首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of oral administration of sodium orthovanadate on hepatic malic enzyme (EC 1.1.1.40) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) activities was investigated in nondiabetic and diabetic rats. Streptozotocin-induced diabetic rats were characterized by 4.7-fold increase in plasma glucose and 82% decrease in plasma insulin levels. The activities of hepatic malic enzyme and glucose-6-phosphate dehydrogenase were also diminished (P less than 0.001). Vanadate treatment in diabetic rats led to a significant decrease (P less than 0.001) in plasma glucose levels and to the normalization of enzyme activities, but it did not alter plasma insulin levels. In nondiabetic rats vanadate decreased the plasma insulin level by 64% without altering the enzyme activities. Significant correlation was observed between plasma insulin and hepatic lipogenic enzyme activities in untreated and vanadate-treated rats. Vanadate administration caused a shift to left in this correlation suggesting improvement in insulin sensitivity.  相似文献   

2.
Dichloroacetate (DCA) is a pyruvate dehydrogenase activator that increases cardiac efficiency during reperfusion of ischemic hearts. We determined whether DCA increases efficiency of mitochondrial ATP production by measuring proton leak in mitochondria from isolated working rat hearts subjected to 30 min of ischemia and 60 min of reperfusion. In untreated hearts, cardiac work and efficiency decreased during reperfusion to 26% and 40% of preischemic values, respectively. Membrane potential was significantly lower in mitochondria from reperfused (175.6 +/- 2.2 mV) versus aerobic (185.8 +/- 3.1 mV) hearts. DCA (1 mM added at reperfusion) improved recovery of cardiac work (1.9-fold) and efficiency (1.5-fold) but had no effect on mitochondrial membrane potential (170.6 +/- 2.9 mV). At the maximal attainable membrane potential, O(2) consumption (nmol O(2) x mg(-1) x min(-1)) did not differ between untreated or DCA-treated hearts (128.3 +/- 7.5 and 120.6 +/- 7.6, respectively) but was significantly greater than aerobic hearts (76.6 +/- 7.6). During reperfusion, DCA increased glucose oxidation 2.5-fold and decreased H(+) production from glucose metabolism to 53% of untreated hearts. Because H(+) production decreases cardiac efficiency, we suggest that DCA increases cardiac efficiency during reperfusion of ischemic hearts by increasing the efficiency of ATP use and not by increasing the efficiency of ATP production.  相似文献   

3.
Summary Liver glucose 6-phosphate dehydrogenase and phosphogluconate dehydrogenase activities were significantly decreased in both diabetic and fasted rats. Treatment of diabetic rats with insulin resulted in liver glucose 6-phosphate dehydrogenase and phosphogluconate dehydrogenase activities that were significantly greater than controls. Insulin promoted an increase in food consumption that was blocked by adrenaline. Insulin, when administered together with adrenaline, restored hepatic glucose 6-phosphate dehydrogenase and phosphogluconate dehydrogenas activities of diabetic animals to control values, without altering food consumption. Brain glucose 6-phosphate dehydrogenase and phosphogluconate dehydrogenase activities were not significantly altered by either dietary restriction, diabetes or insulin treatment. These results demonstrate a dissociation between the action of insulin on hepatic glucose 6-phosphate dehydrogenase activity and its action to increase food intake.Abbreviations NADP+ oxidoreductase, EC 1.1.1.49 Glucose 6-P dehydrogenase, GPD, D-glucose-6-phosphate - NADP+ 2-oxidoreductase (decarboxylating), EC 1.1.1.44 phosphogluconate dehydrogenase, PGD, 6-phospho-D-gluconate  相似文献   

4.
The work investigated the mechanisms for modulation of renal and hepatic pyruvate dehydrogenase complex (PDH) activities after carbohydrate re-feeding of 48 h-starved rats, and identified a regulatory role for tri-iodothyronine. Glucose re-feeding decreased blood concentrations of lipid fuels in both euthyroid and hyperthyroid rats. This treatment was not associated with re-activation of hepatic PDH in either group of rats, or of renal PDH in hyperthyroid rats (where activity was already high), but it increased renal PDH in euthyroid rats. Dichloroacetate (DCA), an activator of PDH kinase, increased renal PDH activities in euthyroid rats, but not hyperthyroid rats, and effects of glucose re-feeding or hyperthyroidism were no longer apparent. These treatments therefore exert their effects on renal PDH through changes in PDH kinase. DCA re-activation of hepatic PDH was more marked in hyperthyroid than in euthyroid rats, suggesting that, under conditions of inhibited kinase activity, PDH phosphatase is more active in livers of hyperthyroid rats. The limited effect of DCA on hepatic PDH in euthyroid rats was potentiated by glucose re-feeding or insulin, but not by inhibition of lipolysis, demonstrating a direct effect of insulin to increase hepatic PDH phosphatase. Glucose re-feeding, inhibition of lipolysis or insulin administration did not increase hepatic PDH in DCA-treated hyperthyroid rats, indicating that effects of hyperthyroidism and of insulin on PDH phosphatase are not additive.  相似文献   

5.
The objective of this study was to determine whether administration of dichloroacetate (DCA), an activator of pyruvate dehydrogenase (PDH), improves recovery of energy metabolites following transient cerebral ischemia. Gerbils were pretreated with DCA, and cerebral ischemia was produced using bilateral carotid artery occlusion for 20 min, followed by reperfusion up to 4 h. DCA had no effect on the accumulation of lactic acid and the decrease in ATP and phosphocreatine (PCr) during the 20-min insult, nor on the recovery of these metabolites measured at 20 and 60 min reperfusion. However, at 4 h reperfusion, levels of ATP and PCr were significantly higher in DCA-treated animals than in controls, as PCr exhibited a secondary decrease in caudate nucleus of control animals. PDH was markedly inhibited at 20 min reperfusion in both groups, but was reactivated to a greater extent in DCA-treated animals at 60 min and 4 h reperfusion. These results demonstrate that DCA had no effect on the initial recovery of metabolites following transient ischemia. However, later in reperfusion, DCA enhanced the postischemic reactivation of PDH and prevented the secondary failure of energy metabolism in caudate nucleus. Thus, inhibition of PDH may limit the recovery of energy metabolism following cerebral ischemia.  相似文献   

6.
The lipogenic capacity of rat liver is increased in animals fed a high carbohydrate, fat-free diet or by the administration of 2,2',5'-triiodo-L-thyronine. Underlying this change is a generalized induction of the enzymes involved in lipogenesis, including glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and malic enzyme, which together serve to generate the additional NADPH required for increased fatty acid synthesis. This report presents evidence indicating that induction of the hexose-shunt dehydrogenases involves increased enzyme synthesis secondary to elevated enzyme specific mRNA levels, as has previously been shown for malic enzyme. Activities of specific mRNAs, estimated by cell-free translation of hepatic poly(A)-containing RNA in the mRNA dependent rabbit reticulocyte lysate, were compared with enzyme specific activities and relative rates of specific enzyme synthesis. The 2-fold increase in glucose-6-phosphate dehydrogenase specific activity in hyperthyroid rats and the 13-fold increase in rats fed a high carbohydrate, fat-free diet, relative to euthyroid, chow-fed controls were paralleled by comparable increases in the synthetic rates and mRNA levels of this enzyme. Similarly, consonant changes in the rate of enzyme synthesis and concentration of 6-phosphogluconate dehydrogenase mRNA accompanied the 2.5- and 3-fold increases in specific activity of this enzyme observed in response to hormonal and dietary induction, respectively. Thus, both thyroid hormone and carbohydrate feeding appear to induce glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase primarily by increasing the effective cellular concentrations of their respective mRNAs and, consequently, their rates of synthesis.  相似文献   

7.
The effects in kidney of streptozotocin-induced diabetes and of insulin supplementation to diabetic animals on glycogen-metabolizing enzymes were determined. Kidney glycogen levels were approximately 30-fold higher in diabetic animals than in control or insulintreated diabetic animals. The activities of glycogenolytic enzymes i.e., phosphorylase (both a and b), phosphorylase kinase, and protein kinase were not significantly altered in the diabetic animals. Glycogen synthase (I form) activity decreased in the diabetic animals whereas total glycogen synthase (I + D) activity significantly increased in these animals. The activities were restored to control values after insulin therapy. Diabetic animals also showed a 3-fold increase in glucose 6-phosphate levels. These data suggest that higher accumulation of glycogen in kidneys of diabetic animals is due to increased amounts of total glycogen synthase and its activator glucose 6-phosphate.  相似文献   

8.
The insulin-like effects of vanadate were compared in streptozotocin-induced diabetic rats fed on high starch control and high sucrose diets for a period of six weeks. Diabetic rats in both diet groups were characterized by hypoinsulinemia, hyperglycemia (6.8–7.0 fold increase) and significant decreases (p<0.001) in the activities of glycogen synthase, phosphorylase and lipogenic enzymes, ATP-citrate lyase, glucose 6-phosphate dehydrogenase and malic enzyme in liver. There were no diet-dependent differences in these abnormalities. However, the insulin-mimetic agent vanadate was more effective in diabetic rats fed sucrose diet as compared to animals fed control starch diet. Vanadate administration resulted in 30% and 64% decreases in plasma glucose levels in diabetic rats fed control and sucrose diets, respectively. The activities of glycogen synthase (active) and phosphorylase (active and total) were restored significantly by vanadate in control (p<0.05–0.01) and sucrose (p<0.001) diets fed diabetic rats. This insulin-mimetic agent increased the activities of hepatic lipogenic enzymes in control diet fed rats to 38–47% of normal levels whereas in sucrose fed group it completely restored the activities. Sucrose diet caused a distinct effect on the plasma levels of triacylglycerol (4-fold increase) and apolipoprotein B (2.8-fold increase) in diabetic rats and vanadate supplementation decreased their levels by 65–75%. These data indicate that vanadate exerts insulin-like effects in diabetic rats more effectively in sucrose fed group than the animals fed control diet. In addition, vanadate also prevents sucrose-induced hypertriglyceridemia.  相似文献   

9.
The effects of streptozotocin-induced hyperglycemia on de novo myo-inositol biosynthesis in rat testis was examined. Testicular glucose and glucose 6-phosphate levels increased significantly 10 and 12 h after stretozotocin injection, respectively. However, testis myo-inositol content did not increase appreciably until 24 h following injection of the drug. Seventy-two hours after streptozotocin administration, testis myo-inositol levels were 2.7-fold higher in diabetic rats than in controls injected with citrate buffer. No changes were observed in the Specific activities of myo-inositol-1-phosphate synthase (EC 5.5.1.4) and 1-l-myo-inositol-1-phosphatase (EC 3.1.3.25). However, hyperglycemic rats displayed testicular glucose and glucose 6-phosphate levels approximately 4- and 2-fold in excess of control values, respectively. Insulin treatment of diabetic rats resulted in the lowering of plasma glucose, and testis glucose 6-phosphate to normal or below normal levels within hours. Inositol levels remained significantly elevated compared with control animals, although slightly lower than that observed for untreated diabetic rats. Streptozotocin diabetic rats had a significantly decreased testis cytosolic NAD+NADH ratio compared with control animals 72 h after injection. The potential role of testis hexokinase distribution in the regulation of glucose 6-phosphate and myo-inositol biosynthesis in normal and diabetic rats was investigated. No significant differences in testis hexokinase distribution or in the kinetic characteristics of the soluble and particulate hexokinase activities were observed. Testicular sperm counts in streptozotocin diabetic rats were not significantly different from control values.  相似文献   

10.
Our experiments were carried out in normal and streptozotocin-diabetic rats. The effects of sodium difluoroacetate (DFA) at the dose of 40 mg/kg daily were studied on the blood and retinal lactate levels; these effects were compared to those of an identical dose of sodium dichloroacetate (DCA) which is the most known among the pyruvate dehydrogenase activators. DFA and DCA were administered orally by oesophageal tube during 5 months. At these doses, neither DFA nor DCA significantly modified the blood and retinal lactate levels in the normal animals. The blood and retina lactate levels of the non treated diabetic rats were much higher than those of the normal rats; the treatment by DFA and DCA significantly decreased the blood and retina lactate levels in diabetic rats.  相似文献   

11.
M J Stark  R Frenkel 《Life sciences》1974,14(8):1563-1575
The activity of rat liver malic enzyme shows a marked increase when the animals are maintained on a restricted protein diet. Of the NADP-linked dehydrogenases tested (malic enzyme, glucose-6-phosphate dehydrogenase, and isocitrate dehydrogenase), the response is confined only to malic enzyme. Dietary sucrose is not required for the increase in activity, but elevated dietary levels of this disaccharide increase hepatic malic enzyme regardless of dietary protein. Glucose-6-phosphate dehydrogenase activity is increased by dietary sucrose provided adequate dietary protein is supplied. The specificity of the response to lowered dietary protein shown by malic enzyme suggests that the control of the hepatic enzyme is mediated by processes different from those controlling the activity of glucose-6-phosphate dehydrogenase.  相似文献   

12.
A genetically determined absence of mitochondrial malic enzyme (EC 1.1.1.40) in c3H/c6H mice is accompanied by a four-fold increase in liver glucose-6-phosphate dehydrogenase and a two-fold increase for 6-phosphogluconate dehydrogenase activity. Smaller increases in the activity of serine dehydratase and glutamic oxaloacetic transaminase are observed while the level of glutamic pyruvate transaminase activity is reduced in the liver of deficient mice. Unexpectedly, the level of activity of total malic enzyme in the livers of mitochondrial malic enzyme-deficient mice is increased approximately 50% compared to littermate controls. No similar increase in soluble malic enzyme activity is observed in heart of kidney tissue of mutant mice and the levels of total malic enzyme in these tissues are in accord with expected levels of activity in mitochondrial malic enzyme-deficient mice. The divergence in levels of enzyme activity between mutant and wild-type mice begins at 19--21 days of age. Immunoinactivation experiments with monospecific antisera to the soluble malic enzyme and glucose-6-phosphate dehydrogenase demonstrate that the activity increases represent increases in the amount of enzyme protein. The alterations are not consistent with a single hormonal response.  相似文献   

13.
The level of hepatic immunoreactive glucose-6-phosphate dehydrogenase protein was found to correlate well with the enzyme activity in adult rats fed the stock laboratory diet in a variety of hormonal conditions. The amount of immunoreactive protein and enzyme activity was 2-fold greater in sexually mature female rats compared with aged matched male animals. However, this difference was absent in diabetic animals, and furthermore although triiodothyronine administration to the diabetic male rat could restore the level of enzyme activity to that of the normoglycaemic animal, it was much less effective in the female animal. In contrast, administration of insulin to the normoglycaemic animal increased the level of glucose-6-phosphate dehydrogenase in the female, but was without effect in the male. These results are discussed in relation to the possible role of thyroid status and steroid sex hormones in the regulation of hepatic glucose-6-phosphate dehydrogenase.  相似文献   

14.
The effect of short-term diabetes, 5 days after the administration of streptozotocin, on renal growth and the activity of alternative pathways of glucose metabolism was studied in immature (21-day-old) rats and in adult rats. The kidney weight increased by 28% in the adult diabetic rats, but by only 10% in the immature diabetic rats, relative to their age-matched control groups. The flux of glucose via the pentose phosphate pathway was increased 2-3-fold in the adult diabetic rats, but was unchanged in the immature diabetic group. Enzymes of this pathway (glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase) increased by 29% and 77% respectively in adult diabetic rats; in the immature group they showed changes of +5% and +28% respectively. The rate of glucose phosphorylation increased significantly in both groups of diabetic rats; only minor changes were observed in oxidation via the tricarboxylic acid cycle. Increases of 40-50% were found in the activity of enzymes involved in UDP-glucose metabolism (phosphoglucomutase, UDPglucose pyrophosphorylase and UDPglucose dehydrogenase) and in lactate dehydrogenase in both young and adult animals. The results suggest a differential renal response to streptozotocin-diabetes according to the stage of renal growth and development, and it is proposed that the difference is related to the developmental emergence of aldose reductase. Enzymes involved in formation of ribose 5-phosphate and NADPH are strikingly increased in the adult diabetic, whereas metabolic functions dependent on a high ambient glucose concentration, e.g. synthesis of glycogen and glucuronate, are similarly affected in adult and immature diabetic groups, both showing certain aspects of 'glucose overutilization'.  相似文献   

15.
We have studied the effect of the pyruvate dehydrogenase (PDH) activator, dichloroacetate (DCA), on the growth, metabolism, and productivity of the PQXB (1/2) hybridoma cell line. In control batch cultures, cessation of growth and the onset of decline phase coincided with the time at which the media became exhausted of glutamine. Supplementation of the media with DCA (1 mM) extended the growth phase of this cell line by approximately 20 h without affecting its growth rate. This prolonged period of growth resulted in an increased maximum cell density (16%) and final antibody yield (55%). Repeat experiments showed these effects to be reproducible, with the increases in antibody yield being between 50 and 60%. DCA did not affect the specific rates of glucose utilization and lactate production. However, it decreased the specific glutamine consumption rate. This characteristic of DCA action appeared, at least in part, to provide an explanation for the extended growth phase exhibited by DCA-treated cultures, since it delayed the time at which the media became depleted of glutamine. The consumption and production kinetics for various nutrients and their metabolites in both control and DCA-treated cultures suggested that: (1) glutamine catabolism proceeded by a pathway involving conversion to glutamate by glutaminase followed by subsequent transamination by alanine aminotransferase, and (2) DCA decreased the specific glutamine consumption rate by directly or indirectly inhibiting the transamination. It is expected that the routine inclusion of DCA in media used for hybridoma cultivation will be valuable for enhancement of monoclonal antibody (Mab) yields on a laboratory scale. (c) 1996 John Wiley & Sons, Inc.  相似文献   

16.
Low-dose acetylsalicylic acid (ASA) treatment is a standard therapeutic approach in diabetes mellitus for prevention of long-term vascular complications. The aim of the present work was to investigate the effect of long-term ASA administration in experimental diabetes on activities of some liver enzymes: glutathione peroxidase (GSHPx), catalase, glucose-6-phosphate dehydrogenase (G6PDH) and glutathione S-transferase (GST). Blood glucose, glycated hemoglobin, as well as plasma ALT and AST activities increased in rats with streptozotocin-induced experimental diabetes. The long-term hyperglycemia resulted in decreased activities of GSHPx (by 26%), catalase (by 34%), GST (by 38%) and G6PDH (by 27%) in diabetic animals. We did not observe increased accumulation of membrane lipid peroxidation products or altered levels of reduced glutathione in livers. The linear correlation between blood glucose and glycated hemoglobin in diabetic animals was distorted upon ASA treatment, which was likely due to a chemical competition between nonenzymatic protein glycosylation and protein acetylation. The long-term ASA administration partially reversed the decrease in GSHPx activity, but did not influence the activities of catalase and GST in diabetic rats. Otherwise, some decrease in these parameters was noted in ASA-treated nondiabetic animals. Increased ASA-induced G6PDH activity was recorded in both diabetic and nondiabetic rats. While both glycation due to diabetic hyperglycemia and ASA-mediated acetylation had very similar effects on the activities of all studied enzymes but G6PDH, we conclude that non-enzymatic modification by either glucose or ASA may be a common mechanism of the observed convergence.  相似文献   

17.
Enzymes of glucose metabolism in Frankia sp.   总被引:5,自引:1,他引:4       下载免费PDF全文
Enzymes of glucose metabolism were assayed in crude cell extracts of Frankia strains HFPArI3 and HFPCcI2 as well as in isolated vesicle clusters from Alnus rubra root nodules. Activities of the Embden-Meyerhof-Parnas pathway enzymes glucokinase, phosphofructokinase, and pyruvate kinase were found in Frankia strain HFPArI3 and glucokinase and pyruvate kinase were found in Frankia strain HFPCcI2 and in the vesicle clusters. An NADP+-linked glucose 6-phosphate dehydrogenase and an NAD-linked 6-phosphogluconate dehydrogenase were found in all of the extracts, although the role of these enzymes is unclear. No NADP+-linked 6-phosphogluconate dehydrogenase was found. Both dehydrogenases were inhibited by adenosine 5-triphosphate, and the apparent Km's for glucose 6-phosphate and 6-phosphogluconate were 6.86 X 10(-4) and 7.0 X 10(-5) M, respectively. In addition to the enzymes mentioned above, an NADP+-linked malic enzyme was detected in the pure cultures but not in the vesicle clusters. In contrast, however, the vesicle clusters had activity of an NAD-linked malic enzyme. The possibility that this enzyme resulted from contamination from plant mitochondria trapped in the vesicle clusters could not be discounted. None of the extracts showed activities of the Entner-Doudoroff enzymes or the gluconate metabolism enzymes gluconate dehydrogenase or gluconokinase. Propionate- versus trehalose-grown cultures of strain HFPArI3 showed similar activities of most enzymes except malic enzyme, which was higher in the cultures grown on the organic acid. Nitrogen-fixing cultures of strain HFPArI3 showed higher specific activities of glucose 6-phosphate and 6-phosphogluconate dehydrogenases and phosphofructokinase than ammonia-grown cultures.  相似文献   

18.
The insulin-mimetic action of vanadate is well established but the exact mechanism by which it exerts this effect is still not clearly understood. The role of insulin in the regulation of hepatic glycogen metabolizing and lipogenic enzymes is well known. In our study, we have, therefore, examined the effects of vanadate on these hepatic enzymes using four different models of diabetic and insulin-resistant animals. Vanadate normalized the blood glucose levels in all animal models. In streptozotocin-induced diabetic rats, the amount of liver glycogen and the activities of the active-form of glycogen synthase, both active and inactive-forms of phosphorylase, and lipogenic enzymes like glucose 6-phosphate dehydrogenase and malic enzyme were decreased and vanadate treatment normalized all of these to near normal levels. The other three animal models (db/db mouse, sucrose-fed rats and fa/fa obese Zucker rats) were characterized by hyperinsulinemia, hypertriglyceridemia, increases in activities of lipogenic enzymes, and marginal changes in glycogen metabolizing enzymes. Vanadate treatment brought all of these values towards normal levels. It should be noted that vanadate shows differential effects in the modulation of lipogenic enzymes activities in type I and type II diabetic animals. It increases the activities of lipogenic enzymes in streptozotocin-induced diabetic animals and prevents the elevation of activities of these enzymes in hyperinsulinemic animals. The insulin-stimulated phosphorylation of insulin receptor subunit and its tyrosine kinase activity was increased in streptozotocin-induced diabetic rats after treatment with vanadate. Our results support the view that insulin receptor is one of the sites involved in the insulin-mimetic actions of vanadate.  相似文献   

19.
Enzyme activities forming extracellular products from succinate, fumarate, and malate were examined using washed cell suspensions of Pseudomonas fluorescens from chemostat cultures. Membrane-associated enzyme activities (glucose, gluconate, and malate dehydrogenases), producing large accumulations of extracellular oxidation products in carbon-excess environments, have previously been found in P. fluorescens. Investigations carried out here have demonstrated the presence in this microorganism of a malic enzyme activity which produces extracellular pyruvate from malate in carbon-excess environments. Although the three membrane dehydrogenase enzymes decrease significantly in carbon-limited chemostat cultures, malic enzyme activity was found to increase fourfold under these conditions. The regulation of malate dehydrogenase and malic enzyme by malate or succinate was similar. Malate dehydrogenase increased and malic enzyme decreased in carbon-excess cultures. The opposite effect was observed in carbon-limited cultures. When pyruvate or glucose was used as the carbon source, malate dehydrogenase was regulated similarly by the available carbon concentration, but malic enzyme activity producing extracellular pyruvate was not detected. While large accumulations of extracellular oxalacetate and pyruvate were produced in malate-excess cultures, no extracellular oxidation products were detected in succinate-excess cultures. This may be explained by the lack of detectable activity for the conversion of added external succinate to extracellular fumarate and malate in cells from carbon-excess cultures. In cells from carbon-limited (malate or succinate) cultures, very active enzymes for the conversion of succinate to extracellular fumarate and malate were detected. Washed cell suspensions from these carbon-limited cultures rapidly oxidized added succinate to extracellular pyruvate through the sequential action of succinate dehydrogenase, fumarase, and malic enzyme. Succinate dehydrogenase and fumarase activities producing extracellular products were not detected in cells from chemostat cultures using pyruvate or glucose as the carbon source. Uptake activities for succinate, malate, and pyruvate also were found to increase in carbon-limited (malate or succinate) and decrease in carbon-excess cultures. The role of the membrane-associated enzymes forming different pathways for carbon dissimilation in both carbon-limited and carbon-excess environments is discussed.  相似文献   

20.
The metabolism of lactate, pyruvate and glucose was studied in epididymal adipose tissue of starved, normally fed and starved-re-fed rats. Lactate conversion into fatty acid occurred at an appreciable rate only in the adipocyte of starved-re-fed animals. NNN'N'-Tetramethyl-p-phenylenediamine, an agent that transports reducing power from the cytoplasm to the mitochondria, caused large increments of fatty acid synthesis from lactate and a smaller one from glucose but a decrease in that from pyruvate. Glucose (1.0mm) increased fatty acid synthesis from lactate 4.3-fold but only 1.67-fold from pyruvate in adipocytes from normally fed animals. 2-Deoxyglucose decreased fatty acid synthesis from lactate to a greater degree (threefold) compared to that from pyruvate in adipocytes from starved-re-fed animals. l-Glycerol 3-phosphate contents were approximately equal in epididymal fat-pads, incubated in the presence of lactate or pyruvate, from normally fed animals, whereas the addition of 1mm-glucose resulted in a tenfold increase in l-glycerol 3-phosphate content only in the presence of lactate. The l-glycerol 3-phosphate content was tenfold higher in adipose tissue from starved-re-fed animals incubated in the presence of lactate than in the presence of pyruvate. 2-Deoxyglucose caused these values to be slightly lowered in the presence of lactate. We suggest that lactate metabolism is limited by the rate of NADH removal from the cytoplasm. In the starved-re-fed state, this occurs by reduction of dihydroxyacetone phosphate formed from glycogen to produce l-glycerol 3-phosphate, thus permitting lactate conversion into fatty acid. When glucose is the substrate, and rates of transport are not limiting, the rate of removal of cytoplasmic NADH limits glucose conversion into fatty acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号