首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 548 毫秒
1.
Methanohalophilus strain Z7302 was previously isolated from a hypersaline environment and grows over a range of NaCl concentrations from 1.7 to 4.4 M. We examined the relationships between cell growth rate, cell volume, and intracellular solute concentrations with increasing salinity. This extremely halophilic methanogen synthesized three zwitterionic compounds, beta-glutamine, N epsilon-acetyl-beta-lysine, and glycine betaine, and also accumulated potassium ion as compatible solutes to balance the external and internal osmotic pressures. Potassium and glycine betaine were the predominant compatible solutes when Methanohalophilus strain Z7302 was grown at high external NaCl concentrations and approached intracellular levels of 3 and 4 M, respectively.  相似文献   

2.
Methanohalophilus strain FDF1, a member of the halophilic genus of methanogens, can grow over a range of external NaCl concentrations from 1.2 to 2.9 M and utilize methanol, trimethylamine, and dimethyl sulfide as substrates for methanogenesis. It produces the osmolytes glycine betaine, beta-glutamine, and N-acetyl-beta-lysine with increasing external NaCl, but the relative ratio of these zwitterions depends primarily on the methanogenic substrate and less on the external osmolarity. When the cells are grown on methanol in defined medium, accumulation of glycine betaine predominates over the other zwitterionic solutes. The cells also synthesized a carbohydrate which was not detected in cells grown on trimethylamine. This negatively charged compound, identified as alpha-glucosylglycerate from the C and H chemical shifts, does not act as an osmoregulatory solute in the salt range 1.4 to 2.7 M in this methanogen as evidenced by its invariant intracellular concentration. CH(3)OH-pulse/CH(3)OH-chase experiments were used to determine half-lifes for these organic solute pools in the cells. l-alpha-Glutamate showed a rapid loss of heavy isotope, indicating that l-alpha-glutamate functions as a biosynthetic intermediate in these cells. Measurable turnover rates for both beta-glutamine, which acts as an osmolyte, and alpha-glucosylglycerate suggest that they function as metabolic intermediates as well. Molecules which function solely as osmolytes (glycine betaine and N-acetyl-beta-lysine) showed a slower turnover consistent with their roles as osmotic solutes in Methanohalophilus strain FDF1.  相似文献   

3.
Accumulation of compatible solutes, by uptake or de novo synthesis, enables bacteria to reduce the difference between osmotic potentials of the cell cytoplasm and the extracellular environment. To examine this process in the halophilic and halotolerant methanogenic archaebacteria, 14 strains were tested for the accumulation of compatible solutes in response to growth in various extracellular concentrations of NaCl. In external NaCl concentrations of 0.7 to 3.4 M, the halophilic methanogens accumulated K+ ion and low-molecular-weight organic compounds. beta-Glutamate was detected in two halotolerant strains that grew below 1.5 M NaCl. Two unusual beta-amino acids, N epsilon-acetyl-beta-lysine and beta-glutamine (3-aminoglutaramic acid), as well as L-alpha-glutamate were compatible solutes among all of these strains. De novo synthesis of glycine betaine was also detected in several strains of moderately and extremely halophilic methanogens. The zwitterionic compounds (beta-glutamine, N epsilon-acetyl-beta-lysine, and glycine betaine) and potassium were the predominant compatible solutes among the moderately and extremely halophilic methanogens. This is the first report of beta-glutamine as a compatible solute and de novo biosynthesis of glycine betaine in the methanogenic archaebacteria.  相似文献   

4.
The extremely halophilic bacterium strain IC10 was isolated from a solar saltern on Isla Cristina (southern Spain). Phylogenetic, genotypic and phenotypic data supported the inclusion of this strain in the species Salicola marasensis. An analysis of intracellular organic osmotic solutes showed glycine betaine to be present, contributing to the overall osmotic balance, and this was the only compatible solute accumulated when S. marasensis IC10 was grown over a wide range of external NaCl concentrations (10–25%, w/v).  相似文献   

5.
The identity and concentrations of intracellular organic solutes were determined by nuclear magnetic resonance spectroscopy for two strains of aerobic, gram-negative bacteria isolated from Mono Lake, Calif., an alkaline, moderately hypersaline lake. Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) was the major endogenous solute in both organisms. Concentrations of ectoine varied with external NaCl levels in strain ML-D but not in strain ML-G, where the level was high but invariant from 1.5 to 3.0 M NaCl. Hydroxyectoine also occurred in strain ML-D, especially at elevated NaCl concentrations (2.5 and 3.0 M), but at levels lower than those of ectoine. Exogenous organic solutes that might occur in Mono Lake were examined for their effects on the de novo synthesis of ectoine. Dimethylsulfoniopropionate (DMSP) (0.1 or 1 mM) did not significantly lower ectoine levels in either isolate, and only strain ML-G showed any capacity for DMSP accumulation. With nitrogen limitation, however, DMSP (0.1 mM) substituted for ectoine in strain ML-G and became the main organic solute. Glycine betaine (GB) was more effective than DMSP in affecting ectoine levels, principally in strain ML-D. Strain ML-D accumulated GB to 50 or 67% of its organic solute pool at 2.5 M NaCl, at an external level of 0.1 or 1 mM GB, respectively. Strain ML-D also accumulated arsenobetaine. The methylated zwitterionic compounds, probably metabolic products of phytoplankton (DMSP and GB) or brine shrimps (arsenobetaine) in Mono Lake, may function as osmolytes for indigenous bacteria when present at high concentrations or under conditions of nitrogen limitation or salt stress.  相似文献   

6.
Nagata S  Wang YB 《Microbios》2001,104(407):7-15
The growth of a halotolerant Brevibacterium sp. JCM 6894 was examined in the presence of compatible solutes such as glycine betaine, ectoine (2-methyl-4-carboxy-3,4,5,6-tetrahydropyrimidine) and ectoine derivatives. The effect of competition between their uptake and synthesis in the cells was subjected to osmotic shift towards the higher salinity. Among each solute examined the supplement of ectoine or hydroxyectoine exhibited a remarkable stimulation on the growth of strain JCM 6894, regardless of the range of osmotic shifts, where the largest was 0-->2 M NaCl, the intermediate was 1-->2 M NaCl, and no shift was 2-->2 M NaCl. The growth rates of this strain were dependent on the amount of ectoine taken up, which was conspicuous for the largest osmotic shift and during the first few hours of incubation after transfer. The cells subjected to 1-->2 M NaCl and 2-->2 M NaCl transfers took up less ectoine and this resulted in lower growth rates than those of cells with the largest osmotic shift (0-->2 M NaCl). The role of other compatible solutes which accumulated is discussed in relation to growth stimulation of strain JCM 6894.  相似文献   

7.
The compatible solute hypothesis posits that maintaining osmotic equilibrium under conditions of high salinity requires synthesis of organic compounds, uptake of potassium ions, and partial exclusion of NaCl. To assess whether osmotic adaptation in Limonium latifolium proceeds according to this hypothesis, a comprehensive analysis of solute accumulation during NaCl treatments was conducted. Determination of prevailing inorganic ions and establishment of the metabolic profiles for low M(r) organic substances revealed that contrary to the mentioned hypothesis the major contributors to osmolarity were constituted by inorganic solutes. Independent of salinity, only 25% of this osmolarity resulted from organic solutes such as Suc and hexoses. Proline (Pro), beta-alanine betaine, and choline-O-sulfate were minor contributors to osmolarity. Compatible inositols also occurred, especially chiro-inositol, characterized for the first time in this species, to our knowledge. Principal component analysis showed that only a limited number of metabolic reconfigurations occurred in response to dynamic changes in salinity. Under such conditions only sugars, chiro-inositol, and Pro behave as active osmobalancers. Analysis of metabolic profiles during acclimatization to either mild salinity or nonsaline conditions showed that organic solute accumulation is predominantly controlled by constitutive developmental programs, some of which might be slightly modulated by salinity. Osmolarity provided under such conditions can be sufficient to maintain turgor in salinized seedlings. Compartmental analysis of Pro and beta-alanine betaine in leaf tissues demonstrated that these solutes, mainly located in vacuoles under nonsaline conditions, could be partly directed to the cytosol in response to salinization. Thus they did not conform with the predictions of the compatible solute hypothesis.  相似文献   

8.
DNA reassociation was used to determine levels of relatedness among four thermophilic Methanobacterium strains that are able to use formate and between these organisms and two representative strains of Methanobacterium thermoautotrophicum, strain delta HT (= DSM 1053T = ATCC 29096T) (T = type strain) and strain Marburg (= DSM 2133). Three homology groups were delineated, and these groups coincided with the clusters identified by antigenic fingerprinting. The first group, which had levels of cross hybridization that ranged from 73 to 99%, included M. thermoautotrophicum delta HT, Methanobacterium thermoformicicum Z-245, Methanobacterium sp. strain THF, and Methanobacterium sp. strain FTF. The second and third groups were each represented by only one strain, Methanobacterium sp. strain CB-12 and M. thermoautotrophicum Marburg, respectively (cross-hybridization levels, 13 to 30 and 29 to 33%, respectively). Our results indicate that the name M. thermoformicicum should be rejected as it is a synonym of M. thermoautotrophicum. The taxonomic positions of strains Marburg and CB-12 need further investigation.  相似文献   

9.
T Yagi 《Microbios》1992,70(283):93-102
The accumulation of glycerol and inorganic ions as it related to osmotic pressure, and the regulation of intracellular osmotic pressure in a salt-tolerant yeast, Zygosaccharomyces rouxii, were examined for several hours after salt stress. Intracellular contents of glycerol increased for up to 6 h in media supplemented with 1 M and 2 M NaCl and did not increase in medium containing 3 M NaCl. Intracellular contents of Na+ and Cl- reached a maximum value within 1 and 3 h, respectively, in all NaCl-containing media and increases were proportional to the concentration of NaCl in the medium. As glycerol was accumulated in cells, the intracellular contents of Na+ and Cl- gradually decreased in media containing 1 M and 2 M NaCl. After salt stress, cell volume decreased within 1 h and the original volume was re-established for 3 to 6 h in media with 1 M and 2 M NaCl but not in medium with 3 M NaCl. Intracellular concentrations of solutes, which were calculated from the total contents of glycerol and inorganic ions and the cell volume, became almost equivalent to the external osmotic pressure within 1 h after salt stress. Experiments using various inhibitors showed that a large amount of ATP was required not only for the synthesis and accumulation of glycerol but also for the exclusion of Na+ and Cl- from cells under salt-stressed conditions.  相似文献   

10.
Unlike most Lactobacillus acidophilus strains, a specific strain, L. acidophilus IFO 3532, was found to grow in rich medium containing 1 M sodium acetate, KCl, or NaCl. This strain could also grow with up to 1.8 M NaCl or 3 M nonelectrolytes (fructose, xylose, or sorbitol) added. Thus, this strain was tolerant to osmotic pressures up to 2.8 osM. A search for an intracellular solute which conferred osmoprotection led to the identification of glycine betaine (betaine). Betaine was accumulated to high concentrations in cells growing in MRS medium supplemented with 1 M KCl or NaCl. Uptake of [14C]betaine by L. acidophilus 3532 cells suspended in buffer was stimulated by increasing the medium osmotic pressure with 1 M KCl or NaCl. The accumulated betaine was not metabolized further; transport was relatively specific for betaine and was dependent on an energy source. Other lactobacilli, more osmosensitive than strain 3532, including L. acidophilus strain E4356, L. bulgaricus 8144, and L. delbrueckii 9649, showed lower betaine transport rates in response to an osmotic challenge than L. acidophilus 3532. Experiments with chloramphenicol-treated L. acidophilus 3532 cells indicated that the transport system was not induced but appeared to be activated by an increase in osmotic pressure.  相似文献   

11.
Salinivibrio costicola subsp. yaniae is a moderately halophilic bacterium which can grow over a wide range of salinity. In response to external osmotic stress (1-3 M NaCl), S. costicola subsp. yaniae can accumulate ectoine, glycine betaine, and glutamate as compatible solutes. We used suicide plasmids pSUP101 to introduce transposon Tn1732 into S. costicola subsp. yaniae via Escherichia coli SM10 mediated by conjugation. One Tn1732-induced mutant, MU1, which was very sensitive to the external salt concentration, was isolated. Mutant MU1 did not grow above 1.5 M NaCl and did not synthesize ectoine, but accumulated Ngamma-acetyldiaminobutyrate, an ectoine precursor, as confirmed by (1)H-NMR analysis. From these data, we concluded that ectoine performs a key role in osmotic adaptation towards high salinity environments in strain S. costicola subsp. yaniae.  相似文献   

12.
The synthesis and uptake of intracellular organic osmolytes (compatible solutes) were studied with the aid of natural abundance 13C NMR spectroscopy in two unrelated, moderately halophilic eubacteria: Ba1 and Vibrio costicola. In minimal media containing 1 M NaCl, both microorganisms synthesized the cyclic amino acid, 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (trivial name, ectoine) as the predominant compatible solute, provided that no glycine betaine was present in the growth medium. When, however, the minimal medium was supplemented with glycine betaine or the latter was a component of a complex medium, it was transported into the cells and the accumulating glycine betaine replaced the ectoine. In Ba1, grown in a defined medium containing glucose as the single carbon source, ectoine could only be detected if the NaCl concentration in the medium was higher than 0.6 M; the ectoine content increased with the external salt concentration. At NaCl concentrations below 0.6 M, alpha,alpha-trehalose was the major organic osmolyte. The concentration of ectoine reached its peak during the exponential phase and declined subsequently. In contrast, the accumulation of glycine betaine continued during the stationary phase. The results presented here indicate that, at least in the two microorganisms studied, ectoine plays an important role in haloadaptation.  相似文献   

13.
The inhibitory effect of NaCl on barley germination   总被引:2,自引:1,他引:1  
Abstract The possibility that the nature of the inhibitory effect of NaCl is different during imbibition compared to germination was investigated. Germination in both NaCl and betaine (a non-toxic solute) improved with pre-imbibition in water. Seeds imbibed in inhibitory concentrations of either solute could be induced to germinate by brief exposure to water. Electron micrographs of tissue from seeds imbibed in 0.5 kmol m?3 NaCl for 25 h showed cells identical to those in seeds imbibed in water for only 1 h, but seeds imbibed for 6 h in water exhibited many changes in ultrastructure. These results are consistent with the hypothesis that seed hydration must reach a critical value before germination can proceed, and that the inhibitory effect of NaCl is primarily osmotic in barley seeds that have not reached this hydration threshold. Although isotonic solutions of betaine and NaCl were equally inhibitory to germination, isotonic solutions of betaine and NaCl were not equally inhibitory to continued development in seeds which had been pre-imbibed in water. Calcium ions improved both germination and plumule emergence of pre-imbibed seeds in NaCl solutions, but calcium had little effect on pre-imbibed seeds placed in betaine. Very high concentrations of NaCl or betaine inhibited germination, but did not kill dry seeds. Both solutes, on the other hand, were lethal at high concentrations to germinating seeds. NaCl killed germinating seeds more rapidly than betaine, but calcium reduced the rate of killing to nearly that of betaine. We conclude that hydrated seeds are sensitive to both osmotic and toxic effects of NaCl and that calcium mitigates the toxic effect of NaCl, but not the osmotic effect.  相似文献   

14.
A variety of sulfur-containing compounds were investigated for use as medium reductants and sulfur sources for growth of four methanogenic bacteria. Sulfide (1 to 2 mM) served all methanogens investigated well. Methanococcus thermolithotrophicus and Methanobacterium thermoautotrophicum Marburg and delta H grew well with S0, SO3(2-), or thiosulfate as the sole sulfur source. Only Methanococcus thermolithotrophicus was able to grow with SO4(2-) as the sole sulfur source. 2-Mercaptoethanol at 20 mM was greatly inhibitory to growth of Methanococcus thermolithotrophicus on SO4(2-) or SO2(2-) and Methanobacterium thermoautotrophicum Marburg on SO3(2-) but not to growth of strain delta H on SO3(2-). Sulfite was metabolized during growth by Methanococcus thermolithotrophicus. Sulfide was produced in cultures of Methanococcus thermolithotrophicus growing on SO4(2-), SO3(2-), thiosulfate, and S0. Methanobacterium thermoautotrophicum Marburg was successfully grown in a 10-liter fermentor with S0, SO3(2-), or thiosulfate as the sole sulfur source.  相似文献   

15.
Assimilatory reduction of sulfate and sulfite by methanogenic bacteria   总被引:7,自引:0,他引:7  
A variety of sulfur-containing compounds were investigated for use as medium reductants and sulfur sources for growth of four methanogenic bacteria. Sulfide (1 to 2 mM) served all methanogens investigated well. Methanococcus thermolithotrophicus and Methanobacterium thermoautotrophicum Marburg and delta H grew well with S0, SO3(2-), or thiosulfate as the sole sulfur source. Only Methanococcus thermolithotrophicus was able to grow with SO4(2-) as the sole sulfur source. 2-Mercaptoethanol at 20 mM was greatly inhibitory to growth of Methanococcus thermolithotrophicus on SO4(2-) or SO2(2-) and Methanobacterium thermoautotrophicum Marburg on SO3(2-) but not to growth of strain delta H on SO3(2-). Sulfite was metabolized during growth by Methanococcus thermolithotrophicus. Sulfide was produced in cultures of Methanococcus thermolithotrophicus growing on SO4(2-), SO3(2-), thiosulfate, and S0. Methanobacterium thermoautotrophicum Marburg was successfully grown in a 10-liter fermentor with S0, SO3(2-), or thiosulfate as the sole sulfur source.  相似文献   

16.
A unique compound, cyclic 2,3-diphosphoglycerate (cDPG), is the major soluble carbon and phosphorus solute in Methanobacterium thermoautotrophicum delta H under optimal conditions of cell growth. It is a component of an unusual branch in gluconeogenesis in these bacteria. [U-13C]acetate pulse-[12C]acetate chase methodology was used to observe the relationship between cDPG and other metabolites (2-phosphoglycerate and 2,3-diphosphoglycerate [2-PG and 2,3-DPG, respectively]) of this branch. It was demonstrated that cells could grow exponentially under conditions in which 2-PG and 2,3-DPG, rather than cDPG, were the major solutes. While the total concentration of these three phosphorylated molecules was maintained, rapid interconversion of 13C label among them was observed. Label flow from 2-PG to 2,3-DPG to cDPG to polymer is the usual direction in this pathway in exponentially growing cells, while the reverse reactions sometimes predominate in the stationary phase. Evidence of the presence of a polymeric compound in this pathway was provided by 13C nuclear magnetic resonance (one-dimensional and two-dimensional INADEQUATE) studies of solubilized cell debris.  相似文献   

17.
A plasmid in the archaebacterium Methanobacterium thermoautotrophicum   总被引:16,自引:0,他引:16  
The archaebacterium Methanobacterium thermoautotrophicum Marburg (DSM 2133) was found to contain a plasmid (pME2001) in covalently closed circular form. It was isolated by CsCl gradient centrifugation of total DNA in the presence of ethidium bromide. Multimers up to the hexamer were observed upon agarose gel electrophoresis and electron microscopy of a purified plasmid preparation. A restriction map was constructed. The length of plasmid pME2001 was determined to be approximately 4,500 bp. Southern hybridization of plasmid DNA to DNA extracted from Methanobacterium thermoautotrophicum delta H (DSM1053) revealed the presence of a plasmid with homologous sequences in the delta H strain.  相似文献   

18.
A common cellular mechanism of osmotic-stress adaptation is the intracellular accumulation of organic solutes (osmolytes). We investigated the mechanism of osmotic adaptation in the diazotrophic bacteria Azotobacter chroococcum, Azospirillum brasilense, and Klebsiella pneumoniae, which are adversely affected by high osmotic strength (i.e., soil salinity and/or drought). We used natural-abundance 13C nuclear magnetic resonance spectroscopy to identify all the osmolytes accumulating in these strains during osmotic stress generated by 0.5 M NaCl. Evidence is presented for the accumulation of trehalose and glutamate in Azotobacter chroococcum ZSM4, proline and glutamate in Azospirillum brasilense SHS6, and trehalose and proline in K. pneumoniae. Glycine betaine was accumulated in all strains grown in culture media containing yeast extract as the sole nitrogen source. Alternative nitrogen sources (e.g., NH4Cl or casamino acids) in the culture medium did not result in measurable glycine betaine accumulation. We suggest that the mechanism of osmotic adaptation in these organisms entails the accumulation of osmolytes in hyperosmotically stressed cells resulting from either enhanced uptake from the medium (of glycine betaine, proline, and glutamate) or increased net biosynthesis (of trehalose, proline, and glutamate) or both. The preferred osmolyte in Azotobacter chroococcum ZSM4 shifted from glutamate to trehalose as a consequence of a prolonged osmotic stress. Also, the dominant osmolyte in Azospirillum brasilense SHS6 shifted from glutamate to proline accumulation as the osmotic strength of the medium increased.  相似文献   

19.
The gene for component A2 of the methylcoenzyme M reductase system from Methanobacterium thermoautotrophicum delta H was cloned, and its nucleotide sequence was determined. The gene for A2, designated atwA, encodes an acidic protein of 59,335 Da. Amino acid sequence analysis revealed partial homology of A2 to a number of eucaryotic and bacterial proteins in the ATP-binding cassette (ABC) family of transport systems. Component A2 possesses two ATP-binding domains. A 2.2-kb XmaI-BamHI fragment containing atwA and the surrounding open reading frames was cloned into pGEM-7Zf(+). A cell extract from this strain replaced purified A2 from M. thermoautotrophicum delta H in an in vitro methylreductase assay.  相似文献   

20.
We have examined the organic osmotic solutes content within the stratified microbial communities in an evaporitic gypsum crust found in an evaporation pond (~194 g/l total dissolved salts) of the salterns of the Israel Salt Company, Eilat. We extracted intracellular solutes from the upper three pigmented layers of the crust: a yellow-orange layer dominated by unicellular cyanobacteria, a green layer with filamentous cyanobacteria, and a layer colored red-purple by purple sulfur bacteria; dense communities of heterotrophic bacteria were present in all layers. The solutes were analyzed by Raman spectroscopy, 1H and 13C nuclear magnetic resonance, and HPLC. All layers contained glycine betaine as the only detectable osmotic solute; ectoine and other solutes known to be produced by many halophilic and halotolerant prokaryotes were not found. In this first attempt to assess the osmotic solute content within complex natural communities of halophilic microorganisms, the predominant role of glycine betaine as an osmolyte was established. Most heterotrophic bacteria cannot produce glycine betaine but preferentially use it when it is supplied. Presence of glycine betaine produced by the photoautotrophic members of the community, therefore, may relieve the heterotrophs from the need to synthesize other compounds at a high-energy cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号