首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Slow type I fibers in soleus and fast white (IIa/IIx, IIx), fast red (IIa), and slow red (I) fibers in gastrocnemius were examined electron microscopically and physiologically from pre- and postflight biopsies of four astronauts from the 17-day, Life and Microgravity Sciences Spacelab Shuttle Transport System-78 mission. At 2.5-microm sarcomere length, thick filament density is approximately 1,012 filaments/microm(2) in all fiber types and unchanged by spaceflight. In preflight aldehyde-fixed biopsies, gastrocnemius fibers possess higher percentages (approximately 23%) of short thin filaments than soleus (9%). In type I fibers, spaceflight increases short, thin filament content from 9 to 24% in soleus and from 26 to 31% in gastrocnemius. Thick and thin filament spacing is wider at short sarcomere lengths. The Z-band lattice is also expanded, except for soleus type I fibers with presumably stiffer Z bands. Thin filament packing density correlates directly with specific tension for gastrocnemius fibers but not soleus. Thin filament density is inversely related to shortening velocity in all fibers. Thin filament structural variation contributes to the functional diversity of normal and spaceflight-unloaded muscles.  相似文献   

2.
To clarify the extensibility of thin actin and thick myosin filaments in muscle, we examined the spacings of actin and myosin filament-based reflections in x-ray diffraction patterns at high resolution during isometric contraction of frog skeletal muscles and steady lengthening of the active muscles using synchrotron radiation as an intense x-ray source and a storage phosphor plate as a high sensitivity, high resolution area detector. Spacing of the actin meridional reflection at approximately 1/2.7 nm-1, which corresponds to the axial rise per actin subunit in the thin filament, increased about 0.25% during isometric contraction of muscles at full overlap length of thick and thin filaments. The changes in muscles stretched to approximately half overlap of the filaments, when they were scaled linearly up to the full isometric tension, gave an increase of approximately 0.3%. Conversely, the spacing decreased by approximately 0.1% upon activation of muscles at nonoverlap length. Slow stretching of a contracting muscle increased tension and increased this spacing over the isometric contraction value. Scaled up to a 100% tension increase, this corresponds to a approximately 0.26% additional change, consistent with that of the initial isometric contraction. Taken together, the extensibility of the actin filament amounts to 3-4 nm of elongation when a muscle switches from relaxation to maximum isometric contraction. Axial spacings of the layer-line reflections at approximately 1/5.1 nm-1 and approximately 1/5.9 nm-1 corresponding to the pitches of the right- and left-handed genetic helices of the actin filament, showed similar changes to that of the meridional reflection during isometric contraction of muscles at full overlap. The spacing changes of these reflections, which also depend on the mechanical load on the muscle, indicate that elongation is accompanied by slight changes of the actin helical structure possibly because of the axial force exerted by the actomyosin cross-bridges. Additional small spacing changes of the myosin meridional reflections during length changes applied to contracting muscles represented an increase of approximately 0.26% (scaled up to a 100% tension increase) in the myosin periodicity, suggesting that such spacing changes correspond to a tension-related extension of the myosin filaments. Elongation of the myosin filament backbone amounts to approximately 2.1 nm per half sarcomere. The results indicate that a large part (approximately 70%) of the sarcomere compliance of an active muscle is caused by the extensibility of the actin and myosin filaments; 42% of the compliance resides in the actin filaments, and 27% of it is in the myosin filaments.  相似文献   

3.
Single skinned fibers from soleus and adductor longus (AL) muscles of weight-bearing control rats and rats after 14-day hindlimb suspension unloading (HSU) were studied physiologically and ultrastructurally to investigate how slow fibers increase shortening velocity (V0) without fast myosin. We hypothesized that unloading and shortening of soleus during HSU reduces densities of thin filaments, generating wider myofilament separations that increase V0 and decrease specific tension (kN/m2). During HSU, plantarflexion shortened soleus working length 23%. AL length was unchanged. Both muscles atrophied as shown by reductions in fiber cross-sectional area. For AL, the 60% atrophy accounted fully for the 58% decrease in absolute tension (mN). In the soleus, the 67% decline in absolute tension resulted from 58% atrophy plus a 17% reduction in specific tension. Soleus fibers exhibited a 25% reduction in thin filaments, whereas there was no change in AL thin filament density. Loss of thin filaments is consistent with reduced cross bridge formation, explaining the fall in specific tension. V0 increased 27% in soleus but was unchanged in AL. The V0 of control and HSU fibers was inversely correlated (R = –0.83) with thin filament density and directly correlated (R = 0.78) with thick-to-thin filament spacing distance in a nonlinear fashion. These data indicate that reduction in thin filament density contributes to an increased V0 in slow fibers. Osmotically compacting myofilaments with 5% dextran returned density, spacing, and specific tension and slowed V0 to near-control levels and provided evidence for myofilament spacing modulating tension and V0. rat; soleus; adductor longus; fiber length; electron microscopy; hindlimb suspension unloading  相似文献   

4.
The mechanical compliance (reciprocal of stiffness) of thin filaments was estimated from the relative compliance of single, skinned muscle fibers in rigor at sarcomere lengths between 1.8 and 2.4 micron. The compliance of the fibers was calculated as the ratio of sarcomere length change to tension change during imposition of repetitive cycles of small stretches and releases. Fiber compliance decreased as the sarcomere length was decreased below 2.4 micron. The compliance of the thin filaments could be estimated from this decrement because in this range of lengths overlap between the thick and thin filaments is complete and all of the myosin heads bind to the thin filament in rigor. Thus, the compliance of the overlap region of the sarcomere is constant as length is changed and the decrease in fiber compliance is due to decrease of the nonoverlap length of the thin filaments (the I band). The compliance value obtained for the thin filaments implies that at 2.4-microns sarcomere length, the thin filaments contribute approximately 55% of the total sarcomere compliance. Considering that the sarcomeres are approximately 1.25-fold more compliant in active isometric contractions than in rigor, the thin filaments contribute approximately 44% to sarcomere compliance during isometric contraction.  相似文献   

5.
Step changes in length (between -3 and +5 nm per half-sarcomere) were imposed on isolated muscle fibers at the plateau of an isometric tetanus (tension T0) and on the same fibers in rigor after permeabilization of the sarcolemma, to determine stiffness of the half-sarcomere in the two conditions. To identify the contribution of actin filaments to the total half-sarcomere compliance (C), measurements were made at sarcomere lengths between 2.00 and 2.15 microm, where the number of myosin cross-bridges in the region of overlap between the myosin filament and the actin filament remains constant, and only the length of the nonoverlapped region of the actin filament changes with sarcomere length. At 2.1 microm sarcomere length, C was 3.9 nm T0(-1) in active isometric contraction and 2.6 nm T0(-1) in rigor. The actin filament compliance, estimated from the slope of the relation between C and sarcomere length, was 2.3 nm microm(-1) T0(-1). Recent x-ray diffraction experiments suggest that the myosin filament compliance is 1.3 nm microm(-1) T0(-1). With these values for filament compliance, the difference in half-sarcomere compliance between isometric contraction and rigor indicates that the fraction of myosin cross-bridges attached to actin in isometric contraction is not larger than 0.43, assuming that cross-bridge elasticity is the same in isometric contraction and rigor.  相似文献   

6.
Titin (also known as connectin) is a giant filamentous protein whose elastic properties greatly contribute to the passive force in muscle. In the sarcomere, the elastic I-band segment of titin may interact with the thin filaments, possibly affecting the molecule's elastic behavior. Indeed, several studies have indicated that interactions between titin and actin occur in vitro and may occur in the sarcomere as well. To explore the properties of titin alone, one must first eliminate the modulating effect of the thin filaments by selectively removing them. In the present work, thin filaments were selectively removed from the cardiac myocyte by using a gelsolin fragment. Partial extraction left behind approximately 100-nm-long thin filaments protruding from the Z-line, whereas the rest of the I-band became devoid of thin filaments, exposing titin. By applying a much more extensive gelsolin treatment, we also removed the remaining short thin filaments near the Z-line. After extraction, the extensibility of titin was studied by using immunoelectron microscopy, and the passive force-sarcomere length relation was determined by using mechanical techniques. Titin's regional extensibility was not detectably affected by partial thin-filament extraction. Passive force, on the other hand, was reduced at sarcomere lengths longer than approximately 2.1 microm, with a 33 +/- 9% reduction at 2.6 microm. After a complete extraction, the slack sarcomere length was reduced to approximately 1.7 microm. The segment of titin near the Z-line, which is otherwise inextensible, collapsed toward the Z-line in sarcomeres shorter than approximately 2.0 microm, but it was extended in sarcomeres longer than approximately 2.3 microm. Passive force became elevated at sarcomere lengths between approximately 1.7 and approximately 2.1 microm, but was reduced at sarcomere lengths of >2.3 microm. These changes can be accounted for by modeling titin as two wormlike chains in series, one of which increases its contour length by recruitment of the titin segment near the Z-line into the elastic pool.  相似文献   

7.
Sartorius muscles from the green tree frog Hyla cerulea were set at variety of muscle lengths and fixed for electron microscopy using acrolein followed by osmium tetroxide. The sarcomere length, s, was determined in thick sections using laser-diffraction. The Z-disk lattice spacing, z, was measured in electron micrographs of thin sections from the same muscles. The Z-disk lattice was found to expand as sarcomere length decreased such that the quantity sz2 was constant at 1-05 X 10(6) nm3 for all sarcomere lengths in the range 1-9-2-9 mum. Thus, the sarcomere length dependency of the Z-disk lattice is similar to that of the myosin filament lattice. The density of thin filaments per unit cross section of fibril leaving the Z-disk is less than their density in the A band. Thus, fibrils have a smaller cross section in the I band, leaving more inter-fibrillar space there. This may explain why more mitochondria and lipid droplets are located in the I bands than in the A bands. It is suggested that the Z-disk may contributed to the short range elasticity of muscle fibres.  相似文献   

8.
Thin filaments are not of uniform length in rat skeletal muscle   总被引:4,自引:4,他引:0       下载免费PDF全文
The variation in thin filament length was investigated in slow and fast muscle from adult and neonatal rats. Soleus (slow) muscle from adult, 3- , 7-, and 9-d-old rats, and extensor digitorum longus (EDL; fast) muscle from adult rats were serially cross-sectioned. The number of thin filaments per 0.06 microns2 (TF#) was counted for individual myofibrils followed from the H zone of one sarcomere, through the I-Z-I region, to the H zone of an adjacent sarcomere TF# was pooled by distance from the Z band or AI junction. In both adult muscles, thin filament length varied from 0.18 to 1.20 microns, with approximately 25% of the thin filaments less than 0.7 microns in length. In 7- and 9- d soleus, thin filament length ranged from 0.18 to 1.08 microns; except for the longest (0.18 to 1.20 microns) filaments, the distribution of thin filament lengths was similar to that in adult muscle. In 3-d soleus, thin filament length was more uniform, with less than 5% of the filaments shorter than 0.7 microns. In all neonatal muscles, there were approximately 15% fewer thin filaments per unit area as compared to adult muscles. We conclude: (a) In rat skeletal muscle, thin filaments are not of uniform length, ranging in length from 0.18 to 1.20 microns. (b) There may be two stages of thin filament assembly in neonatal muscle: between 3 and 7 d when short thin filaments may be preferentially or synthesized or inserted near the Z-band, and between 9 d and adult when thin filaments of all lengths may be synthesized or inserted into the myofibril.  相似文献   

9.
Titin and the sarcomere symmetry paradox   总被引:6,自引:0,他引:6  
Titin is thought to play a major role in myofibril assembly, elasticity and stability. A single molecule spans half the sarcomere and makes interactions with both a thick filament and the Z-line. In the unit cell structure of each half sarcomere there is one thick filament with 3-fold symmetry and two thin filaments with approximately 2-fold symmetry. The minimum number of titin molecules that could satisfy both these symmetries is 12. We determined the actual number of titin molecules in a unit cell from scanning transmission electron microscopy mass measurements of end-filaments. One of these emerges from each tip of the thick filament and is thought to be the in-register aggregate of the titin molecules associated with the filament. The mass per unit length of the end-filament (17.1 kDa/nm) is consistent with six titin molecules not 12. Thus the number of titin molecules present is insufficient to satisfy both symmetries. We suggest a novel solution to this paradox in which four of the six titin molecules interact with the two thin filaments in the unit cell, while the remaining two interact with the two thin filaments that enter the unit cell from the adjacent sarcomere. This arrangement would augment mechanical stability in the sarcomere.  相似文献   

10.
The extensibility of the myofilaments in vertebrate skeletal muscle was studied by stretching glycerinated rabbit psoas muscle fibers in rigor state and examining the resulting extension of sarcomere structures under an electron microscope. Although stretches applied to rigor fibers produced a successive yielding of the weakest sarcomeres, the length of the remaining intact sarcomeres in many myofibrils was fairly uniform, being definitely longer than the sarcomeres in the control, nonstretched part of rigor fibers. The stretch-induced increase in sarcomere length was found to be taken up by the extension of the H zone and the I band, whereas the amount of overlap between the thick and thin filaments did not change appreciably with stretches of 10-20%. The thick filament extension in the H zone was localized in the bare regions, whereas the thin filament extension in the I band appeared to take place uniformly along the filament length. No marked increase in the Z-line width was observed even with stretches of 20-30%. These results clearly demonstrate the extensibility of the thick and thin filaments. The possible contribution of the myofilament compliance to the series elastic component (SEC) in vertebrate skeletal muscle fibers is discussed on the basis of the electron microscopic data and the force-extension curve of the SEC in rigor fibers.  相似文献   

11.
Fine structural characteristics of the cardiac muscle and its sarcomere organization in the black widow spider, Latrodectus mactans were examined using transmission electron microscopy. The arrangement of cardiac muscle fibers was quite similar to that of skeletal muscle fibers, but they branched off at the ends and formed multiple connections with adjacent cells. Each cell contained multiple myofibrils and an extensive dyadic sarcotubular system consisting of sarcoplasmic reticulum and T‐tubules. Thin and thick myofilaments were highly organized in regular repetitive arrays and formed contractile sarcomeres. Each repeating band unit of the sarcomere had three apparent striations, but the H‐zone and M‐lines were not prominent. Myofilaments were arranged into distinct sarcomeres defined by adjacent Z‐lines with relatively short lengths of 2.0 μm to 3.3 μm. Cross sections of the A‐band showed hexagon‐like arrangement of thick filaments, but the orbit of thin filaments around each thick filament was different from that seen in other vertebrates. Although each thick filament was surrounded by 12 thin filaments, the filament ratio of thin and thick myofilaments varied from 3:1 to 5:1 because thin filaments were shared by adjacent thick filaments.  相似文献   

12.
The effect of increasing the osmotic strength of the extracellular solution on the fifament lattice of living frog sartorius and semitendinosus muscle has been studied using low-angle x-ray diffraction to measure the lattice spacing. As the extracellular osmotic strength is increased, the filament lattice shrinks like an osmometer until a minimal spacing between the thick filaments is reached. This minimal spacing varies from 20 to 31 nm, depending on the sarcomere length. Further increase in the osmotic strength produces little further shrinkage. The osmotic shrinkage curve indicates, for both muscles, an osmotically-inactive volume of approximately 30% of the volume in normal Ringer's solution. Shrinkage appears to be independent of temperature and the type of particle used to increase the osmotic strength (glucose, sucrose, small ions). The rate at which osmotic equilibruim is reached depends on muscle size, being slower for greater muscle diameters. Equilibrium spacings are approached exponentially with time constants ranging from 20 to 60 min. Independent of osmotic equilibrium, the lattice tends to shrink slowly by approximately 3% over the first few hours after dissection, probably because of a leakage of K+ ions from inside the muscle cells. This can be partly prevented by using an extracellular solution which contains a higher concentration of K+ ions or which is hypoosmotic. The volume of the muscle filament lattice (1.155d10(2) . S) is constant over a very wide range of sarcomere lengths, and is equal to approximately 3.6 x 10(6) nm3 for a range of amphibian muscle types.  相似文献   

13.
Repulsive pressure in the A-band filament lattice of relaxed frog skeletal muscle has been measured as a function of interfilament spacing using an osmotic shrinking technique. Much improved chemical skinning was obtained when the muscles were equilibrated in the presence of EGTA before skinning. The lattice shrank with increasing external osmotic pressure. At any specific pressure, the lattice spacing in relaxed muscle was smaller than that of muscle in rigor, except at low pressures where the reverse was found. The lattice spacing was the same in the two states at a spacing close to that found in vivo. The data were consistent with an electrostatic repulsion over most of the pressure range. For relaxed muscle, the data lay close to electrostatic pressure curves for a thick filament charge diameter of approximately 26 nm, suggesting that charges stabilizing the lattice are situated about midway along the thick filament projections (HMM-S1). At low pressures, observed spacings were larger than calculated, consistent with the idea that thick filament projections move away from the filament backbone. Under all conditions studied, relaxed and rigor, at short and very long sarcomere lengths, the filament lattice could be modeled by assuming a repulsive electrostatic pressure, a weak attractive pressure, and a radial stiffness of the thick filaments (projections) that differed between relaxed and rigor conditions. Each thick filament projection could be compressed by approximately 5 or 2.6 nm requiring a force of 1.3 or 80 pN for relaxed and rigor conditions respectively.  相似文献   

14.
Changes in the 1.0 lattice spacing during trypsin (0.25 micrograms/ml) treatment in mechanically skinned single fibers of frog muscle was examined by an x-ray diffraction method at various sarcomere lengths. The resting tension of a relaxed fiber was decreased by trypsin treatment but the stiffness of a rigor fiber was not, suggesting that elastic components were selectively digested. With progression of the digestion, the lattice spacing increased remarkably at longer sarcomere lengths and finally became independent of the sarcomere length. The increase in the lattice spacing was proportional to the decrease in the resting tension. These results support our previous suggestion (Higuchi, H., and Y. Umazume, 1986, Biophys. J., 50:385-389) that the lattice spacing decreases at long lengths due to compressive force exerted by a lateral elastic component that connects thick filaments to an axial elastic component. Consequently, it is unlikely that the decrease in the lattice spacing is determined by a decrease in the repulsive force between thick and thin filaments with stretching a fiber.  相似文献   

15.
Classic interpretations of the striated muscle length–tension curve focus on how force varies with overlap of thin (actin) and thick (myosin) filaments. New models of sarcomere geometry and experiments with skinned synchronous insect flight muscle suggest that changes in the radial distance between the actin and myosin filaments, the filament lattice spacing, are responsible for between 20% and 50% of the change in force seen between sarcomere lengths of 1.4 and 3.4 µm. Thus, lattice spacing is a significant force regulator, increasing the slope of muscle''s force–length dependence.  相似文献   

16.
The structure of the cross-striated adductor muscle of the scallop has been studied by electron microscopy and X-ray diffraction using living relaxed, glycerol-extracted (rigor), fixed and dried muscles. The thick filaments are arranged in a hexagonal lattice whose size varies with sarcomere length so as to maintain a constant lattice volume. In the overlap region there are approximately 12 thin filaments about each thick filament and these are arranged in a partially disordered lattice similar to that found in other invertebrate muscles, giving a thin-to-thick filament ratio in this region of 6:1.The thin filaments, which contain actin and tropomyosin, are about 1 μm long and the actin subunits are arranged on a helix of pitch 2 × 38.5 nm. The thick filaments, which contain myosin and paramyosin, are about 1.76 μm long and have a backbone diameter of about 21 nm. We propose that these filaments have a core of paramyosin about 6 nm in diameter, around which the myosin molecules pack. In living relaxed muscle, the projecting myosin heads are symmetrically arranged. The data are consistent with a six-stranded helix, each strand having a pitch of 290 nm. The projections along the strands each correspond to the heads of one or two myosin molecules and occur at alternating intervals of 13 and 16 nm. In rigor muscle these projections move away from the backbone and attach to the thin filaments.In both living and dried muscle, alternate planes of thick filaments are staggered longitudinally relative to each other by about 7.2 nm. This gives rise to a body-centred orthorhombic lattice with a unit cell twice the volume of the basic filament lattice.  相似文献   

17.
Changes in thick filament length in Limulus striated muscle   总被引:4,自引:4,他引:0       下载免费PDF全文
Here we describe the change in thick filament length in striated muscle of Limulus, the horseshoe crab. Long thick filaments (4.0 microns) are isolated from living, unstimulated Limulus striated muscle while those isolated from either electrically or K+-stimulated fibers are significantly shorter (3.1 microns) (P less than 0.001). Filaments isolated from muscle glycerinated at long sarcomere lengths are long (4.4 microns) while those isolated from muscle glycerinated at short sarcomere lengths are short (2.9 microns) and the difference is significant (P less than 0.001). Thin filaments are 2.4 microns in length. The shortening of thick filaments is related to the wide range of sarcomere lengths exhibited by Limulus telson striated muscle.  相似文献   

18.
To investigate how beta-stimulation affects the contractility of cardiac muscle, x-ray diffraction from cardiac muscle in the left ventricular free wall of a mouse heart was recorded in vivo. To our knowledge, this is the first x-ray diffraction study on a heart in a living body. After the R wave in electrocardiograms, the ratio of the intensities of the equatorial (1,0) and (1,1) reflections decreased for approximately 50 ms from a diastolic value of 2.1 to a minimum of 0.8, and then recovered. The spacing of the (1,0) lattice planes increased for approximately 90 ms from a diastolic value of 37.2 nm to a maximum of 39.1 nm, and then returned to the diastolic level, corresponding to approximately 10% stretch of sarcomere. Stimulation of beta-adrenergic receptor by dobutamine (20 microg/kg/min) accelerated both the decrease in the intensity ratio, which reached a smaller systolic value, and the increase in the lattice spacing. However, the intensity ratio and spacing at the end-diastole were unchanged. The recovery of the lattice spacing during relaxation was also accelerated. The mass transfer to the thin filaments at systole in a beta-stimulated heart was close to the peak value in twitch of frog skeletal muscle at 4 degrees C, showing that the majority of cross-bridges have been recruited with few in reserve.  相似文献   

19.
The repulsive pressure between filaments in the lattice of skinned rabbit and frog striated muscle in rigor has been measured as a function of interfilament spacing, using the osmotic pressure generated by solutions of large, uncharged polymeric molecules (dextran and polyvinylpyrrolidone). The pressure/spacing measurements have been compared with theoretically derived curves for electrostatic pressure. In both muscles, the major part of the experimental curves (100-2,000 torr) lies in the same region as the electrostatic pressure curves, providing that a thick filament charge diameter of approximately 30 nm in rabbit and approximately 26 nm in frog is assumed. In chemically skinned or glycerol-extracted rabbit muscle the fit is good; in chemically skinned frog sartorius and semitendinosus muscle the fit is poor, particularly at lower pressures where a greater spacing is observed than expected on theoretical grounds. The charge diameter is much larger than the generally accepted value for thick filament backbone diameter. This may be because electron microscope results have underestimated the amount of filament shrinkage during sample preparation, or because most of the filament charge is located at some distance from the backbone surface, e.g., on HMM-S2. Decreasing the ionic strength of the external solution, changing the pH, and varying the sarcomere length all give pressure/spacing changes similar to those expected from electrostatic pressure calculations. We conclude that over most of the external pressure range studied, repulsive pressure in the lattice is predominantly electrostatic.  相似文献   

20.
L A Tskhovrebova 《Biofizika》1990,35(2):312-316
Structural features of the Z-line were examined in negative stained rabbit psoas myofibrils. The data obtained allow to conclude that: 1) the amount of overlap of actin-containing filaments from apposing sarcomeres is about 50 nm; 2) there are five bands of extra density separated by the distances approximately 20 nm across entire Z-line width, and three central of these bands are localized in the actin overlap region; 3) the axial repeating distance between Z-filament attachment sites on thin filament is found to be 17-20 nm. A model for the array of cross-bridges between action-containing filaments in Z-line is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号