首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms behind compressive stress generation in gymnosperms are not yet fully understood. Investigating the structure–function relationships at the tissue and cell level, however, can provide new insights. Severe compression wood of all species lacks a S3 layer, has a high microfibril angle in the S2 layer and a high lignin content. Additionally, special features like helical cavities or spiral thickenings appear, which are not well understood in terms of their mechanical relevance, but need to be examined with regard to evolutionary trends in compression wood development. Thin compression wood foils and isolated tracheids of four gymnosperm species [Ginkgo biloba L., Taxus baccata L., Juniperus virginiana L., Picea abies (L.) Karst.] were investigated. The tracheids were isolated mechanically by peeling them out of the solid wood using fine tweezers. In contrast to chemical macerations, the cell wall components remained in their original condition. Tensile properties of tissue foils and tracheids were measured in a microtensile apparatus under wet conditions. Our results clearly show an evolutionary trend to a much more flexible compression wood. An interpretation with respect to compressive stress generation is discussed.  相似文献   

2.
Compression wood conifer tracheids show different swelling and stiffness properties than those of usual normal wood, which has a practical function in the living plant: when a conifer shoot is moved from its vertical position, compression wood is formed in the under part of the shoot. The growth rate of the compression wood is faster than in the upper part resulting in a renewed horizontal growth. The actuating and load-carrying function of the compression wood is addressed, on the basis of its special ultrastructure and shape of the tracheids. As a first step, a quantitative model is developed to predict the difference of moisture-induced expansion and axial stiffness between normal wood and compression wood. The model is based on a state space approach using concentric cylinders with anisotropic helical structure for each cell-wall layer, whose hygroelastic properties are in turn determined by a self-consistent concentric cylinder assemblage of the constituent wood polymers. The predicted properties compare well with experimental results found in the literature. Significant differences in both stiffness and hygroexpansion are found for normal and compression wood, primarily due to the large difference in microfibril angle and lignin content. On the basis of these numerical results, some functional arguments for the reason of high microfibril angle, high lignin content and cylindrical structure of compression wood tracheids are supported.  相似文献   

3.
Cellulose microfibril angle in the cell wall of wood fibres   总被引:1,自引:0,他引:1  
The term microfibril angle (MFA) in wood science refers to the angle between the direction of the helical windings of cellulose microfibrils in the secondary cell wall of fibres and tracheids and the long axis of cell. Technologically, it is usually applied to the orientation of cellulose microfibrils in the S2 layer that makes up the greatest proportion of the wall thickness, since it is this which most affects the physical properties of wood. This review describes the organisation of the cellulose component of the secondary wall of fibres and tracheids and the various methods that have been used for the measurement of MFA. It considers the variation of MFA within the tree and the biological reason for the large differences found between juvenile (or core) wood and mature (or outer) wood. The ability of the tree to vary MFA in response to environmental stress, particularly in reaction wood, is also described. Differences in MFA have a profound effect on the properties of wood, in particular its stiffness. The large MFA in juvenile wood confers low stiffness and gives the sapling the flexibility it needs to survive high winds without breaking. It also means, however, that timber containing a high proportion of juvenile wood is unsuitable for use as high-grade structural timber. This fact has taken on increasing importance in view of the trend in forestry towards short rotation cropping of fast grown species. These trees at harvest may contain 50% or more of timber with low stiffness and therefore, low economic value. Although they are presently grown mainly for pulp, pressure for increased timber production means that ways will be sought to improve the quality of their timber by reducing juvenile wood MFA. The mechanism by which the orientation of microfibril deposition is controlled is still a matter of debate. However, the application of molecular techniques is likely to enable modification of this process. The extent to which these techniques should be used to improve timber quality by reducing MFA in juvenile wood is, however, uncertain, since care must be taken to avoid compromising the safety of the tree.  相似文献   

4.
In response to gravitational stresses, angiosperm trees form tension wood in the upper sides of branches and leaning stems in which cellulose content is higher, microfibrils are typically aligned closely with the fibre axis and the fibres often have a thick inner gelatinous cell wall layer (G-layer). Gene expression was studied in Eucalyptus nitens branches oriented at 45 degrees using microarrays containing 4900 xylem cDNAs, and wood fibre characteristics revealed by X-ray diffraction, chemical and histochemical methods. Xylem fibres in tension wood (upper branch) had a low microfibril angle, contained few fibres with G-layers and had higher cellulose and decreased Klason lignin compared with lower branch wood. Expression of two closely related fasciclin-like arabinogalactan proteins and a beta-tubulin was inversely correlated with microfibril angle in upper and lower xylem from branches. Structural and chemical modifications throughout the secondary cell walls of fibres sufficient to resist tension forces in branches can occur in the absence of G-layer enriched fibres and some important genes involved in responses to gravitational stress in eucalypt xylem are identified.  相似文献   

5.
The distribution of noncellulosic polysaccharides in cell walls of tracheids and xylem parenchyma cells in normal and compression wood of Pinus radiata, was examined to determine the relationships with lignification and cellulose microfibril orientation. Using fluorescence microscopy combined with immunocytochemistry, monoclonal antibodies were used to detect xyloglucan (LM15), β(1,4)-galactan (LM5), heteroxylan (LM10 and LM11), and galactoglucomannan (LM21 and LM22). Lignin and crystalline cellulose were localized on the same sections used for immunocytochemistry by autofluorescence and polarized light microscopy, respectively. Changes in the distribution of noncellulosic polysaccharides between normal and compression wood were associated with changes in lignin distribution. Increased lignification of compression wood secondary walls was associated with novel deposition of β(1,4)-galactan and with reduced amounts of xylan and mannan in the outer S2 (S2L) region of tracheids. Xylan and mannan were detected in all lignified xylem cell types (tracheids, ray tracheids, and thick-walled ray parenchyma) but were not detected in unlignified cell types (thin-walled ray parenchyma and resin canal parenchyma). Mannan was absent from the highly lignified compound middle lamella, but xylan occurred throughout the cell walls of tracheids. Using colocalization measurements, we confirmed that polysaccharides containing galactose, mannose, and xylose have consistent correlations with lignification. Low or unsubstituted xylans were localized in cell wall layers characterized by transverse cellulose microfibril orientation in both normal and compression wood tracheids. Our results support the theory that the assembly of wood cell walls, including lignification and microfibril orientation, may be mediated by changes in the amount and distribution of noncellulosic polysaccharides.  相似文献   

6.
Kim JS  Awano T  Yoshinaga A  Takabe K 《Planta》2012,235(6):1209-1219
The ultrastructure of the innermost surface of Cryptomeria japonica differentiating normal wood (NW) and compression wood (CW) was comparatively investigated by field emission electron microscopy (FE-SEM) combined with enzymatic degradation of hemicelluloses. Cellulose microfibril (CMF) bundles were readily observed in NW tracheids in the early stage of secondary cell wall formation, but not in CW tracheids because of the heavy accumulation of amorphous materials composed mainly of galactans and lignin. This result suggests that the ultrastructural deposition of cell wall components in the tracheid cell wall differ between NW and CW from the early stage of secondary cell wall formation. Delignified NW and CW tracheids showed similar structural changes during differentiating stages after xylanase or β-mannanase treatment, whereas they exhibited clear differences in ultrastructure in mature stages. Although thin CMF bundles were exposed in both delignified mature NW and CW tracheids by xylanase treatment, ultrastructural changes following β-mannanase treatment were only observed in CW tracheids. CW tracheids also showed different degradation patterns between xylanase and β-mannanase. CMF bundles showed a smooth surface in delignified mature CW tracheids treated with xylanase, whereas they had an uneven surface in delignified mature CW tracheids treated with β-mannanase, indicating that the uneven surface of CMF bundles was related to xylans. The present results suggest that ultrastructural deposition and organization of lignin and hemicelluloses in CW tracheids may differ from those of NW tracheids.  相似文献   

7.
The present work deals with growth eccentricity and reaction anatomy in horizontal branches of Pseudowintera colorata (Raoul) Dandy. Growth promotion is distinct and occurs on the lower (abaxial) side of inclined branches in the manner common to gymnosperms. Neither compression wood nor tension wood was found either on the upper or on the lower side of the investigated branches. The cells of the wood to the lower side show some differences from those of the upper side. The lower-side tracheids are longer, wider, possess thicker walls and have a higher microfibril angle than those of the upper side. The lower-side rays are less high but wider (because of a greater number of larger cells) than those of the upper side.  相似文献   

8.
Microstructural properties of wood vary considerably within a tree. Knowledge of these properties and a better understanding of their relationship to the macroscopic mechanical performance of wood are crucial to optimize the yield and economic value of forest stocks. This holds particularly for the end-use requirements in engineering applications. In this study the microstructure–stiffness relationships of Scots pine are examined with a focus on the effects of the microstructural variability on the elastic properties of wood at different length scales. For this purpose, we have augmented microstructural data acquired using SilviScan-3? (namely wood density, cell dimensions, earlywood and latewood proportion, microfibril angle) with local measurements of these quantities and of the chemical composition derived from wide-angle X-ray scattering, light microscopy, and thermogravimetric analysis, respectively. The stiffness properties were determined by means of ultrasonic tests at the clear wood scale and by means of nanoindentation at the cell wall scale. In addition, micro-mechanical modeling was applied to assess the causal relations between structural and mechanical properties and to complement the experimental investigations. Typical variability profiles of microstructural and mechanical properties are shown from pith to bark, across a single growth ring and from earlywood to latewood. The clear increase of the longitudinal stiffness as well as the rather constant transverse stiffness from pith to bark could be explained by the variation in microfibril angle and wood density over the entire radial distance. The dependence of local cell wall stiffness on the local microfibril angle was also demonstrated. However, the local properties did not necessarily follow the trends observed at the macroscopic scale and exhibited only a weak relationship with the macroscopic mechanical properties. While the relationship between silvicultural practice and wood microstructure remains to be modeled using statistical techniques, the influence of microstructural properties on the macroscopic mechanical behavior of wood can now be described by a physical model. The knowledge gained by these investigations and the availability of a new micromechanical model, which allows transferring these findings to non-tested material, will be valuable for wood quality assessment and optimization in timber engineering.  相似文献   

9.
10.
In 1628, the Swedish warship Vasa capsized on her maiden voyage and sank in the Stockholm harbor. The ship was recovered in 1961 and, after polyethylene glycol (PEG) impregnation, it was displayed in the Vasa museum. Chemical investigations of the Vasa were undertaken in 2000, and extensive holocellulose degradation was reported at numerous locations in the hull. We have now studied the longitudinal tensile strength of Vasa oak as a function of distance from the surface. The PEG-content, wood density, and cellulose microfibril angle were determined. The molar mass distribution of holocellulose was determined as well as the acid and iron content. A good correlation was found between the tensile strength of the Vasa oak and the average molecular weight of the holocellulose, where the load-bearing cellulose microfibril is the critical constituent. The mean tensile strength is reduced by approximately 40%, and the most affected areas show a reduction of up to 80%. A methodology is developed where variations in density, cellulose microfibril angle, and PEG content are taken into account, so that cell wall effects can be evaluated in wood samples with different rate of impregnation and morphologies.  相似文献   

11.
A definite proportional limit which has been observed typically in metallic materials during the transition from elastic deformation into plastic one was also detected in the load-displacement curve of the compression wood with the water content about 100% from Cryptomeria japonica D. Don. Time-resolved small-angle X-ray scattering studies demonstrated a large structural change, that is, a strong decrease in the microfibril angle in the cell wall occurring with increasing the displacement beyond the proportional limit for the compression wood loaded in uniaxial tension. Correspondingly, the mechanical properties are changed and high elongations begin to be seen. For the dried normal wood, on the other hand, only a weak decrease in the microfibril angle was observed with increasing the elongation until the fracture is initiated, where the elastic behavior was maintained.  相似文献   

12.
13.
Cellulose microfibrils are the major structural component of plant secondary cell walls. Their arrangement in plant primary cell walls, and its consequent influence on cell expansion and cellular morphology, is directed by cortical microtubules; cylindrical protein filaments composed of heterodimers of alpha- and beta-tubulin. In secondary cell walls of woody plant stems the orientation of cellulose microfibrils influences the strength and flexibility of wood, providing the physical support that has been instrumental in vascular plant colonization of the troposphere. Here we show that a Eucalyptus grandisbeta-tubulin gene (EgrTUB1) is involved in determining the orientation of cellulose microfibrils in plant secondary fibre cell walls. This finding is based on RNA expression studies in mature trees, where we identified and isolated EgrTUB1 as a candidate for association with wood-fibre formation, and on the analysis of somatically derived transgenic wood sectors in Eucalyptus. We show that cellulose microfibril angle (MFA) is correlated with EgrTUB1 expression, and that MFA was significantly altered as a consequence of stable transformation with EgrTUB1. Our findings present an important step towards the production of fibres with altered tensile strength, stiffness and elastic properties, and shed light on one of the molecular mechanisms that has enabled trees to dominate terrestrial ecosystems.  相似文献   

14.
? Premise of the study: Intercellular spaces along ray parenchyma (ISRP) are common in many conifer xylems, but their function is uncertain because the in-situ structural network among ISRP, ray parenchyma, and tracheids has not been evaluated. Analysis of water distribution in ISRP from sapwood to heartwood is needed to elucidate the function of ISRP in sapwood, intermediate wood, and heartwood. ? Methods: We used cryo-scanning electron microscopy, x-ray photography, and water content measurement in xylem to analyze the presence of liquids in ISRP, ray parenchyma, and tracheids from sapwood to heartwood in Cryptomeria japonica (Cupressaceae). ? Key results: In sapwood, almost all ISRP were empty. "Cingulate-cavitated regions", which lose water along the tangential direction within one annual ring, formed in the earlywood tracheids, and their frequency increased toward the inner annual rings, whereas ray parenchyma cells were alive and not involved in the partial cavitation. In intermediate wood, almost all ISRP and earlywood tracheids and many of the ray cells were empty, and only some latewood tracheids retained liquid in their lumina. The ISRP were connected with tracheids via gas-filled ray parenchyma cells. ? Conclusions: The ISRP work as a pathway of gas for aspiration of ray parenchyma cells in sapwood. On the other hand, the occurrence of a gas network between ISRP, ray parenchyma, and tracheids facilitates cavitation of tracheids, resulting in the generation of low-moisture, intermediate wood.  相似文献   

15.
Position-resolved small-angle X-ray scattering was used to investigate the nanostructure of the wood cell wall in two softwood species (Norwegian spruce and Scots pine) and two hardwood species (pedunculate oak and copper beech). The tilt angle of the cellulose fibrils in the wood cell wall versus the longitudinal cell axis (microfibril angle) was systematically studied over a wide range of annual rings in each tree. The measured angles were correlated with the distance from the pith and the results were compared. The microfibril angle was found to decrease from pith to bark in all four trees, but was generally higher in the softwood than in the hardwood. In Norwegian spruce, the microfibril angles were higher in late wood than in early wood; in Scots pine the opposite was observed. In pedunculate oak and copper beech, low angles were found in the major part of the stem, except for the very first annual rings in pedunculate oak. The results are interpreted in terms of mechanical optimization. An attempt was made to give a quantitative estimation for the mechanical constraints imposed on a tree of given dimensions and to establish a model that could explain the general decrease of microfibril angles from pith to bark.  相似文献   

16.
The aim of this study was to investigate bending stiffness and compression strength perpendicular to the grain of Norway spruce (Picea abies (L.) Karst.) trunkwood with different anatomical and hydraulic properties. Hydraulically less safe mature sapwood had bigger hydraulic lumen diameters and higher specific hydraulic conductivities than hydraulically safer juvenile wood. Bending stiffness (MOE) was higher, whereas radial compression strength lower in mature than in juvenile wood. A density-based tradeoff between MOE and hydraulic efficiency was apparent in mature wood only. Across cambial age, bending stiffness did not compromise hydraulic efficiency due to variation in latewood percent and because of the structural demands of the tree top (e.g. high flexibility). Radial compression strength compromised, however, hydraulic efficiency because it was extremely dependent on the characteristics of the “weakest” wood part, the highly conductive earlywood. An increase in conduit wall reinforcement of earlywood tracheids would be too costly for the tree. Increasing radial compression strength by modification of microfibril angles or ray cell number could result in a decrease of MOE, which would negatively affect the trunk’s capability to support the crown. We propose that radial compression strength could be an easily assessable and highly predictive parameter for the resistance against implosion or vulnerability to cavitation across conifer species, which should be topic of further studies.  相似文献   

17.
The dual function provided by longitudinal tracheids in conifers has led to a generally held trade-off concept that increasing wall thickness and/or volume of latewood tracheids improves mechanical support, while increasing cell diameter and/or volume of earlywood tracheids enhances conductive potential. Yet, some conifers have either uniform cell structure across the growth ring or, at most, a small amount of latewood. How do these trees accomplish the needs for increasing support and conduction with height growth? We examined Metasequoia glyptostroboides, a species that we previously demonstrated improves its mechanical properties with increasing age without a change in specific gravity or secondary wall microfibril angle. In this paper, we showed that lignin and extractive contents are not contributing factors, and through composite structure analysis, we eliminated a role for tracheid length. Using micromorphometric analysis, we demonstrated that as cell diameter increases, total primary wall decreases, secondary wall increases, and strength and conductive capacity increase with no change in specific gravity. Meta-analysis using other species of Cupressaceae, Podocarpaceae, and Araucariaceae provided strong corroborative evidence for this design strategy.  相似文献   

18.
Since the 1960s, several new attempts have been made to improve the management of single prokaryotic cells using micromanipulator techniques. In order to facilitate the isolation of pure cultures we have recently developed an improved micromanipulation method for routine work. With the aid of this method single prokaryotic cells can be picked out of a mixed community under direct visual control. The isolated aerobic or anaerobic cells can be grown in pure culture or can be subjected to single cell PCR. Other powerful and completely new approaches are the applications of laser micromanipulation systems, such as optical tweezers or laser microdissection techniques. Of the latter two methods only optical tweezers have been successfully applied to cloning prokaryotic cells.  相似文献   

19.
Relationships between the elemental composition, the microfibril angle (MFA) distribution and the average shape of the cell cross-section of irrigated-fertilised and untreated Norway spruce (Picea abies [L.] Karst.) earlywood were studied. Sample material was obtained from Flakaliden, Sweden. The elemental composition was studied by determining the relative mass fractions of the elements P, S, Cl, K, Ca and Mn by X-ray fluorescence and by determining the mass absorption coefficients for X-rays. X-ray diffraction was used to determine the MFA distribution and the average shape of the cell cross-section. The latter was also determined by light microscopy. In transition from juvenile wood to mature wood, a decrease of the mode of the MFA distribution from 13°–24° to 3°–6° was connected to a change in the shape of the cell cross-section from circular to rectangular. The irrigation-fertilisation treatment caused no change in the MFA distribution or in the shape of the cell cross-section, whereas the mass absorption coefficient was higher and the density was smaller in irrigated-fertilised wood. Larger proportion of the elements S, Cl and K, but smaller proportion of the element Mn, were observed due to the treatment. The results indicate that the shape of the cell cross-section or the MFA distribution are not directly linked to the growth rate of tracheids or to the nutrient-element content in the xylem and only show notable changes as a function of the cambial age.  相似文献   

20.
Wood formation is a complex biological process, involving five major developmental steps, including (1) cell division from a secondary meristem called the vascular cambium, (2) cell expansion (cell elongation and radial enlargement), (3) secondary cell wall deposition, (4) programmed cell death, and (5) heartwood formation. Thanks to the development of genomic studies in woody species, as well as genetic engineering, recent progress has been made in the understanding of the molecular mechanisms underlying wood formation. In this review, we will focus on two different aspects, the lignification process and the control of microfibril angle in the cell wall of wood fibres, as they are both key features of wood material properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号