首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies demonstrate that one of the six plasminogen type 2 glycoforms, plasminogen 2epsilon, enhances invasiveness of the 1-LN human prostate tumor cell line in an in vitro model. Binding of plasminogen 2epsilon to CD26 on the cell surface induces a Ca(2+) signaling cascade which stimulates the expression of matrix metalloproteinase-9, required by these cells to invade Matrigel. We now report that angiostatin, a fragment derived from plasminogen which prevents endothelial cell proliferation, is also a potent, direct inhibitor of 1-LN tumor cell invasiveness. We studied the effect of individual plasminogen 2 glycoform-derived angiostatins and found that only angiostatin 2epsilon binds to CD26 on the surface of 1-LN cells at a site also recognized by plasminogen 2epsilon. As a result, the plasminogen 2epsilon-induced Ca(2+) signaling cascade is inhibited, the expression of matrix metalloproteinase-9 is suppressed, and invasion of Matrigel by 1-LN cells is blocked. Angiostatin 2epsilon is also the only angiostatin glycoform which is able to inhibit in vitro endothelial cell proliferation and tubule formation. These studies suggest that, in addition to its ability to inhibit tumor vascularization, angiostatin 2epsilon may also directly block tumor metastasis.  相似文献   

2.
Binding of plasminogen type II (Pg 2) to dipeptidyl peptidase IV (DPP IV) on the surface of the highly invasive 1-LN human prostate tumor cell line induces an intracellular Ca2+ ([Ca2+]i) signaling cascade accompanied by a rise in intracellular pH (pHi). In endothelial cells, Pg 2 regulates intracellular pH via Na+/H+ exchange (NHE) antiporters; however, this mechanism has not been demonstrated in any other cell type including prostate cancer cells. Because the Pg 2 receptor DPP IV is associated with NHE3 in kidney cell plasma membranes, we investigated a similar association in 1-LN human prostate cancer cells and a mechanistic explanation for changes in [Ca2+]i or pHi induced by Pg 2 in these cells. Our results suggest that the signaling cascade initiated by Pg 2 and its receptor proceeds via activation of phospholipase C, which promotes formation of inositol 3,4,5-trisphosphate, an inducer of Ca2+ release from endoplasmic reticulum stores. Furthermore, our results suggest that Pg 2 may regulate pHi via an association with NHE3 linked to DPP IV in these cells. These associations suggest that Pg has the potential to simultaneously regulate calcium signaling pathways and Na+/H+ exchanges necessary for tumor cell proliferation and invasiveness.  相似文献   

3.
Specific cell surface receptors for plasminogen (Pg) are expressed by a wide variety of cell types and serve to promote fibrinolysis and local Pg proteolysis. Pg types 1 and 2, separated by chromatography on concanavalin A-Sepharose, were utilized to determine their binding to the monocytoid U937 cell line. Both forms bind in a dose-dependent manner. However, Pg 2 binds to the cellular receptor considerably better than Pg 1 and at equilibrium demonstrates approximately 10-fold greater binding. Lipoprotein a [Lp(a)], which possesses a subunit showing considerable homology to Pg, competes with Pg 2 for the Pg receptor in U937 cells. Moreover, Pg 1 is not able to displace Pg 2 from the receptor. These studies suggest that high levels of Lp(a) may alter the profibrinolytic activity at the cell surface and increase the risks of atherosclerosis and thrombosis. This hypothesis is in accord with the 2-5-fold increased risk of atherosclerosis in patients having high levels of Lp(a).  相似文献   

4.
The low density lipoprotein receptor-related protein (LRP) is a scavenger receptor that binds to many proteins, some of which trigger signal transduction. Receptor-recognized forms of alpha(2)-Macroglobulin (alpha(2)M*) bind to LRP, but the pattern of signal transduction differs significantly from that observed with other LRP ligands. For example, neither Ni(2+) nor the receptor-associated protein, which blocks binding of all known ligands to LRP, block alpha(2)M*-induced signal transduction. In the current study, we employed alpha(2)-macroglobulin (alpha(2)M)-agarose column chromatography to purify cell surface membrane binding proteins from 1-LN human prostate cancer cells and murine macrophages. The predominant binding protein purified from 1-LN prostate cancer cells was Grp 78 with small amounts of LRP, a fact that is consistent with our previous observations that there is little LRP present on the surface of these cells. The ratio of LRP:Grp 78 is much higher in macrophages. Flow cytometry was employed to demonstrate the presence of Grp 78 on the cell surface of 1-LN cells. Purified Grp 78 binds to alpha(2)M* with high affinity (K(d) approximately 150 pm). A monoclonal antibody directed against Grp 78 both abolished alpha(2)M*-induced signal transduction and co-precipitated LRP. Ligand blotting with alpha(2)M* showed binding to both Grp 78 and LRP heavy chains in these preparations. Use of RNA interference to silence LRP expression had no effect on alpha(2)M*-mediated signaling. We conclude that Grp 78 is essential for alpha(2)M*-induced signal transduction and that a "co-receptor" relationship exists with LRP like that seen with several other ligands and receptors such as the uPA/uPAR (urinary type plasminogen activator or urokinase/uPA receptor) system.  相似文献   

5.
We have found that tissue plasminogen activator catalyzes the binding of plasminogen (Pg) to immunoglobulin G (IgG) immobilized on a surface. This enhancement is due to the formation of plasmin, since plasmin treatment of immobilized IgG produced a 20-fold increase in Pg binding. Pg binding is lysine site dependent and reversible. The augmentation of Pg binding by plasmin is specific as other proteases produced significantly less or no effect. Immobilized plasmin-treated IgG also specifically binds Pg in plasma. IgG-immobilized Pg is activated by tissue plasminogen activator, and a significant portion of the plasmin formed remains bound to the IgG. The Pg reactive species in a plasmin-treated IgG digest was identified as the Fab fragment by chromatography utilizing the immobilized high affinity lysine-binding site of plasminogen. Specificity of the interaction was further demonstrated by immunoblot-ligand analysis which demonstrated that the plasmin-derived Fab fragment bound Pg whereas papain-derived Fab or plasmin-derived Fc fragments did not. These data suggest that Pg binds to the new COOH-terminal lysine residue of the plasmin-derived Fab. Pg also binds to an immobilized immune complex following plasmin treatment. These findings indicate that surface-bound IgG localizes plasminogen thus extending the spectrum of activity of the plasmin system to immunologic reactions.  相似文献   

6.
CD26 or dipeptidyl peptidase IV (DPP-IV) is a cell surface protease involved in T cell activation. Monoclonal antibodies (mAbs) directed against the CD26 molecule are able to stimulate CD26-expressing T cells. Although many different CD26-specific mAbs exist which are able to provide a triggering signal in T cells, little is known about their specific epitopes on the CD26 molecule. Whereas some mAbs were shown to compete with each other and to inhibit the association of adenosine deaminase (ADA) and human immunodeficiency virus 1 (HIV-1)-derived Tat protein with CD26, other CD26-specific mAbs obviously bind to distinct regions on DPP-IV. In the present study we have generated truncated versions of the human CD26 molecule and expressed them in COS-1 cells to study the binding pattern of a panel of 14 CD26-specific mAbs in confocal microscopy and, thus, correlated the CD26-specific mAbs epitopes with the binding region of ADA. We show that the majority of anti-CD26 mAbs is directed against the glycosylation-rich region of the molecule whereas the ADA-binding site could be located in the cysteine-rich region of DPP-IV. In contrast to binding experiments with purified ADA, which revealed a specific association with CD26 on CD26-positive Jurkat cells, HIV-derived Tat protein did not interact specifically with CD26 on transfected Jurkat cells, nor could Tat binding be competed by anti-CD26-specific mAbs.  相似文献   

7.
Both the voltage-dependent anion channel and the glucose-regulated protein 78 have been identified as plasminogen kringle 5 receptors on endothelial cells. In this study, we demonstrate that kringle 5 binds to a region localized in the N-terminal domain of the glucose-regulated protein 78, whereas microplasminogen does so through the C-terminal domain of the glucose-regulated protein 78. Both plasminogen fragments induce Ca(2+) signaling cascades; however, kringle 5 acts through voltage-dependent anion channel and microplasminogen does so via the glucose-regulated protein 78. Because trafficking of voltage-dependent anion channel to the cell surface is associated with heat shock proteins, we investigated a possible association between voltage-dependent anion channel and glucose-regulated protein 78 on the surface of 1-LN human prostate tumor cells. We demonstrate that these proteins co-localize, and changes in the expression of the glucoseregulated protein 78 affect the expression of voltage-dependent anion channel. To differentiate the functions of these receptor proteins, either when acting singly or as a complex, we employed human hexokinase I as a specific ligand for voltage-dependent anion channel, in addition to kringle 5. We show that kringle 5 inhibits 1-LN cell proliferation and promotes caspase-7 activity by a mechanism that requires binding to cell surface voltage-dependent anion channel and is inhibited by human hexokinase I.  相似文献   

8.
HIV-1 external envelope glycoprotein gp120 inhibits adenosine deaminase (ADA) binding to its cell surface receptor in lymphocytes, CD26, by a mechanism that does not require the gp120-CD4 interaction. To further characterize this mechanism, we studied ADA binding to murine clones stably expressing human CD26 and/or human CD4, and transiently expressing human CXCR4. In this heterologous model, we show that both recombinant gp120 and viral particles from the X4 HIV-1 isolate IIIB inhibited the binding of ADA to wild-type or catalytically inactive forms of CD26. In cells lacking human CXCR4 expression, this gp120-mediated inhibition of ADA binding to human CD26 was completely dependent on the expression of human CD4. In contrast, when cells were transfected with human CXCR4 the inhibitory effect of gp120 was significantly enhanced and was not blocked by anti-CD4 antibodies. These data suggest that the interaction of gp120 with CD4 or CXCR4 is required for efficient inhibition of ADA binding to CD26, although in the presence of CXCR4 the interaction of gp120 with CD4 may be dispensable.  相似文献   

9.
Specific cell surface receptors for plasminogen (Pg) are expressed by a wide variety of cell types. The colocalization of receptors for Pg and its activators restricts plasmin (Pm) activity to specific sites and serves to promote fibrinolysis and local Pg activation. These studies show that both Pg and Pm bind to cellular receptors on monocytoid U937 cells. Limited Pm pretreatment of the cells enhances total Pg binding and alters the kinetics of Pm binding. Furthermore, surface-bound Pg is converted to Pm in the absence of exogenous activators. Cell-bound Pm exhibits a 12-fold increase in catalytic efficiency (kcat/Km) relative to Pm free in solution. These studies demonstrate that Pg/Pm receptor occupancy can be regulated by Pm in the microenvironment and may play a significant regulatory role in fibrinolysis and extravascular proteolysis.  相似文献   

10.
Cellular binding of receptor-recognized forms of alpha2-macroglobulin (alpha2M*) is mediated by the low-density lipoprotein receptor related protein (LRP) and the alpha2M signaling receptor (alpha2MSR). In nonmalignant cells, ligation of alpha2MSR promotes DNA synthesis and cellular proliferation. Here, we report that insulin treatment of highly metastatic 1-LN human prostate carcinoma selectively increases alpha2MSR expression and binding of alpha2M* to 1-LN cells. alpha2M* induces transient increases in intracellular calcium and inositol 1,4,5-trisphosphate in insulin-treated 1-LN cells, consistent with activation of alpha2MSR. Inhibition of signaling cascades activated by insulin blocks upregulation of alpha2MSR. By contrast, alpha2M* does not bind to nor induce intracellular signaling in PC-3 cells, even though 1-LN cells were subcloned from PC-3 cells. We suggest that alpha2M* behaves like a growth factor in these highly malignant cells. The 1-LN metastatic phenotype may result, in part, from aberrant expression of alpha2MSR, indicating the possible involvement of alpha2M* in tumor progression.  相似文献   

11.
The A2B adenosine receptor (A2BR) mediates biological responses to extracellular adenosine in a wide variety of cell types. Adenosine deaminase (ADA) can degrade adenosine and bind extracellularly to adenosine receptors. Adenosine modulates chloride secretion in gastric glands and gastric mucosa parietal cells. A close functional link between surface A2BR and ADA has been found on cells of the immune system, but whether this occurs in the gastrointestinal tract is unknown. The goal of this study was to determine whether A2BR and ADA are coexpressed at the plasma membrane of the acid-secreting gastric mucosa parietal cells. We used isolated gastric parietal cells after purification by centrifugal elutriation. The membrane fraction was obtained by sucrose gradient centrifugation. A2BR mRNA expression was analyzed by RT-PCR. The surface expression of A2BR and ADA proteins was evaluated by Western blotting, flow cytometry and confocal microscopy. Our findings demonstrate that A2BR and ADA are expressed in cell membranes isolated from gastric parietal cells. They show a high degree of colocalization that is particularly evident in the surface of contact between parietal cells. The confocal microscopy data together with flow cytometry analysis suggest a tight association between A2BR and ADA that might be specifically linked to glandular secretory function.  相似文献   

12.
Adenosine deaminase (ADA) is not only a cytosolic enzyme but can be found as an ecto-enzyme. At the plasma membrane, an adenosine deaminase binding protein (CD26, also known as dipeptidylpeptidase IV) has been identified but the functional role of this ADA/CD26 complex is unclear. Here by confocal microscopy, affinity chromatography and coprecipitation experiments we show that A1 adenosine receptor (A1R) is a second ecto-ADA binding protein. Binding of ADA to A1R increased its affinity for the ligand thus suggesting that ADA was needed for an effective coupling between A1R and heterotrimeric G proteins. This was confirmed by the fact that ASA, independently of its catalytic behaviour, enhanced the ligand-induced second messenger production via A1R. These findings demonstrate that, apart from the cleavage of adenosine, a further role of ecto-adenosine deaminase on the cell surface is to facilitate the signal transduction via A1R.  相似文献   

13.
Human adenosine deaminase (ADA) occurs as a 41-kDa soluble monomer in all cells. On epithelia and lymphoid cells of humans, but not mice, ADA also occurs bound to the membrane glycoprotein CD26/dipeptidyl peptidase IV. This "ecto-ADA" has been postulated to regulate extracellular Ado levels, and also the function of CD26 as a co-stimulator of activated T cells. The CD26-binding site of human ADA has been localized by homolog scanning to the peripheral alpha2-helix (amino acids 126-143). Among the 5 non-conserved residues within this segment, Arg-142 in human and Gln-142 in mouse ADA largely determined the capacity for stable binding to CD26 (Richard, E., Arredondo-Vega, F. X., Santisteban, I., Kelly, S. J., Patel, D. D., and Hershfield, M. S. (2000) J. Exp. Med. 192, 1223-1235). We have now mutagenized conserved alpha2-helix residues in human and mouse ADA and used surface plasmon resonance to evaluate binding kinetics to immobilized rabbit CD26. In addition to Arg-142, we found that Glu-139 and Asp-143 of human ADA are also important for CD26 binding. Mutating these residues to alanine increased dissociation rates 6-11-fold and the apparent dissociation constant K(D) for wild type human ADA from 17 to 112-160 nm, changing binding free energy by 1.1-1.3 kcal/mol. This cluster of 3 charged residues appears to be a "functional epitope" that accounts for about half of the difference between human and mouse ADA in free energy of binding to CD26.  相似文献   

14.
The glucose-regulated protein 78 (GRP78) is a plasminogen (Pg) receptor on the cell surface. In this study, we demonstrate that GRP78 also binds the tissue-type plasminogen activator (t-PA), which results in a decrease in Km and an increase in the Vmax for both its amidolytic activity and activation of its substrate, Pg. This results in accelerated Pg activation when GRP78, t-PA, and Pg are bound together. The increase in t-PA activity is the result of a mechanism involving a t-PA lysine-dependent binding site in the GRP78 amino acid sequence 98LIGRTWNDPSVQQDIKFL115. We found that GRP78 is expressed on the surface of neuroblastoma SK-N-SH cells where it is co-localized with the voltage-dependent anion channel (VDAC), which is also a t-PA-binding protein in these cells. We demonstrate that both Pg and t-PA serve as a bridge between GRP78 and VDAC bringing them together to facilitate Pg activation. t-PA induces SK-N-SH cell proliferation via binding to GRP78 on the cell surface. Furthermore, Pg binding to the COOH-terminal region of GRP78 stimulates cell proliferation via its microplasminogen domain. This study confirms previous findings from our laboratory showing that GRP78 acts as a growth factor-like receptor and that its association with t-PA, Pg, and VDAC on the cell surface may be part of a system controlling cell growth.  相似文献   

15.
Dipeptidyl-peptidase IV (DPPIV or CD26) is a homodimeric type II membrane glycoprotein in which the two monomers are subdivided into a beta-propeller domain and an alpha/beta-hydrolase domain. As dipeptidase, DPPIV modulates the activity of various biologically important peptides and, in addition, DPPIV acts as a receptor for adenosine deaminase (ADA), thereby mediating co-stimulatory signals in T-lymphocytes. The 3.0-A resolution crystal structure of the complex formed between human DPPIV and bovine ADA presented here shows that each beta-propeller domain of the DPPIV dimer binds one ADA. At the binding interface, two hydrophobic loops protruding from the beta-propeller domain of DPPIV interact with two hydrophilic and heavily charged alpha-helices of ADA, giving rise to the highest percentage of charged residues involved in a protein-protein contact reported thus far. Additionally, four glycosides linked to Asn229 of DPPIV bind to ADA. In the crystal structure of porcine DPPIV, the observed tetramer formation was suggested to mediate epithelial and lymphocyte cell-cell adhesion. ADA binding to DPPIV could regulate this adhesion, as it would abolish tetramerization.  相似文献   

16.
Comodulation of CXCR4 and CD26 in human lymphocytes   总被引:2,自引:0,他引:2  
We provide convergent and multiple evidence for a CD26/CXCR4 interaction. Thus, CD26 codistributes with CXCR4, and both coimmunoprecipitate from membranes of T (CD4(+)) and B (CD4(-)) cell lines. Upon induction with stromal cell-derived factor 1alpha (SDF-1alpha), CD26 is cointernalized with CXCR4. CXCR4-mediated down-regulation of CD26 is not induced by antagonists or human immunodeficiency virus (HIV)-1 gp120. SDF-1alpha-mediated down-regulation of CD26 is not blocked by pertussis toxin but does not occur in cells expressing mutant CXCR4 receptors unable to internalize. Codistribution and cointernalization also occurs in peripheral blood lymphocytes. Since CD26 is a cell surface endopeptidase that has the capacity to cleave SDF-1alpha, the CXCR4.CD26 complex is likely a functional unit in which CD26 may directly modulate SDF-1alpha-induced chemotaxis and antiviral capacity. CD26 anchors adenosine deaminase (ADA) to the lymphocyte cell surface, and this interaction is blocked by HIV-1 gp120. Here we demonstrate that gp120 interacts with CD26 and that gp120-mediated disruption of ADA/CD26 interaction is a consequence of a first interaction of gp120 with a domain different from the ADA binding site. SDF-1alpha and gp120 induce the appearance of pseudopodia in which CD26 and CXCR4 colocalize and in which ADA is not present. The physical association of CXCR4 and CD26, direct or part of a supramolecular structure, suggests a role on the function of the immune system and the pathophysiology of HIV infection.  相似文献   

17.
Fibroblast growth factor (FGF)-10, a homologue of FGF-7, is expressed significantly in normal rat prostate tissue, well differentiated rat prostate tumors with an epithelial and stromal compartment and only in derived prostate stromal cells in culture. Similar to FGF-7, recombinant rat FGF-10 was a specific mitogen for prostate epithelial cells. In contrast to FGF-7 which is widely expressed among stromal cells in tissues, the expression of FGF-10 correlated with the presence of stromal cells of muscle origin. Radioreceptor binding assays and covalent cross-linking analysis revealed that FGF-10 binds with an affinity equal to FGF-7 to resident epithelial cell receptor, FGFR2IIIb, but unlike FGF-7 also binds the IIIb splice variant of FGFR1. Analysis of mRNA expression by RNase protection revealed that, similar to FGF-7, the expression of FGF-10 was responsive to androgen in stromal cells from normal prostate and non-malignant differentiated tumors. Although FGF-10 cDNA exhibits a signal sequence for secretion, cultured stromal cells exhibit strictly a cell-associated FGF-10 antigen that correlates with an alternately translated intracellular isoform. FGF-10 requires 1.4 times higher NaCl for elution from immobilized heparin than does FGF-7 and binds to four times the number of sites on the pericellular matrix of epithelial cells. The results show that prostate stromal cell-derived FGF-10, like FGF-7, exhibits the properties of an andromedin which may indirectly mediate control of epithelial cell growth and function by androgen. Although FGF-10 and FGF-7 bind and activate the same resident epithelial cell receptor (FGFR2IIIb), differences in cell type of origin, compartmentation by alternate translation, the affinity for FGFR1IIIb, and access to FGFR by differential interaction with pericellular matrix heparan sulfate suggest they may play both independent and compensatory roles in prostate homeostasis.  相似文献   

18.
Fibrin (Fn) enhances plasminogen (Pg) activation by tissue-type plasminogen activator (tPA) by serving as a template onto which Pg and tPA assemble. To explore the contribution of the Pg/Fn interaction to Fn cofactor activity, Pg variants were generated and their affinities for Fn were determined using surface plasmon resonance (SPR). Glu-Pg, Lys-Pg (des(1-77)), and Mini-Pg (lacking kringles 1-4) bound Fn with K(d) values of 3.1, 0.21, and 24.5 μm, respectively, whereas Micro-Pg (lacking all kringles) did not bind. The kinetics of activation of the Pg variants by tPA were then examined in the absence or presence of Fn. Whereas Fn had no effect on Micro-Pg activation, the catalytic efficiencies of Glu-Pg, Lys-Pg, and Mini-Pg activation in the presence of Fn were 300- to 600-fold higher than in its absence. The retention of Fn cofactor activity with Mini-Pg, which has low affinity for Fn, suggests that Mini-Pg binds the tPA-Fn complex more tightly than tPA alone. To explore this possibility, SPR was used to examine the interaction of Mini-Pg with Fn in the absence or presence of tPA. There was 50% more Mini-Pg binding to Fn in the presence of tPA than in its absence, suggesting that formation of the tPA-Fn complex exposes a cryptic site that binds Mini-Pg. Thus, our data (a) indicate that high affinity binding of Pg to Fn is not essential for Fn cofactor activity, and (b) suggest that kringle 5 localizes and stabilizes Pg within the tPA-Fn complex and contributes to its efficient activation.  相似文献   

19.
The expression patterns of adenosine A(1) receptors (A(1)Rs), adenosine deaminase (ADA) and ADA binding protein (CD26) were studied in goldfish brain using mammalian monoclonal antibody against A(1)R and polyclonal antibodies against ADA and CD26. Western blot analysis revealed the presence of a band of 35 kDa for A(1)R in membrane preparations and a band of 43 kDa for ADA in both cytosol and membranes. Immunohistochemistry on goldfish brain slices showed that A(1) receptors were present in several neuronal cell bodies diffused in the telencephalon, cerebellum, optic tectum. In the rhombencephalon, large and medium sized neurons of the raphe nucleus showed a strong immunopositivity. A(1)R immunoreactivity was also present in the glial cells of the rhombencephalon and optic tectum. An analogous distribution was observed for ADA immunoreactivity. Tests for the presence of CD26 gave positive labelling in several populations of neurons in the rhombencephalon as well as in the radial glia of optic tectum, where immunostaining for ADA and A(1)R was observed. In goldfish astrocyte cultures the immunohistochemical staining of A(1)R, ADA and CD26, performed on the same cell population, displayed a complete overlapping distribution of the three antibodies. The parallel immunopositivity, at least in some discrete neuronal areas, for A(1)Rs, ADA and CD26 led us to hypothesize that a co-localization among A(1)R, ecto-ADA and CD26 also exists in the neurons of goldfish since it has been established to exist in the neurons of mammals. Moreover, we have demonstrated for the first time, that A(1)R, ecto-ADA and CD26 co-localization is present on the astroglial component of the goldfish brain. This raises the possibility that a similar situation is also shown in the glia of the mammalian brain.  相似文献   

20.
ADA is an enzyme implicated in purine metabolism, and is critical to ensure normal immune function. Its congenital deficit leads to severe combined immunodeficiency (SCID). ADA binding to adenosine receptors on dendritic cell surface enables T-cell costimulation through CD26 crosslinking, which enhances T-cell activation and proliferation. Despite a large body of work on the actions of the ecto-enzyme ADA on T-cell activation, questions arise on whether ADA can also modulate dendritic cell maturation. To this end we investigated the effects of ADA on human monocyte derived dendritic cell biology. Our results show that both the enzymatic and non-enzymatic activities of ADA are implicated in the enhancement of CD80, CD83, CD86, CD40 and CCR7 expression on immature dendritic cells from healthy and HIV-infected individuals. These ADA-mediated increases in CD83 and costimulatory molecule expression is concomitant to an enhanced IL-12, IL-6, TNF-α, CXCL8(IL-8), CCL3(MIP1-α), CCL4(MIP-1β) and CCL5(RANTES) cytokine/chemokine secretion both in healthy and HIV-infected individuals and to an altered apoptotic death in cells from HIV-infected individuals. Consistently, ADA-mediated actions on iDCs are able to enhance allogeneic CD4 and CD8-T-cell proliferation, globally yielding increased iDC immunogenicity. Taken together, these findings suggest that ADA would promote enhanced and correctly polarized T-cell responses in strategies targeting asymptomatic HIV-infected individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号