dose affected the emotional state of animals in the open field and did not significantly affect their motor activity. Dalargin suppressed impulse activity in 17 out of 22 tested neurones of the lateral hypothalamus, with maximum effect in 20-50 min after its administration. The obtained data show that the character of dalargin action on the elaboration of CR and mainly on its consolidation, depends on the character of the elaborated CR and is probably due to great extent to the effect of the peptide on the brain emotional mechanisms.  相似文献   

18.
Changes in ACTH, cortisol, beta-endorphin have been investigated during vestibulo-vegetative syndrome (VVS) and injections of dalargin (leu-enkephalin analog) and nalorphine (agonist-antagonist of opioid receptors) in 9 volunteers with low level vestibulo-vegetative stability. Cumulative coriolis acceleration test during rotations on a special chair was used for VVS modelling. Dalargin (1-4 mg), nalorphine (5 mg) and placebo (NaCl solution) were injected intravenously 5-15 min before rotation. A significant increase in ACTH, cortisol and beta-endorphin plasma levels has been observed. Mean positive linear correlation (r greater than +0.6) between ACTH and beta-endorphin and ACTH and cortisol was noted immediately after the test only when dalargin was injected. It is suggested that in VVS there develops a hormonal conflict, i. e. an adequate hormonal release is disturbed.  相似文献   

19.
Beta-endorphin, leu-enkephalin, dalargin and naloxone influences on cell division have been studied in tongue epithelium of white rats. The preparations were administered at a dose of 0.1 ml per 100 g body weight as a 2.10(-9) M solution. Cell division was studied 24 hours after administration. beta-endorphin, leu-enkephalin, dalargin and naloxone caused a 1.5-1.7-fold increase in the number of DNA-synthesizing nuclei, which was accompanied by an adequate rise in mitotic index in experiments with dalargin.  相似文献   

20.
H Akil  E Young  S J Watson  D H Coy 《Peptides》1981,2(3):289-292
Beta-endorphin is further processed within the pituitary and brain by either N-terminal acetylation, carboxy-terminal proteolysis, or both. These naturally occurring analogues are stored intracellularly and, in some tissues, represent the majority of beta-endorphin immunoreactivity detected by antisera. It is therefore critical to determine their relative potencies at the opiate receptor. This study demonstrates that cleavage of the C-terminus tetrapeptide brings about a 10-fold decrease in opiate binding potency of either camel or human beta-endorphin. N-Acetylation, on the other hand, causes over a thousand fold loss in opiate potency rendering the peptide effectively inactive. Since unmodified beta-endorphin is approximately equipotent at multiple opiate receptors, we tested for possible differential shifts towards mu or delta-type receptors which may result from the modification. Our results show no change in selectivity, but simply an overall loss of potency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号