首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
A group of dual specificity protein phosphatases negatively regulates members of the mitogen-activated protein kinase (MAPK) superfamily, which consists of three major subfamilies, MAPK/extracellular signal-regulated kinase (ERK), stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), and p38. Nine members of this group of dual specificity phosphatases have previously been cloned. They show distinct substrate specificities for MAPKs, different tissue distribution and subcellular localization, and different modes of inducibility of their expression by extracellular stimuli. Here we have cloned and characterized a novel dual specificity phosphatase, which we have designated MKP-5. MKP-5 is a protein of 482 amino acids with a calculated molecular mass of 52.6 kDa and consists of 150 N-terminal amino acids of unknown function, two Cdc25 homology 2 regions in the middle, and a C-terminal catalytic domain. MKP-5 binds to p38 and SAPK/JNK, but not to MAPK/ERK, and inactivates p38 and SAPK/JNK, but not MAPK/ERK. p38 is a preferred substrate. The subcellular localization of MKP-5 is unique; it is present evenly in both the cytoplasm and the nucleus. MKP-5 mRNA is widely expressed in various tissues and organs, and its expression in cultured cells is elevated by stress stimuli. These results suggest that MKP-5 is a novel type of dual specificity phosphatase specific for p38 and SAPK/JNK.  相似文献   

5.
Human beta1,3-glucuronyltransferase I (GlcAT-I) is a central enzyme in the initial steps of proteoglycan synthesis. GlcAT-I transfers a glucuronic acid moiety from the uridine diphosphate-glucuronic acid (UDP-GlcUA) to the common linkage region trisaccharide Gal beta 1-3Gal beta 1-4Xyl covalently bound to a Ser residue at the glycosaminylglycan attachment site of proteoglycans. We have now determined the crystal structure of GlcAT-1 at 2.3 A in the presence of the donor substrate product UDP, the catalytic Mn(2+) ion, and the acceptor substrate analog Gal beta 1-3Gal beta 1-4Xyl. The enzyme is a alpha/beta protein with two subdomains that constitute the donor and acceptor substrate binding site. The active site residues lie in a cleft extending across both subdomains in which the trisaccharide molecule is oriented perpendicular to the UDP. Residues Glu(227), Asp(252), and Glu(281) dictate the binding orientation of the terminal Gal-2 moiety. Residue Glu(281) is in position to function as a catalytic base by deprotonating the incoming 3-hydroxyl group of the acceptor. The conserved DXD motif (Asp(194), Asp(195), Asp(196)) has direct interaction with the ribose of the UDP molecule as well as with the Mn(2+) ion. The key residues involved in substrate binding and catalysis are conserved in the glucuronyltransferase family as well as other glycosyltransferases.  相似文献   

6.
Ko JH  Kim BG  Hur HG  Lim Y  Ahn JH 《Plant cell reports》2006,25(7):741-746
Secondary plant metabolites undergo several modification reactions, including glycosylation. Glycosylation, which is mediated by UDP-glycosyltransferase (UGT), plays a role in the storage of secondary metabolites and in defending plants against stress. In this study, we cloned one of the glycosyltransferases from rice, RUGT-5 resulting in 40–42% sequence homology with UGTs from other plants. RUGT-5 was functionally expressed as a glutathione S-transferase fusion protein in Escherichia coli and was then purified. Eight different flavonoids were used as tentative substrates. HPLC profiling of reaction products displayed at least two peaks. Glycosylation positions were located at the hydroxyl groups at C-3, C-7 or C-4′ flavonoid positions. The most efficient substrate was kaempferol, followed by apigenin, genistein and luteolin, in that order. According to in vitro results and the composition of rice flavonoids the in vivo substrate of RUGT-5 was predicted to be kaempferol or apigenin. To our knowledge, this is the first time that the function of a rice UGT has been characterized.  相似文献   

7.
A partial-length human cDNA with a predicted amino acid sequence homologous to a previously described heparan sulfate iduronyl 2-sulfotransferase (Kobayashi, M., Habuchi, H., Yoneda, M., Habuchi, O., and Kimata, K. (1997) J. Biol. Chem. 272, 13980-13985) was obtained by searching the expressed sequence-tagged data bank. Northern blot analysis was performed using this homologous cDNA as a probe, which demonstrated ubiquitous expression of messages of 5.1 and 2.0 kilobases in a number of human tissues and in several human cancer cell lines. Since the human lymphoma Raji cell line had the highest level of expression, it was used to isolate a full-length cDNA clone. The full-length cDNA was found to contain an open reading frame that predicted a type II transmembrane protein composed of 406 amino acid residues. The cDNA in a baculovirus expression vector was expressed in Sf9 insect cells, and cell extracts were then incubated together with 3'-phosphoadenosine 5'-phospho[35S]sulfate and potential glycosaminoglycan acceptors. This demonstrated substantial sulfotransferase activity with dermatan sulfate, a small degree of activity with chondroitin sulfate, but no sulfotransferase activity with desulfated N-resulfated heparin. Analysis of [35S]sulfate-labeled disaccharide products of chondroitin ABC, chondroitin AC, and chondroitin B lyase treatment demonstrated that the enzyme only transferred sulfate to the 2-position of uronyl residues, which were preponderantly iduronyl residues in dermatan sulfate, but some lesser transfer to glucuronyl residues of chondroitin sulfate.  相似文献   

8.
A cDNA clone coding for a membrane proteoglycan core protein was isolated from a neonatal rat Schwann cell cDNA library by screening with an oligonucleotide based on a conserved sequence in cDNAs coding for previously described proteoglycan core proteins. Primer extension and polymerase chain reaction amplification were used to obtain additional 5' protein coding sequences. The deduced amino acid sequence predicted a 353 amino acid polypeptide with a single membrane spanning segment and a 34 amino acid hydrophilic COOH-terminal cytoplasmic domain. The putative extracellular domain contains three potential glycosaminoglycan attachment sites, as well as a domain rich in Thr and Pro residues. Analysis of the cDNA and deduced amino acid sequences revealed a high degree of identity with the transmembrane and cytoplasmic domains of previously described proteoglycans but a unique extracellular domain sequence. On Northern blots the cDNA hybridized to a single 5.6-kb mRNA that was present in Schwann cells, neonatal rat brain, rat heart, and rat smooth muscle cells. A 16-kD protein fragment encoded by the cDNA was expressed in bacteria and used to immunize rabbits. The resulting antibodies reacted on immunoblots with the core protein of a detergent extracted heparan sulfate proteoglycan. The core protein had an apparent mass of 120 kD. When the anti-core protein antibodies were used to stain tissue sections immunoreactivity was present in peripheral nerve, newborn rat brain, heart, aorta, and other neonatal tissues. A ribonuclease protection assay was used to quantitate levels of the core protein mRNA. High levels were found in neonatal rat brain, heart, and Schwann cells. The mRNA was barely detectable in neonatal or adult liver, or adult brain.  相似文献   

9.
10.
11.
12.
Li X  Ji C  Gu J  Xu J  Jin Z  Sun L  Zou X  Lin Y  Sun R  Wang P  Gu S  Mao Y 《Molecular biology reports》2005,32(2):127-131
Triple-A syndrome (MIM 231550; also known as Allgrove syndrome) is an autosomal recessive disorder characterized by adrenocorticotropin hormone (ACTH)-resistant adrenal insufficiency, achalasia of the oesophageal cardia and alacrima. Much initial molecular analysis supported that Triple-A syndrome was caused by mutations in AAAS, a WD-repeat protein gene. Here we report cloning and characterization of a novel splice variant of human AAAS, which we named AAAS-v2, which is located on the human chromosome 12p13. The cDNA is 1703bp, encoding a 513-amino acid polypeptide, which contains three WD40 domains, one less than the original which we called AAAS-v1 (Gen Bank: NM_015665.3). RT-PCR analysis in our work revealed that AAAS-v2 and AAAS-v1 were ubiquitously detected in human multiple tissue cDNA (MTC) panels (CLONTECH).The nucleotide sequence reported in this paper has been submitted to GenBank under accession number AY237818.Xin Li: These two authors contributed equally to this paper.Chaoneng Ji: These two authors contributed equally to this paper.  相似文献   

13.
A full-length cDNA encoding a novel protein was isolated and sequenced from a human hepatocellular cDNA library. This cDNA consists of 7037 base pairs and has a predicted open reading frame encoding 1924 amino acids. It possesses an RNA-helicase motif containing a DEXH-box in its amino-terminus and an RNase motif in the carboxy-terminus. From a striking homology to Caenorhabditis elegans K12H4.8, it might be a human homolog of the K12H4.8. PCR-based mapping with both a monochromosomal hybrid panel and radiation hybrid cell panels placed the gene to human chromosome 14q31 near the marker D14S605.  相似文献   

14.
15.
We have identified a human chondroitin synthase from the HUGE (human unidentified gene-encoded large proteins) protein data base by screening with two keywords: "one transmembrane domain" and "galactosyltransferase family." The identified protein consists of 802 amino acids with a type II transmembrane protein topology. The protein showed weak homology to the beta1,3-galactosyltransferase family on the amino-terminal side and to the beta1,4-galactosyltransferase family on the carboxyl-terminal side. The expression of a soluble recombinant form of the protein in COS-1 cells produced an active enzyme, which transferred not only the glucuronic acid (GlcUA) from UDP-[(14)C]GlcUA but also N-acetylgalactosamine (GalNAc) from UDP-[(3)H]GalNAc to the polymer chondroitin. Identification of the reaction products demonstrated that the enzyme was chondroitin synthase, with both beta1,3-GlcUA transferase and beta1,4-GalNAc transferase activities. The coding region of the chondroitin synthase was divided into three discrete exons and localized to chromosome 15. Northern blot analysis revealed that the chondroitin synthase gene exhibited ubiquitous but markedly differential expression in the human tissues examined. Thus, we demonstrated that analogous to human heparan sulfate polymerases, the single polypeptide chondroitin synthase possesses two glycosyltransferase activities required for chain polymerization.  相似文献   

16.
17.
18.
19.
20.
Reversible phosphorylation is recognized to be a major mechanism for the control of intracellular events in eukaryotic cells. From a human fetal brain cDNA library, we isolated a cDNA clone encoding a novel dual specificity protein phosphatase, which showed 88% identity with previously reported mouse LMW-DSP3 at the amino acid level. The deduced protein had a single dual-specificity phosphatase catalytic domain, and lacked a cdc25 homology domain. LMW-DSP3 was expressed in the heart, lung, liver, and pancreas, and the expression level in the pancreas was highest. The LMW-DSP3 gene was located in human chromosome 2q32, and consisted of five exons spanning 21kb of human genomic DNA. LMW-DSP3 fused to GST showed phosphatase activity towards p-nitrophenyl phosphate which was optimal at pH 7.0 and 40 degrees C, and the activity was enhanced by Ca(2+) and Mn(2+). The phosphatase activity of LMW-DSP3 was inhibited by orthovanate. LMW-DSP3 showed phosphatase activity toward oligopeptides containing pSer/Thr and pTyr, indicating that LMW-DSP3 is a protein phosphatase with dual substrate specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号