首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mac-1 (CD 11b/CD18) is a leukocyte adhesion heterodimeric glycoprotein which functions both as a receptor for iC3b (CR3) and in several cell-cell and cell-substrate adhesive interactions. We describe full-length cDNA clones for the alpha subunit of Mac-1. Mac-1 alpha subunit message was detected in blood monocytes and phorbol-12-myristate acetate-induced myeloid cell lines, but not in cells of the T or B lineages, correlating with Mac-1 protein surface expression. The alpha subunit of Mac-1 is a transmembrane protein of 1137 residues with a long extracellular domain (1092 residues) and a 19-amino acid cytoplasmic tail. The extracellular domain contains three putative divalent cation-binding sequences and 19 potential N-glycosylation sites. The amino acid sequence of Mac-1 alpha shows that it is a member of the integrin superfamily; Mac-1 alpha shows 63% identity to the alpha subunit of the leukocyte adhesion glycoprotein p150.95 and 25% to the alpha subunits of the extracellular matrix receptors platelet glycoprotein IIb/IIIa, the fibronectin receptor, and the vitronectin receptor. The Mac-1 alpha subunit putative divalent cation-binding sites and the flanking regions exhibit a high degree of identity both to the p150.95 alpha subunit (87% identity at the amino acid level) and to the rest of the integrin alpha subunits (38%). The alpha subunit of Mac-1, like the p150.95 alpha subunit, contains a domain of 187 amino acids in the extracellular region which is absent in other integrins. This leukocyte or "L" domain is homologous to the A domains of von Willebrand factor, which in turn are homologous to regions of the C3-binding proteins factor B and C2. These findings draw attention to this region of Mac-1 as a potential binding site for iC3b.  相似文献   

2.
The disulfide reducing agents dithioerythreitol and dithiothreitol, but not oxidized dithiothreitol, induced polymorphonuclear neutrophils to adhere to endothelial cells or to plastic. Adherence was inhibited by monoclonal antibodies 60.1 and 60.3, which are directed to functional epitopes on the CD11b and CD18 polypeptides of the neutrophil membrane adhesion complex (Mac-1, Mo1). The increased adherence induced by the sulfhydryl reducing agents was not accompanied by increased expression of CD11b/CD18. These studies demonstrate that a qualitative alteration in CD11b/CD18 is sufficient to promote neutrophil adherence.  相似文献   

3.
The receptor on human neutrophils (polymorphonuclear leukocytes or PMN) that mediates cellular adherence has been purified from the peripheral blood PMN obtained from an individual with chronic myelogenous leukemia (CML). This receptor consists of two noncovalently associated subunits, designated alpha M (Mac-1 alpha, CD11b) (Mr = 170,000) and beta (Mac-1 beta, CDw18) (Mr = 100,000), respectively, which are identical on normal and CML PMN. The subunits were purified by monoclonal antibody 60.1-Sepharose (anti-alpha M) affinity chromatography and separated in 5-nmol quantities by high pressure liquid chromatography on a TSK-4000 gel filtration column. Subunits were characterized by amino acid composition, NH2-terminal amino acid sequence, and carbohydrate content. The NH2-terminal sequence of the human PMN alpha M subunit contains regions of homology with the human platelet glycoprotein IIb alpha. We conclude that nanomole amounts of individual alpha M and beta subunits of the receptor on human PMN that mediates cellular adherence can be isolated and separated using CML PMN.  相似文献   

4.
It has previously been shown that during degranulation Mac-1 (CD11b/CD18)--a glycoprotein that plays a central role in neutrophil adhesion-is up-regulated on PMN surfaces. It has been assumed that this quantitative change in adhesion Ag expression on the cell surface would in turn lead to increased cellular adhesiveness. In contrast, we found that at an incubation temperature of 16 degrees C, stimulated neutrophil adhesion to plastic tissue culture dishes in the presence of FMLP (2.5 x 10(-6) M), TNF (10 ng/ml), or PAF (1 x 10(-4) M) occurred without cellular degranulation or Mac-1 surface up-regulation as measured cytofluorometrically. As shown by functional inhibition studies employing monoclonal antibodies 60.3 (anti-CD18) and 60.1 (anti-CD11b), adhesion at 16 degrees C, where no CD11b/CD18 up-regulation was seen, is mediated by CD11b/CD18 just as it is at 37 degrees C, where degranulation and CD11b/CD18 up-regulation could be demonstrated. The physiologic importance of these findings was underscored by experiments done on endothelial monolayers, which showed that PMN association with endothelial cells is absolutely independent from the quantitative up-regulation of Mac-1 on PMN surfaces. When neutrophils were stimulated at 37 degrees C by endotoxin, an agent that does not induce aggregation (a form of intercellular adhesion), Mac-1 surface expression increased only after cells had become adherent, whereas cells held in suspension to prevent cell-substrate adhesion neither degranulated nor up-regulated their Mac-1 surface expression. Thus, not only is adherence independent of degranulation and Mac-1 cell surface up-regulation, but both degranulation and Mac-1 surface up-regulation appear to depend on the process of adhesion. Correspondingly, incubation of neutrophils with antibodies 60.1 and 60.3 inhibited not only adhesion of cells stimulated with FMLP at 37 degrees C but degranulation as well. These results indicate that Mac-1 influences degranulation as well as it controls adhesion not by its mere quantity on the cell surface, but rather by an yet undefined molecular modulation.  相似文献   

5.
《The Journal of cell biology》1993,120(4):1031-1043
Despite the identification and characterization of several distinct ligands for the leukocyte integrin (CD11/CD18) family of adhesion receptors, little is known about the structural regions on these molecules that mediate ligand recognition. In this report, we use alpha subunit chimeras of Mac-1 (CD11b/CD18) and p150,95 (CD11c/CD18), and an extended panel of newly generated and previously characterized mAbs specific to the alpha chain of Mac-1 to map the binding sites for four distinct ligands for Mac-1: iC3b, fibrinogen, ICAM-1, and the as-yet uncharacterized counter-receptor responsible for neutrophil homotypic adhesion. Epitopes of mAbs that blocked ligand binding were mapped with the chimeras and used to localize the ligand recognition sites because the data obtained from functional assays with the Mac-1/p150,95 chimeras were not easily interpreted. Results show that the I domain on the alpha chain of Mac-1 is an important recognition site for all four ligands, and that the NH2-terminal and perhaps divalent cation binding regions but not the COOH-terminal segment may contribute. The recognition sites in the I domain appear overlapping but not identical as individual Mac-1-ligand interactions are distinguished by the discrete patterns of inhibitory mAbs. Additionally, we find that the alpha subunit NH2-terminal region and divalent cation binding region, despite being separated by over 200 amino acids of the I domain, appear structurally apposed because three mAbs require the presence of both of these regions for antigenic reactivity, and chimeras that contain the NH2 terminus of p150,95 require the divalent cation binding region of p150,95 to associate firmly with the beta subunit.  相似文献   

6.
The genes of family 3 β-glucosidase enzymes consist of five distinct regions; the N-terminal residues, an N-terminal catalytic domain, a nonhomologous region, a C-terminal domain of unknown function and the C-terminal residues. The β-glucosidase genes derived from Cellvibrio gilvus (CG) and Agrobacterium tumefaciens (AT) have been subjected to gene deletion, truncation and shuffling. The folding information was found to be distributed unevenly across the different regions based on the gene manipulation results. Chimeric enzymes with improved enzyme characteristics were obtained only by gene shuffling at the C-terminal domain.  相似文献   

7.

Background

Chronic inflammation in lung diseases contributes to lung tissue destruction leading to the formation of chemotactic collagen fragments such as N-acetylated proline–glycine–proline (N-ac-PGP). In the current study, we investigate whether N-ac-PGP influences β2-integrin activation and function in neutrophilic firm adhesion to endothelium.

Methods

Human polymorphonuclear leukocytes (PMNs) were isolated from fresh human blood. Subsequently, a transmigration assay was performed to evaluate the active migration of PMNs towards N-ac-PGP. Furthermore, the effect of the tripeptide on β2-integrin activation was assessed by performing the adhesion assay using fibrinogen as a ligand. To determine whether this effect was due to conformational change of β2-integrins, antibodies against CD11b and CD18 were used in the adhesion assay and the expression pattern of CD11b was determined.

Results

Human neutrophils transmigrated through an endothelial cell layer in response to basolateral N-ac-PGP. N-ac-PGP induced also a neutrophil adherence to fibrinogen. Using functional blocking antibodies against CD11b and CD18, it was demonstrated that CD11b/CD18 (Mac-1) was responsible for the N-ac-PGP-induced firm adhesion of neutrophils to fibrinogen. Pertussis toxin decreased the Mac-1 activation indicating the involvement of G-proteins. N-ac-PGP most likely activated Mac-1 by initiating a conformational change, since the expression pattern of Mac-1 on the cell surface did not change significantly.

Conclusions

Chemo-attractant N-acetyl proline–glycine–proline induces CD11b/CD18-dependent neutrophil adhesion.

General significance

This is the first study to describe that the chemo-attractant N-ac-PGP also activates Mac-1 on the surface of neutrophils, which can additionally contribute to neutrophilic transmigration into the lung tissue during lung inflammation.  相似文献   

8.
The cDNA for the common \Mac-1 subunit (CD11b) of the mouse LFA-1/Mac-1/p150,95 group of leukocyte cell adhesion receptors, formally designated integrin \2, has been cloned and sequenced. Clones were isolated from cDNA libraries made from J774 macrophage and WEHI-3B myelomonocytic tumor cells which express this subunit as a component of the macrophage activation antigen 1 (Mac-1), also known as complement receptor type 3 (CR3). This subunit is expressed as a single, abundant mRNA species approximately 2.7 kilobase (kb) in size. The 2422 base pair (bp) cDNA sequence obtained codes for a 771 amino acid protein organized with leader, extracellular, transmembrane, and cytoplamic domains of 23, 680, 23, and 46 amino acids, respectively, yielding an 82700 mature protein of 747 amino acids. The mouse \Mac-1 subunit is highly similar to its human counterpart with an overall sequence identity of 81% and identical positioning of 5 out of 6 potential N-linked glycosylation sites, as well as 56 Cys residues that are organized in repeating motifs characteristic of integrin \ subunits. The most highly conserved regions are the transmembrane and cytoplasmic domains where only 4 out of 69 amino acids differ, indicating that the functions associated with this domain in Mac-1-mediated processes, such as iC3b-triggered phagocytosis, have been evolutionarily conserved.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M31039. Offprint requests to: P. M. Hogarth.  相似文献   

9.
Full-length (membrane bound) and truncated (secreted) forms of the beta 2 integrin heterodimer, CD11b/CD18 (Mac-1), were expressed in a human kidney cell line (293) that normally does not express leukocyte adhesion molecules (Leu-CAMs). The biosynthesis of recombinant Mac-1 in 293 cells differed from that reported for leukocytes in that heterodimer formation was not required for CD11b to be exported to the cell surface. A stable cell line was constructed that constitutively secreted the recombinant, truncated Mac-1 heterodimer into growth conditioned cell culture medium. A novel monoclonal antibody that enabled an immunoaffinity method for the selective purification of recombinant Mac-1 heterodimers was identified. Sufficient protein was purified to allow the first measurement of the 50% inhibitory concentration (IC50) for CD11b/CD18 and for the direct comparison of the inhibitory activity of recombinant soluble Mac-1 with that of various CD18 and CD11b specific monoclonal antibodies. Purified recombinant soluble Mac-1 inhibited the binding of neutrophils, activated by opsonized zymosan or fMet-Leu-Phe peptide, to human umbilical vein endothelial cells. Similarly, the recombinant integrin was effective in inhibiting the binding of unactivated neutrophils to tumor necrosis factor (TNF-alpha) activated endothelial cells. The availability of an abundant source of purified, biologically active Mac-1 will enable direct physical and chemical investigations into the relationship between the structure and function of this leukocyte adhesion molecule.  相似文献   

10.
Functional interactions between Fcgamma-receptors (FcgammaR) and the beta2 integrin Mac-1 (CD11b/CD18) have been described, but the molecular basis of this relationship remains unclear. Although the glycosylphosphatidylinositol-linked receptor FcgammaRIIIB of human neutrophils is constitutively associated with Mac-1, we found no evidence for direct physical association between Mac-1 and the FcgammaR of mouse macrophages, which are transmembrane proteins. Nevertheless, Mac-1 accumulated in the phagocytic cup following engagement of FcgammaR by IgG-opsonized particles. Blocking the CD18 chains of beta2 integrins by using specific antibodies reduced Mac-1 accumulation in the cup. These antibodies or the addition of the recombinant CD11b I-domain inhibited the ingestion of IgG-opsonized particles. FcgammaR cross-linking stimulated cell adhesion to surfaces coated with Mac-1 ligands and in addition enabled macrophages to bind C3bi-opsonized particles, indicating that FcgammaR-derived signals induce activation of Mac-1. Measurements of fluorescence recovery after photobleaching revealed that whereas most (>80%) of Mac-1 is immobile in resting cells, stimulation of FcgammaR markedly increases the mobile fraction of the integrin. Activation of Mac-1 by FcgammaR required the activity of Src family tyrosine kinases, phosphatidylinositol 3-kinase and phospholipase C, with the release of diacylglycerol and stimulation of protein kinase C. Because elevated cytosolic Ca2+ was not required, we suggest that novel protein kinase C isoforms are involved in Mac-1 activation. These results suggest that FcgammaR stimulation promotes Mac-1 clustering into high avidity complexes in phagocytic cups by releasing the integrin from cytoskeletal constraints and enhancing its lateral diffusion. FcgammaR can enhance host defense by activating Mac-1 (and possibly other integrins), having a synergistic effect on pathogen engulfment and promoting the adherence of phagocytes at sites of infection.  相似文献   

11.
LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) are members of the beta2 integrins involved in leukocyte function during immune and inflammatory responses. We aimed to determine a minimized beta2 subunit that forms functional LFA-1 and Mac-1. Using a series of truncated beta2 variants, we showed that the subregion Q23-D300 of the beta2 subunit is sufficient to combine with the alphaL and alphaM subunits intracellularly. However, only the beta2 variants terminating after Q444 promote cell surface expression of LFA-1 and Mac-1. Thus, the major cysteine-rich region and the three highly conserved cysteine residues at positions 445, 447, and 449 of the beta2 subunit are not required for LFA-1 and Mac-1 surface expression. The surface-expressed LFA-1 variants are constitutively active with respect to ICAM-1 adhesion and these variants express the activation reporter epitope of the mAb 24. In contrast, surface-expressed Mac-1, both the wild type and variants, require 0. 5 mM MnCl2 for adhesion to denatured BSA. These results suggest that the role of the beta2 subunit in LFA-1- and Mac-1-mediated adhesion may be different.  相似文献   

12.
We have studied the C-terminal signal which directs the complete export of the 1024-amino-acid hemolysin protein (HlyA) of Escherichia coli across both bacterial membranes into the surrounding medium. Isolation and sequencing of homologous hlyA genes from the related bacteria Proteus vulgaris and Morganella morganii revealed high primary sequence divergence in the three HlyA C-termini and highlighted within the extreme terminal 53 amino acids the conservation of three contiguous sequences, a potential 18-amino-acid amphiphilic alpha-helix, a cluster of charged residues, and a weakly hydrophobic terminal sequence rich in hydroxylated residues. Fusion of the C-terminal 53 amino acid sequence to non-exported truncated Hly A directed wild-type export but export was radically reduced following independent disruption or progressive truncation of the three C-terminal features by in-frame deletion and the introduction of translation stop codons within the 3' hlyA sequence. The data indicate that the HlyA C-terminal export signal comprises multiple components and suggest possible analogies with the mitochondrial import signal. Hemolysis assays and immunoblotting confirmed the intracellular accumulation of non-exported HlyA proteins and supported the view that export proceeds without a periplasmic intermediate. Comparison of cytoplasmic and extracellular forms of an independently exported extreme C-terminal 194 residue peptide showed that the signal was not removed during export.  相似文献   

13.
The red cell ICAM-4/LW blood group glycoprotein, which belongs to the family of intercellular adhesion molecules (ICAMs), has been reported to interact with CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1) beta(2) integrins. To better define the basis of the ICAM-4/beta(2) integrin interaction, we have generated wild-type, domain-deleted and mutated recombinant chimeric ICAM-4-Fc proteins and analyzed their interaction in a cellular adhesion assay with LFA-1 and Mac-1 L-cell stable transfectants. We found that monoclonal antibodies against CD11a, CD11b, CD18, or LW(ab) block adhesion of transfectant L-cells to immobilized ICAM-4-Fc protein and that the ICAM-4/beta(2) integrin interaction was highly sensitive to the presence of the divalent cations Ca(2+) and Mg(2+). Deletion of individual Ig-domains D1 or D2 of the extracellular part of ICAM-4 showed that LFA-1 binds to the first Ig-like domain, whereas the Mac-1 binding site encompassed both the first and the second Ig-like domains. Based on the crystal structure of ICAM-2, we propose a model for the Ig-like domains D1 and D2 of ICAM-4. Accordingly, by site-directed mutagenesis of 22 amino acid positions spread out on all faces of the ICAM-4 molecule, we identified four exposed residues, Leu(80), Trp(93), and Arg(97) on the CFG face and Trp(77) on the E-F loop of domain D1 that may contact LFA-1 as part of the binding site. However, the single and double mutants R52E and T91Q on the CFG face of domain D1, which correspond to the key residues Glu(34) and Gln(73) for ICAM-1 binding to LFA-1, had no effect on LFA-1 binding. In contrast, all mutants on the CFG face of domain D1 and residues Glu(151) and Thr(154) in the C'-E loop of the domain D2 seem to play a dominant role in Mac-1 binding. These data suggest that the binding site for LFA-1 on ICAM-4 overlaps but is distinct from the Mac-1 binding site.  相似文献   

14.
Adhesion and signaling by integrins require their dynamic association with nonintegrin membrane proteins. One such protein, the glycolipid-anchored urokinase receptor (uPAR), associates with and modifies the function of the beta(2)-integrin Mac-1 (CD11b/CD18). In this study, a critical non-I-domain binding site for uPAR on CD11b (M25; residues 424-440) is identified by homology with a phage display peptide known to bind uPAR. Recombinant soluble uPAR and cells expressing uPAR bound to immobilized M25, binding being promoted by urokinase and blocked by soluble M25, but not a scrambled control or homologous peptides from other beta(2)-associated alpha-chains. Mac-1, but not a mutated Mac-1 in which M25 was replaced with the homologous sequence of CD11c, co-precipitated with uPAR. In the beta-propeller model of alpha-chain folding, M25 spans an exposed loop on the ligand-binding, upper surface of alphaM, identifying uPAR as an atypical alphaM ligand. Although not blocking ligand binding to Mac-1, M25 (25-100 microM) inhibited leukocyte adhesion to fibrinogen, vitronectin, and cytokine-stimulated endothelial cells. M25 also blocked the association of uPAR with beta(1)-integrins and impaired beta(1)-integrin-dependent spreading and migration of human vascular smooth muscle cells on fibronectin and collagen. These observations indicate that uPAR associates with integrins directly and that disruption of this association broadly impairs integrin function, suggesting a novel strategy for regulation of integrins in the settings of inflammation and tumor progression.  相似文献   

15.
Cathepsin X is a lysosomal cysteine protease, found predominantly in cells of monocyte/macrophage lineage. It acts as a monocarboxypepidase and has a strict positional and narrower substrate specificity relative to the other human cathepsins. In our recent studies we identified ? β2 subunit of integrin receptors and α and γ enolase as possible substrates for cathepsin X carboxypeptidase activity. In both cases cathepsin X is capable to cleave regulatory motifs at C-terminus affecting the function of targeted molecules. We demonstrated that via activation of β2 integrin receptor Mac-1 (CD11b/CD18) active cathepsin X enhances adhesion of monocytes/macrophages to fibrinogen and regulates the phagocytosis. By activation of Mac-1 receptor cathepsin X may regulate also the maturation of dendritic cells, a process, which is crucial in the initiation of adaptive immunity. Cathepsin X activates also the other β2 integrin receptor, LFA-1 (CD11a/CD18) which is involved in the proliferation of T lymphocytes. By modulating the activity of LFA-1 cathepsin X causes cytoskeletal rearrangements and morphological changes of T lymphocytes enhancing ameboid-like migration in 2-D and 3-D barriers and increasing homotypic aggregation. The cleavage of C-terminal amino acids of α and γ enolase by cathepsin X abolishes their neurotrophic activity affecting neuronal cell survival and neuritogenesis.  相似文献   

16.
The glycosylphosphatidylinositol (GPI)-anchored neutrophil-specific receptor NB1 (CD177) presents the autoantigen proteinase 3 (PR3) on the membrane of a neutrophil subset. PR3-ANCA-activated neutrophils participate in small-vessel vasculitis. Since NB1 lacks an intracellular domain, we characterized components of the NB1 signaling complex that are pivotal for neutrophil activation. PR3-ANCA resulted in degranulation and superoxide production in the mNB1(pos)/PR3(high) neutrophils, but not in the mNB1(neg)/PR3(low) subset, whereas MPO-ANCA and fMLP caused similar responses. The NB1 signaling complex that was precipitated from plasma membranes contained the transmembrane receptor Mac-1 (CD11b/CD18) as shown by MS/MS analysis and immunoblotting. NB1 co-precipitation was less for CD11a and not detectable for CD11c. NB1 showed direct protein-protein interactions with both CD11b and CD11a by surface plasmon resonance analysis (SPR). However, when these integrins were presented as heterodimeric transmembrane proteins on transfected cells, only CD11b/CD18 (Mac-1)-transfected cells adhered to immobilized NB1 protein. This adhesion was inhibited by mAb against NB1, CD11b, and CD18. NB1, PR3, and Mac-1 were located within lipid rafts. In addition, confocal microscopy showed the strongest NB1 co-localization with CD11b and CD18 on the neutrophil. Stimulation with NB1-activating mAb triggered degranulation and superoxide production in mNB1(pos)/mPR3(high) neutrophils, and this effect was reduced using blocking antibodies to CD11b. CD11b blockade also inhibited PR3-ANCA-induced neutrophil activation, even when β2-integrin ligand-dependent signals were omitted. We establish the pivotal role of the NB1-Mac-1 receptor interaction for PR3-ANCA-mediated neutrophil activation.  相似文献   

17.
Previously, we constructed DNA vectors containing cDNAof Mac-1 subunits (CD11b or CD18b) fused with fluorescence protein (FP). cDNA fragments and the DNA constructs were then transfected into CHO cells (as CHO-Mac-1-FP). The structure and function of Mac-1-FP obtained from the CHO-Mac-1-FP cells are nearly identical to that expressed in wild type leukocytes. In the present study, the intracellular trafficking of Mac-1 was visualized directly by monitoring the fluorescent intensities of YFP-CD18 and PE-conjugated monoclonal antibody against CD11b under a confocal microscope in CHO-Mac-1-FP cells. The results indicate that: (i) although Mac-1 was not detected in the cell membrane at resting state, it had been translocated and clustered into the cell membrane by 1 h and internalized 2 h after PMA stimulation, at which point the fluorescence intensity began to diminish gradually, probably due to partial degradation of Mac-1. The fluorescence of CD18 and CD11b reappeared on the cell membrane 1 h after re-treatment with PMA, suggesting the recycling of non-degraded Mac-1. (ii) The adhesion rate of CHO-Mac-1-FP to magnetic beads coupled ICAM-1 increased within 4 h after their initial interaction, accompanied by the clustering of Mac-1-FP. After 8 h, the adhesion rate declined and fluorescence also decreased simultaneously. The pattern of change in fluorescence in CHO-Mac-1-FP cells elicited by ICAM-1 beads was similar to that elicited by PMA, suggesting that endocytosis and degradation of Mac-1 occurred after the interaction with ICAM-1. Thus, we conclude that the intracellular trafficking of Mac-1 after activation is associated with membrane translocation, endocytosis, degradation and recycling. These changes are in parallel with the adhesion of CHO-Mac-1-FP cells with ICAM-1, and may be involved in the adhesion and detachment of leukocytes. The detachment of leukocytes may be caused by endocytosis of Mac-1.  相似文献   

18.
Mac-1 (macrophage differentiation antigen asso-ciated with complement three receptor function), alsonamed CD11b/CD18, an adhesion molecule belongingresting leukocytes and at the surface of activated leu-kocytes (macrophages and neutrophils). Mac-1 playsan important role in the migration, chemotaxis and 2 Methodsphagocytosis of leukocytes[1]. Although there have 2.1 Observation of PMA-stimulated Mac-1 traffick-been several reports on the role of Mac-1 in neutrophil ingadh…  相似文献   

19.
Neutrophils (PMN) are short-lived cells but their survival is often prolonged in inflammation. The beta2 (CD11/CD18) integrins are involved in PMN migration into inflammation but their role in PMN survival is not well understood. We investigated the role of beta2 integrins in PMN caspase activation, a key enzyme cascade in apoptosis. After 20 h, caspase activation (Western blotting) was markedly decreased in PMN cultured on fibrinogen, a ligand for Mac-1 (CD11b/CD18), but not on fibronectin or albumin. In the presence of TNF-alpha or endotoxin (LPS), blockade of CD18 (beta2 chain) with mAb markedly increased caspase activation in PMN on fibrinogen. PMN which migrated through endothelium in vitro in response to TNF-alpha, LPS, IL-1alpha, IL-8 or C5a contained 58% fewer active caspase positive PMN after 20 h than non-migrated PMN remaining on the endothelium. When beta2 (CD18) integrin or lymphocyte function antigen (LFA)-1 (CD11a) plus Mac1 (CD11b) were blocked by mAb (intact or Fab'), the proportion of migrated PMN (but not of non-migrated PMN) with active caspases was significantly increased (2-4-fold) and this was associated with accelerated PMN apoptosis and death. Thus, engagement of ligands on extracellular matrix and endothelium by the beta2 integrins Mac-1 and LFA-1 plays a role in delaying apoptosis in PMN recruited in response to LPS and TNF-alpha. Inhibition of beta2 integrin function may not only inhibit PMN infiltration, but also accelerate PMN clearance from inflamed tissue.  相似文献   

20.
The effect of N-terminally successive deletions on the foldability, stability, and activity of staphylococcal nuclease was examined. The structural changes in the nuclease caused by the deletions follow a hierarchical pattern: N-terminal truncation of the nuclease by up to nine residues clearly perturbs the conformation of the N-terminal beta-subdomain but does not affect the C-terminal alpha-subdomain; deletion of 11 or 12 residues perturbs the C-terminal alpha-subdomain, resulting in formation of a molten globule state; deletion of 13 residues causes the nuclease to become highly unfolded. N-terminally deleted nuclease delta11 retains the ability to fold but delta12 is not able to fold into an enzymatically active conformation, suggesting that 11 residues is the maximum length that can be deleted from the N-terminus while still retaining the folding competence of the nuclease. Further, the results suggest that proper folding of the C-terminal alpha-subdomain probably relies on the integrity of the N-terminal beta-subdomain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号