首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human neutrophils (PMN) activated by N-formyl-methionyl-leucyl-phenylalanine (fMLP) simultaneously release nitric oxide (.NO), superoxide anion (O2-) and its dismutation product, hydrogen peroxide (H2O2). To assess whether NO production shares common steps with the activation of the NADPH oxidase, PMN were treated with inhibitors and antagonists of intracellular signaling pathways and subsequently stimulated either with fMLP or with a phorbol ester (PMA). The G-protein inhibitor, pertussis toxin (1-10 μg/ml) decreased H2O2 yield without significantly changing. NO production in fMLP-stimulated neutrophils; no effects were observed in PMA-activated cells. The inhibition of tyrosine kinases by genistein (1-25 μg/ml) completely abolished H2O2 release by fMLP-activated neutrophils; conversely, NO production increased about 1.5- and 3-fold with fMLP and PMA, respectively. Accordingly, orthovanadate, an inhibitor of phosphotyrosine phosphatase, markedly decreased -NO production and increased O2;- release. On the other hand, inhibition of protein kinase C with staurosporine and the use of burst antagonists like adenosine, cholera toxin or dibutyryl-cAMP diminished both H2O2 and NO production. The results suggest that the activation of the tyrosine kinase pathway in stimulated human neutrophils controls positively O2- and H2O2 generation and simultaneously maintains -NO production in low levels. In contrast, activation of protein kinase C is a positive modulator for O2;-and *NO production.  相似文献   

2.
Norathyriol, aglycone of a xanthone C-glycoside mangiferin isolated from Tripterospermum lanceolatum, concentration dependently inhibited the formylmethionyl-leucyl-phenylalanine (fMLP)-induced superoxide anion (O2˙−) generation and O2 consumption in rat neutrophils. In cell-free oxygen radical generating system, norathyriol inhibited the O2˙− generation during dihydroxyfumaric acid (DHF) autoxidation and in hypoxanthine-xanthine oxidase system. fMLP-induced transient elevation of [Ca2+]i and the formation of inositol trisphosphate (IP3) were significantly inhibited by norathyriol (30 μM) (about 30 and 46% inhibition, respectively). Norathyriol concentration dependently suppressed the neutrophil cytosolic phospholipase C (PLC). In contrast with the marked attenuation of fMLP-induced protein tyrosine phosphorylation (about 70% inhibition at 10 μM norathyriol), norathyriol only slightly modulated the phospholipase D (PLD) activity as determined by the formation of phosphatidic acid (PA) and, in the presence of ethanol, phosphatidylethanol (PEt). Norathyriol did not modulate the intracellular cyclic AMP level. In the presence of NADPH, the phorbol 12-myristate 13-acetate (PMA)-activated particulate NADPH oxidase activity was suppressed by norathyriol in a concentration-dependent manner and the inhibition was noncompetitive with respect to NADPH. Norathyriol inhibited the iodonitrotetrazolium violet (INT) reduction in arachidonic acid (AA)-activated cell-free NADPH oxidase system at the same concentration range as those used in the suppression of PMA-activated particulate NADPH oxidase activity. Taken together, these results suggest that the scavenging ability of norathyriol contributes to the reduction of generated O2˙−, however, the inhibition of O2˙− generation from neutrophils by norathyriol is attributed to the blockade of PLC pathway, the attenuation of protein tyrosine phosphorylation, and to the suppression of NADPH oxidase through the interruption of electrons transport.  相似文献   

3.
P  l Wiik 《Regulatory peptides》1988,20(4):323-333
The effect of agonists on VIP receptor regulation has been investigated in mononuclear human blood leucocytes. VIP receptor number and affinity, as well as VIP-stimulated cyclic AMP accumulation were measured after pretreatment with VIP, PHM-27 or secretin. Pretreatment for 30 min with 0.1 μM VIP caused 28% (S.E.M. = 15) reduction in specific binding, and 52% (S.E.M. = 12) reduction in cyclic AMP accumulation, while 3 h of pretreatment caused 59% (S.E.M. = 10) and 68% (S.E.M. = 12) reduction. Only VIP concentrations at the nanomolar level and higher were shown to have any effect. Bmax of the high-affinity receptor was reduced by 66% (S.E.M. = 8) after 30 min, and 95% (S.E.M. = 3) after 3 h of exposure to 0.1 μM VIP. No significant change was observed in receptor affinity, in Bmax of the low-affinity receptor, in ED50, or in ED100 of VIP-stimulated cyclic AMP accumulation. Pretreatment with PHM-27 (0.1 μM, 3 h) caused 24% reduction in [125I]VIP binding and 25% reduction in cyclic AMP accumulation, while no effect was detected after pretreatment with secretin (0.1 μM, 3 h).  相似文献   

4.
Superoxide anions (O2.−) generated by the reaction of xanthine with xanthine oxidase were measured by the reduction of cytochrome c and by electron paramagnetic resonance (EPR) spectroscopy using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). Studies were performed to determine the relative sensitivities of these two techniques for the measurement of O2.−. Mixtures of xanthine, xanthine oxidase, DMPO generated two adducts, a transient DMPO-OOH and a smaller but longer-lived DMPO-OH. Both adducts were inhibited by superoxide dismutase (SOD), demonstrating they originated from O2.−, and were also significantly decreased when the experiments were performed using unchelated buffers, suggesting that metal ion impurities in unchelated buffers alter the formation or degradation of DMPO-adducts. O2.−, generated by concentrations of xanthine as low as 0.05 μM, were detectable using EPR spin trapping. In contrast, mixtures of xanthine, xanthine oxidase, and cytochrome c measured spectrophotometrically at 550 nm demonstrated that concentrations of xanthine above 1 μM were required to produce measurable levels of reduced cytochrome c. These studies demonstrate that spin trapping using DMPO was at least 20-fold more sensitive than the reduction of cytochrome c for the measurement of superoxide anions. However, at levels of superoxide generation where cytochrome c provides a linear measurement of production, EPR spin trapping may underestimate radical production, probably due to degradation of DMPO radical adducts.  相似文献   

5.
A series of aliphatic and aromatic trifluoromethyl ketones has been tested as inhibitors of the antennal esterases of the Egyptian armyworm Spodoptera littoralis, by evaluation of the extent of hydrolysis of [1-3H]-(Z,E)-9, 11-tetradecadienyl acetate (1), a tritiated analog of the major component of the sex pheromone. The most active compounds with a long chain aliphatic structure were 3-octylthio-1,1,1-trifluoropropan-2-one (2) (IC50 0.55 μM) and 1,1,1-trifluorotetradecan-2-one (4) (IC50 1.16 μM). The aromatic compounds were generally less potent inhbitors than the coressponding aromatic ones, although β-naphthyltrifuloromethyl ketone (10) exhibited a remarkable inhibitory activity (IC50 7.9 μM). Compounds 2, 4 and 10 exhibit a competitive inhibition with Ki values of 2.51×10−5 M, 2.98×10−5 M and 2.49×10−4 M, respectively. Some of the trifluoromethyl ketones tested were slow-binding inhibitors and compounds 2 and 10 are described as inhibitors of the antennal esterases of a moth for the first time.  相似文献   

6.
Regulation of the increase in inositol phosphate (IP) production and intracellular Ca2+ concentration ([Ca2+]i by protein kinase C (PKC) was investigated in cultured rat vascular smooth muscle cells (VSMCs). Pretreatment of VSMCs with phorbol 12-myristate 14-acetate (PMA, 1 μM) for 30 min almost abolished the BK-induced IP formation and Ca2+ mobilisation. This inhibition was reduced after incubating the cells with PMA for 4 h, and within 24 h the BK-induced responses were greater than those of control cells. The concentrations of PMA giving a half-maximal (pEC50) and maximal inhibition of BK induced an increase in [Ca2+]i, were 7.8 ± 0.3 M and 1 μM, n = 8, respectively. Prior treatment of VSMCs with staurosporine (1 μM), a PKC inhibitor, inhibited the ability of PMA to attenuate BK-induced responses, suggesting that the inhibitory effect of PMA is mediated through the activation of PKC. Paralleling the effect of PMA on the BK-induced IP formation and Ca2+ mobilisation, the translocation and downregulation of PKC isozymes were determined by Western blotting with antibodies against different PKC isozymes. The results revealed that treatment of the cells with PMA for various times, translocation of PKC-, βI, βII, δ, ε, and ζ isozymes from the cytosol to the membrane were seen after 5 min, 30 min, 2 h, and 4 h of treatment. However, 24-h treatment caused a partial downregulation of these PKC isozymes in both fractions. Treatment of VSMCs with 1 μM PMA for either 1 or 24 h did not significantly change the KD and Bmax of the BK receptor for binding (control: KD = 1.7 ± 0.2 nM; Bmax = 47.3 ± 4.4 fmol/mg protein), indicating that BK receptors are not a site for the inhibitory effect of PMA on BK-induced responses. In conclusion, these resuts demonstrate that translocation of PKC-, βI, βII, δ, ε, and ζ induced by PMA caused an attenuation of BK-induced IPs accumulation and Ca2+ mobilisation in VSMCs.  相似文献   

7.
4β-Phorbol 12-myrisate 13-acetate (PMA), a tumour-promoting phorbol ester, and 1-oleoly-2-acetylglycerol (OAG), a synthetic diacylglycerol, induced an inhibition of muscarinic and 1-adrenergic receptor-mediated stimulation of PIP2 breakdown and IPs accumulation in both rabbit retinal slices and primary retinal cultures. Furthermore, an increase in [Ca2+]i, mediated by activation of these receptors in 3–5 and 25–30 day old rabbit retinal cultures, was also inhibited by PMA. Neither PMA nor OAG had an effect on the serotonin-mediated PIP2 breakdown, IPs accumulation or Ca2+ mobilization. Although A23187 also stimulated IPs formation by acting directly on phospholipase C, PMA had no effect. Maximal inhibition of the carbachol- and noradrenaline-mediated responses was achieved with a 15 min preincubation with PMA at concentrations of 0.1 and 0.01 μM in retinal slices and primary retinal cultures, respectively. Neither PMA nor OAG influenced the basal levels of phosphoinositides, IPs or [Ca2]i. In addition, the inactive phorbol ester, 4-phorbol 12,13-didecanoate, had no effect on any of the agonist-induced responses. Staurosporine, a potent inhibitor of protein kinase C, significantly attenuated the inhibitory effects exerted by PMA and OAG. These results suggest that calcium- and phospholipid-dependent protein kinase, which is activated by either PMA or OAG, exert inhibitory effects on muscarinic and 1-adrenergic responses. This modulatory feedback “down regulation” role by PKC does not, however, affect serotonergic mediated responses, and thus exhibits a certain selectivity about the site of action. The possible mechanism(s) by which PKC induces its actions are discussed.  相似文献   

8.
Hamamelitannin, which is a component of bark extract of hamamelis (Hamamelis virginior L.), was found to be a potent scavenger of superoxide anion radicals. Superoxide anion scavenging activity of the compound was evaluated by ESR-spin trap method using DMPO (5,5'-dimethyl-1-pyrroline-N-oxide) as a spin trapping agent. The IC50 value (the concentration producing 50% inhibition of superoxide anion radicals) of hamamelitannin was found to be 1.38 ± 0.06 μM much lower than that of ascorbic acid (23.31 ± 2.23 μM). Supporting the superoxide scavenging activity of hamamelitannin, the compound showed both suppresive ability against depolymelization of hyaluronic acid and protective ability against cytotoxicity induced by superoxide anion radicals. Hamamelitannin increased the survival rate of fibroblast to 85.5 ± 3.3%, compared with that of control (27.2 ± 4.3%).  相似文献   

9.
To determine whether centrally released vasopressin influences thirst, observations of osmotic thirst threshold, osmotic load excretion and postloading restitution of plasma osmolality were made in dogs in control experiments and during infusion of AVP antagonists into the third ventricle. Significant elevation of osmotic thirst threshold was elicited by infusion of d(CH2)5AVP at a rate of 0.2–2.0 μg·min−1 and of d(Et2)AVP at a rate of 0.3 μg·min−1 (V1 antagonists, weak V2 agonists) as well as by administration of d(CH2)5[D-Ile2,Abu4]AVP at a rate of 0.4 μg·min−1 (potent V2 antagonist, weak V1 antagonist). Administration of d(CH2)5AVP at a rate of 2.0 μg·min−1 was associated with a significant suppression of the postloading water intake and osmotic load excretion and with a delay in restitution of plasma osmolality. These findings indicate that centrally released vasopressin may participate in the control of thirst.  相似文献   

10.
Analogy with the isolable oxo cluster [Fe3(CO)93-O)]2−, which is structurally interesting and synthetically useful, prompted the present attempt to synthesize its ruthenium analog. Although the high reactivity of [Ru3(CO)93-O)]2− (I) prevented its isolation, the reaction of this species with [M(CO)3(NCCH3)]+, where M = Mn or Re, yields [PPN][MRu3(CO)1223-NC(μ-O)CH3]. The high nucleophilicity of the oxo ligand in [Ru3(CO)93-O)]2− (I) appears to be responsible for the conversion of acetonitrile to an acetamidediato ligand and for the instability of I. The crystal structure of [PPN][MnRu3(CO)1223-NC(μ-O)CH3)]] reveals a hinged butterfly array of metal atoms in which the acetamidediato ligand bridges the two wings with μ3-N bonding to an Mn and two Ru atoms, and μ-O bonding to an Ru atom.  相似文献   

11.
Previous research has shown that lactate dehydrogenase (LDH) was competitively inhibited by pentachlorophenol (PCP) and a modified assay produced a detection limit of 1 μM (270 μg l−1). This work used spectrophotometric rate-determination but in order to move towards biosensor development the selected detection method was electrochemical. The linkage of LDH to lactate oxidase (LOD) provided the electroactive species, hydrogen peroxide. This could be monitored using a screen-printed carbon electrode (SPCE) incorporating the mediator, cobalt phthalocyanine, at a potential of +300 mV (vs. Ag/AgCl). A linked LDH/LOD system was optimised with respect to inhibition by PCP. It was found that the SPCE support material, PVC, acted to reduce inhibition, possibly by combining with PCP. A cellulose acetate membrane removed this effect. Inhibition of the system was greatest at enzyme activities of 5 U ml−1 LDH and 0.8 U ml−1 LOD in reactions containing 246 μM pyruvate and 7.5 μM NADPH. PCP detection limits were an EC10 of 800 nM (213 μg l−1) and a minimum inhibition detectable (MID) limit of 650 nM (173 μg l−1). The inclusion of a third enzyme, glucose dehydrogenase (GDH), provided cofactor recycling to enable low concentrations of NADPH to be incorporated within the assay. NADPH was reduced from 7.5 to 2 μM. PCP detection limits were obtained for an assay containing 5 U ml−1 LDH, 0.8 U ml−1 LOD and 0.1 U ml−1 GDH with 246 μM pyruvate, 400 mM glucose and 2 μM NADPH. The EC10 limit was 150 nM (39.9 μg l−1) and the MID was 100 nM (26.6 μg l−1). The design of the inhibition assays discussed has significance as a model for other enzymes and moves forward the possibility of an electrochemical biosensor array for pollution monitoring.  相似文献   

12.
The inhibitor of oxidative phosphorylation tri-n-butyltin chloride (TBTC) causes membrane damage and disintegration of isolated rat thymocytes at concentrations higher than 1 μM. From a concentration of 0.1 μM, TBTC disturbs energy metabolism as indicated by an increase in methylglucose uptake, glucose consumption and lactate production and by a decrease in cellular ATP levels. Over the same TBTC concentration range, the incorporation of DNA, RNA and protein precursors are markedly reduced. Moreover the production of cyclic AMP upon stimulation of the cells with prostaglandin E1 is effectively inhibited. These effects cannot be explained by an inhibition of nucleoside kinase activity, amino acid uptake or adenylate cyclase activity. The effects of TBTC on macromolecular synthesis and cyclic AMP production are possibly due to a disturbance of the cellular energy state.  相似文献   

13.
Gary Bailin   《BBA》1977,462(3):689-699
A human skeletal actin · tropomyosin · troponin complex was phosphorylated in the presence of [γ-32P]ATP, Mg2+, adenosine 3′:5′-monophosphate (cyclic AMP) and cyclic AMP-dependent protein kinase (protein kinase). Phosphorylation was not observed when the actin complex was incubated in the absence of protein kinase or 1 μM cyclic AMP. In the presence of 10−7 M Ca2+ and protein kinase 0.1 mole of [32P]phosphate per 196 000 g of protein was incorporated. This was two-fold higher than the [32P]phosphate content of a rabbit skeletal actin complex but two-fold lower than that of a bovine cardiac actin complex. At high Ca2+, 5 · 10−5 M, little change in the phosphorylation of a human skeletal actin complex occurred. Phosphoserine and phosphothreonine were identified in the [32P]phosphorylated actin complex. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate showed that 60% of the label was associated with the tropomyosin binding component of troponin. The inhibitory component of troponin contained 16% of the bound [32P]phosphate. Increasing the Ca2+ concentration did not significantly decrease the [32P]phosphate content of the phosphorylated proteins in the actin complex. No change in the distribution of phosphoserine or phosphothreonine was observed. Half maximal calcium activation of the ATPase activity of reconstituted human skeletal actomyosin made with the [32P]phosphorylated human skeletal actin complex was the same as a reconstituted actomyosin made with an actin complex incubated in the absence of protein kinase at low or high Ca2+.  相似文献   

14.
Abstract: In astrocytes, thrombin and thrombin receptor-activating activating peptide (TRAP-14), a 14-amino-acid agonist of the proteolytic activating receptor for thrombin (PART), significantly increased cell division as assessed by [3H]thymidine incorporation into DNA (EC50 = 1 n M and +650% at 100 n M for thrombin; EC50 = 3 µ M and +600% at 100 µ M for TRAP-14) and nerve growth factor (NGF) secretion (approximately twofold at 100 n M thrombin or 100 µ M TRAP-14). The [3H]thymidine incorporation was prevented by protein kinase C inhibitors (staurosporine and H7) or by down-regulation of this enzyme by chronic exposure of astrocytes to phorbol 12-myristate 13-acetate (PMA). Thrombin-induced NGF secretion was completely inhibited by protein kinase C inhibitors. Treatment with PMA stimulated NGF secretion 19-fold, and this effect was not further enhanced by thrombin. These data suggest an absolute requirement of protein kinase C activity for thrombin-induced NGF secretion and cell division. Pretreatment of astrocytes with pertussis toxin (PTX) reduced thrombin- and TRAP-14-induced DNA synthesis. PART activation caused a decrease in forskolin-stimulated cyclic AMP accumulation. PTX treatment prevented the inhibitory effect of PART activation on cyclic AMP accumulation, suggesting that a PTX-sensitive G protein, such as Gi or Go, is involved in thrombin-induced cell division. In contrast, thrombin-induced NGF secretion was not inhibited by PTX. Finally, the protein tyrosine kinase inhibitor herbimycin A partially but significantly prevented thrombin- and TRAP-14-induced cell division but was without effect on NGF secretion. Taken together, these results demonstrate that, in astrocytes, PART(s)-triggered cell division or NGF secretion is mediated by distinct transduction mechanisms.  相似文献   

15.
O2 generation in mitochondrial electron transport systems, especially the NADPH-coenzyme Q10 oxidoreductase system, was examined using a model system, NADPH-coenzyme Q1-NADPH-dependent cytochrome P-450 reductase. One electron reduction of coenzyme Q1 produces coenzyme Q1 and O2 during enzyme-catalyzed reduction and O2 + coenzyme Q1 are in equilibrium with O2 + coenzyme Q1 in the presence of enough O2. The coenzyme Q1 produced can be completely eliminated by superoxide dismutase, identical to bound coenzyme Q10 radical produced in a succinate/fumarate couple-KCN-submitochondrial system in the presence of O2. Superoxide dismutase promotes electron transfer from reduced enzyme to coenzyme Q1 by the rapid dismutation of O2 generated, thereby preventing the reduction of coenzyme Q1 by O2. The enzymatic reduction of coenzyme Q1 to coenzyme Q1H2 via coenzyme Q1 is smoothly achieved under anaerobic conditions. The rate of coenzyme Q1H2 autoxidation is extremely slow, i.e., second-order constant for [O2][coenzyme Q1H2] = 1.5 M−1 · s−1 at 258 μM O2, pH 7.5 and 25°C.  相似文献   

16.
W K Pollock  S O Sage  T J Rink 《FEBS letters》1987,210(2):132-136
We investigated the restoration of [Ca2+]i in fura-2-loaded human platelets following discharge of internal Ca2+ stores in the absence of external Ca2+. After stimulation by thrombin [Ca2+]i returned from a peak level of 0.6 μM to resting levels within 4 min. When ionomycin discharged the internal stores the recovery was slower with [Ca2+]i still elevated at around 0.5 μM after 5 min. Thrombin added shortly after ionomycin could accelerate the recovery of [Ca2+]i and restore resting levels within 5 min, an effect that was mimicked by phorbol-12-myristate-13-acetate (PMA). Since the continued presence of ionomycin precluded reuptake into the internal stores we conclude that thrombin and PMA stimulate Ca2+ efflux, perhaps via protein kinase C actions on a plasma membrane Ca2+ pump.  相似文献   

17.
Cyclic voltammetry at potential range − 1.1 to 0.5 V from aqueous buffer solution (pH 7) containing CoCl2 produced a well defined cobalt oxide (CoOx) nanoparticles deposited on the surface of glassy carbon electrode. The morphology of the modified surface and cobalt oxide formation was examined with SEM and cyclic voltammetry techniques. Hemoglobin (Hb) was successfully immobilized in cobalt-oxide nanoparticles modified glassy carbon electrode. Immobilization of hemoglobin onto cobalt oxide nanoparticles have been investigated by cyclic voltammetry and UV–visible spectroscopy. The entrapped protein can take direct electron transfer in cobalt-oxide film. A pair of well defined, quasi-reversible cyclic voltammetric peaks at about − 0.08 V vs. SCE (pH 7), characteristic of heme redox couple (Fe(III)/Fe(II)) of hemoglobin, and the response showed surface controlled electrode process. The dependence of formal potential (E0′) on the solution pH (56 mV pH− 1) indicated that the direct electron transfer reaction of hemoglobin was a one-electron transfer coupled with a one proton transfer reaction process. The average surface coverage of Hb immobilized on the cobalt oxide nanoparticles was about 5.2536 × 10− 11 mol cm− 2, indicating high loading ability of nanoparticles for hemoglobin entrapment. The heterogeneous electron transfer rate constant (ks) was 1.43 s− 1, indicating great of facilitation of the electron transfer between Hb and electrodeposited cobalt oxide nanoparticles. Modified electrode exhibits a remarkable electrocatalytic activity for the reduction of hydrogen peroxide and oxygen. The Michaels–Menten constant Km of 0.38 mM, indicating that the Hb immobilized onto cobalt oxide film retained its peroxidases activity. The biosensor exhibited a fast amperometric response < 5 s, a linear response over a wide concentration range 5 μM to 700 μM and a low detection limit 0.5 μM. According to the direct electron transfer property and enhanced activity of Hb in cobalt oxide film, a third generation reagentless biosensor without using any electron transfer mediator or specific reagent can be constructed for determination of hydrogen peroxide in anaerobic solutions.  相似文献   

18.
Human peripheral blood polymorphonuclear leukocytes were preincubated with cystathionine and cystathionine metabolites found in the urine of patients with cystathioninuria. Among the cystathionine metabolites, cystathionine ketimine and N-acetyl-S-(3-oxo-3-carboxy-n-propyl) cysteine (NAc-OCPC) significantly enhanced the N-formylmethionylleucylphenylalanine (fMLP)-induced superoxide generation, but cystathionine, NAc-cystathionine, and cyclothionine did not enhance the superoxide generation. Cystathionine ketimine and NAc-OCPC also enhanced superoxide generation induced by opsonized zymosan (OZ) but not that induced by arachidonic acid (AA) and phorbol 12-myristate 13-acetate (PMA). Superoxide generation induced by cystathionine ketimine and NAc-OCPC was inhibited by genistein, an inhibitor of tyrosine kinase, and was enhanced by 1-(5-isoquinoline sulfonyl)-2-methylpiperazine (H-7), an inhibitor of protein kinase C. Cystathionine ketimine and NAc-OCPC markedly also increased phosphorylation of 45-kDa protein in human neutrophils and the phosphorylation depended on the concentrations of cystathionine ketimine and NAc-OCPC. The phosphorylation of 45-kDa protein induced by cystathionine ketimine and NAc-OCPC was inhibited by genistein and herbimycin A, inhibitors of tyrosine kinase, but was not inhibited by H-7 and staurosporine, inhibitors of protein kinase C. Cystathionine metabolites and l-cystathionine sulfoxides were separated into two diastereoisomers, CS-I and CS-II. CS-I enhanced the superoxide generation induced by AA and PMA but not that induced by fMLP and OZ. In contrast, CS-II enhanced the superoxide generation induced by fMLP and OZ, but not that induced by AA and PMA.  相似文献   

19.
20.
Metathesis of [(η33−C10H16)Ru(Cl) (μ−Cl)]2 (1) with [R3P) (Cl)M(μ-Cl)]2 (M = Pd, Pt), [Me2NCH2C6H4Pd(μ-Cl)]2 and [(OC)2Rh(μ-Cl)]2 affords the heterobimetallic chloro bridged complexes (η33-C10H16) (Cl)Ru(μ-Cl)2M(PR3)(Cl) (M = Pd, Pt), (η33-C10H16) (Cl)Ru(μ-Cl)2PdC6H4CH2NMe2 and (η33-C10H16) (Cl)Ru(μ-Cl)2Rh(CO)2, respectively. Complex 1 reacts with [Cp*M(Cl) (μ-Cl)]2 (M = Rh, Ir), [p-cymene Ru(Cl) (μ-Cl]2 and [(Cy3P)Cu(μ-Cl)]2 to give an equilibrium of the heterobimetallic complexes and of educts. The structures of (η33-C10H16)Ru(μ-Cl)2Pd(PR3) (Cl) (R = Et, Bu) and of one diastereoisomer of (η33-C10H16)Ru(μ-Cl)2IrCp*(Cl) were determined by X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号