首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of pH on growth, enterocin P production and glucose consumption by Enterococcus faecium P13 was studied during anaerobic batch fermentation in MRS broth at 32 degrees C in a fermentor. Growth and glucose consumption were maximal at pH 7.0. Enterocin P production displayed primary metabolite kinetics and was strongly dependent on pH. A maximum antimicrobial activity of 1,949 bacteriocin units (BU) ml(-1) was obtained at pH 6.0, which represented a four-fold increase compared with the antimicrobial activity obtained without pH regulation. The pH exerted a marked effect on the decrease in bacteriocin activity, with the decrease being maximal at pH 7.0. In this report, we propose models for the growth of E. faecium P13 as well as enterocin P production and inactivation. Enterocin P production decreased when potentially stress-inducing compounds (NaCl or ethanol) were included in the growth medium.  相似文献   

2.
Bacteriocin-like activity (BLA) was screened in 690 strains of lactic acid bacteria isolated from plant materials such as silages and fermented vegetables. Among them, a strain identified as Enterococcus faecium NIAI 157 showed a clear BLA against the indicator strain, Ent. faecium IFO 13712. The proteinaceous nature and antimicrobial activity against closely related species strongly indicated that this BLA was a bacteriocin and was designated enterocin ON-157. The bacteriocin activity of this strain was extracellularly produced in the logarithmic growth phase in MRS broth and purified by ultrafiltration, ammonium sulphate precipitation and cation-exchange chromatography. Purified enterocin ON-157 had a molecular weight of approximately 2500 Da in SDS-PAGE analysis and was easily inhibited by treatment with alpha-amylase and proteolytic enzymes. Enterocin ON-157 had a bactericidal mode of action and inhibited the growth of the enterococci, Lactobacillus sake and Listeria monocytogenes. Enterococcus faecium NIAI 157 harboured two plasmids, 49.0 kb and 43.7 kb, and a variant missing a larger plasmid by curing with novobiocin lost the bactriocin activity.  相似文献   

3.
AIMS: Characterization of Ent F-58 produced by Enterococcus faecium strain F58 isolated from Jben, a soft, farmhouse goat's cheese manufactured without starter cultures. METHODS AND RESULTS: E. faecium strain F58 was isolated because of its broad inhibitory spectrum, including activity against food-borne pathogenic and spoilage bacteria. The antimicrobial substance was produced during the growth phase, with maximum production after 16-20 h of incubation at 30 degrees C, and was stable over a wide pH range (4-8) and at high temperatures (5 min at 100 degrees C). The enterocin was purified to homogeneity using cation exchange and hydrophobic interaction on C-18 and reverse-phase high-performance liquid chromatography. The activity was eluted as two individual active fractions (F-58A and F-58B) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis showed masses of 5210.5 and 5234.3 Da respectively. Both peptides were partially sequenced by Edman degradation, and amino-acid sequencing revealed high similarity with enterocin L50 (I). PCR-amplified fragments containing the structural genes for F-58 A and B were located in a 22-kb plasmid harboured by this strain. We verified that it also holds the structural gene for P-like enterocin. CONCLUSION: E. faecium strain F58 from Jben cheese, a producer of enterocin L50, exerts an inhibitory effect against strains of genera such as Listeria, Staphylococcus, Clostridium, Brochothrix and Bacillus. Enterocin was characterized according to its functional and biological properties, purification to homogeneity and an analysis of its amino acid and genetic sequences. SIGNIFICANCE AND IMPACT OF THE STUDY: E. faecium strain F58 is a newly discovered producer of enterocin L50, the biotechnological characteristics of which indicate its potential for application as a protective agent against pathogens and spoilage bacteria in foods.  相似文献   

4.
Enterocin P is a new bacteriocin produced by Enterococcus faecium P13 isolated from a Spanish dry-fermented sausage. Enterocin P inhibited most of tested spoilage and food-borne gram-positive pathogenic bacteria, such as Listeria monocytogenes, Staphylococcus aureus, Clostridium perfringens, and Clostridium botulinum. Enterocin P is produced during growth in MRS broth from 16 to 45 degrees C; it is heat resistant (60 min at 100 degrees C; 15 min at 121 degrees C) and can withstand exposure to pH between 2.0 and 11.0, freeze-thawing, lyophilization, and long-term storage at 4 and -20 degrees C. The bacteriocin was purified to homogeneity by ammonium sulfate precipitation, gel filtration, cation-exchange, hydrophobic-interaction, and reverse-phase liquid chromatography. The sequence of 43 amino acids of the N terminus was obtained by Edman degradation. DNA sequencing analysis of a 755-bp region revealed the presence of two consecutive open reading frames (ORFs). The first ORF encodes a 71-amino-acid protein containing a hydrophobic N-terminal sec-dependent leader sequence of 27 amino acids followed by the amino acid sequence corresponding to the purified and sequenced enterocin P. The bacteriocin is apparently synthesized as a prepeptide that is cleaved immediately after the Val-Asp-Ala residues (positions -3 to -1), resulting in the mature bacteriocin consisting of 44 amino acids, and with a theoretical molecular weight of 4,493. A second ORF, encoding a putative immunity protein composed of 88 amino acids with a calculated molecular weight of 9,886, was found immediately downstream of the enterocin P structural gene. Enterocin P shows a strong antilisterial activity and has the consensus sequence found in the pediocin-like bacteriocins; however, enterocin P is processed and secreted by the sec-dependent pathway.  相似文献   

5.
Enterocin P is a pediocin-like, broad-spectrum bacteriocin which displays a strong inhibitory activity against Listeria monocytogenes. The bacteriocin was purified from the culture supernatant of Enterococcus faecium P13, and its molecular mechanism of action against the sensitive strain E. faecium T136 was evaluated. Although enterocin P caused significant reduction of the membrane potential (DeltaPsi) and the intracellular ATP pool of the indicator organism, the pH gradient (DeltapH) component of the proton motive force (Deltap) was not dissipated. By contrast, enterocin P caused carboxyfluorescein efflux from E. faecium T136-derived liposomes.  相似文献   

6.
An Enterococcus faecium strain from Nigerian fermented skimmed cow milk ('wara') produced bacteriocin inhibitory towards Lactobacillus, Enterococcus and Listeria strains. The bacteriocin (designated enterocin 01) was inactivated by proteases, heat-stable at 100°C and active at pH 2.0–6.0. The Ent. faecium isolate harboured plasmids of ca 36.3 and 23.1 kb. Curing experiments with ethidium bromide resulted in a bacteriocin-negative mutant which had not lost immunity to the bacteriocin. Slight differences in plasmid profiles between wild-type and mutant indicated a possible plasmid-coded bacteriocin production.  相似文献   

7.
Enterocins NKR-5-3A, B, C, and D were purified from the culture supernatant of Enterococcus faecium NKR-5-3 and characterized. Among the four purified peptides, enterocin NKR-5-3A (5242.3 Da) was identical to brochocin A, produced by Brochothrix campestris ATCC 43754, in mature peptides, and its putative synergistic peptide, enterocin NKR-5-3Z, was found to be encoded in ent53Z downstream of ent53A, encoding enterocin NKR-5-3A. Enterocin NKR-5-3B (6316.4 Da) showed a broad antimicrobial spectrum, and enterocin NKR-5-3C (4512.8 Da) showed high activity against Listeria. Enterocin NKR-5-3D (2843.5 Da), showing high homology to an inducing peptide produced by Lactobacillus sakei 5, induced the production of the enterocins. The enterocins showed different antimicrobial spectra and intensities. E. faecium NKR-5-3 concomitantly produced enterocins NKR-5-3A, B, C, and D which probably belong to different classes of bacteriocins. Furthermore, NKR-5-3 production was induced by enterocin NKR-5-3D.  相似文献   

8.
AIMS: Comparison of enterocins produced by six Enterococcus faecium strains and one Ent. faecalis strain isolated from different origin with regard to their microbiological and biochemical characteristics in view of their technological potential and practical use. METHODS AND RESULTS: The seven enterococci were sensitive to the glycopeptide antibiotics vancomycin and teicoplanin and did not show haemolytic activity. The absence of the glycopeptide-resistant genotypes and the genes involved in the production of the lantibiotic cytolysin was confirmed by PCR. The enterocins were active towards Listeria innocua and other lactic acid bacteria. Their temperature stability was dependent on the pH and their activity was higher at acidic pH. A bactericidal and bacteriolytic effect was shown. PCR analyses revealed that the gene of enterocin A was present in the genome of Ent. faecium CCM 4231, Ent. faecium 306 I.2.20 and Ent. faecalis Y; both enterocin A and B genes were present in the genome of Ent. faecium LMG 11423T, Ent. faecium RZS C5 and Ent. faecium RZS C13. Enterocin P was detected in the genome of Ent. faecium RZS C5 and Ent. faecium RZS C13. No signal was found for Ent. faecium SF 68. Enterocins from Ent. faecium RZS C5, Ent. faecium RZS C13 and Ent. faecium SF 68 were purified to homogeneity. CONCLUSIONS: Ent. faecium RZS C5 and Ent. faecium RZS C13 produced an enterocin with a molecular mass of 5460 and 5477 Da, respectively, which was in the range of that of enterocin B. The amino acid sequence analysis of the enterocin from Ent. faecium RZS C13 revealed 24 N-terminal residues, which were identical to those of enterocin B. The enterocin from Ent. faecium SF 68 had a molecular mass of 4488 Da, which did not correspond to any enterocin known so far. SIGNIFICANCE AND IMPACT OF THE STUDY: The number of characterized enterocins is increasing. As this type of work is tedious and time-consuming, it may be interesting to include PCR as a first step to know if the Enterococcus strain in study produces either a known or a new enterocin. Also, it is important to check the absence of cytolysin and resistance to vancomycin for a further application of the Enterococcus strain in food or health applications.  相似文献   

9.
Sakacin K is an antilisterial bacteriocin produced by Lactobacillus sake CTC 494, a strain isolated from Spanish dry fermented sausages. The biokinetics of cell growth and bacteriocin production of L. sake CTC 494 in vitro during laboratory fermentations were investigated by making use of MRS broth. The data obtained from the fermentations was used to set up a predictive model to describe the influence of the physical factors temperature and pH on microbial behavior. The model was validated successfully for all components. However, the specific bacteriocin production rate seemed to have an upper limit. Both cell growth and bacteriocin activity were very much influenced by changes in temperature and pH. The production of biomass was closely related to bacteriocin activity, indicating primary metabolite kinetics, but was not the only factor of importance. Acidity dramatically influenced both the production and the inactivation of sakacin K; the optimal pH for cell growth did not correspond to the pH for maximal sakacin K activity. Furthermore, cells grew well at 35 degrees C but no bacteriocin production could be detected at this temperature. L. sake CTC 494 shows special promise for implementation as a novel bacteriocin-producing sausage starter culture with antilisterial properties, considering the fact that the temperature and acidity conditions that prevail during the fermentation process of dry fermented sausages are optimal for the production of sakacin K.  相似文献   

10.
The structure of enterocin NKR-5-3C, an anti-listerial bacteriocin produced by a multiple bacteriocin producer, Enterococcus faecium NKR-5-3, was determined. Enterocin NKR-5-3C is a novel class IIa bacteriocin that possesses an YGNGL motif sequence and two disulfide bridges in its structure. It is encoded on gene ent53C together with an 18-amino-acid-residue double glycine leader peptide.  相似文献   

11.
The production of some bacteriocins by lactic acid bacteria is regulated by induction peptides (IPs) that are secreted by a dedicated secretion system. The IP gene cbaX, for carnobacteriocin A production by Carnobacterium piscicola LV17A, and a presumptive IP gene (orf6), associated with the genetic locus for enterocin B production in Enterococcus faecium BFE 900, were fused to the signal peptide of the bacteriocin divergicin A from Carnobacterium divergens LV13 to access the general secretory pathway. The culture supernatants of C. piscicola UAL26 and Lactococcus lactis MG1363 containing either of these constructs were used to induce bacteriocin production by Bac(-) cultures of C. piscicola LV17A or E. faecium CTC492. The cbaX fusion product induced bacteriocin production by Bac(-) C. piscicola LV17A, but the orf6 fusion product did not induce bacteriocin production by E. faecium CTC492. This represents a relatively simple method of confirming the role of presumptive IPs. The transformation of C. piscicola LV17A with the CbaX gene under expression of the P32 promoter from L. lactis resulted in constitutive production of bacteriocin by either the dedicated transport apparatus or the general secretory pathway.  相似文献   

12.
Enterocin 81, a bacteriocin produced by Enterococcus faecium WHE 81 previously isolated from cheese, exhibited a very narrow spectrum of activity, which is mainly directed against enterococci and Listeria spp. including Listeria monocytogenes. Enterocin 81 activity, which was extremely rapid with maximal effect achieved within 30 min, could not be detected after treatment with various proteolytic enzymes. This activity was bactericidal in nature and induced an important efflux of intracellular material, which was visualized under electron microscopy as filaments coming out of L. monocytogenes cells. However, enterocin 81 did not display bacterial lysis on sensitive cells, as no changes in cell morphology were detected following the bactericidal action. Furthermore, this bacteriocin was shown to be equally active at pH values ranging from 4·0 to 8·0, which, along with the narrow activity spectrum, are two factors of paramount interest with regards to possible use of this bacteriocin in fermented foods.  相似文献   

13.
The effect of tryptone, yeast extract, Tween 80 and initial pH on the production of enterocin 1146 and lactocin D, two bacteriocins produced by lactic acid bacteria, was studied in a basal buffered medium (tryptone-yeast extract-tween, TYT) using factorial experiments and empirical modelling. Production of enterocin 1146 was affected by pH, yeast extract and Tween 80 and to a lesser degree, by the initial pH of the medium. On the basis of the predictions of the models developed, three TYT media (TYT10, TYT11 and TYT30) were designed to maximize bacteriocin production while minimizing the amount of peptides in the medium. Growth and bacteriocin production by Enterococcus faecium DPC 1146 (enterocin 1146), Lactococcus lactis subsp. lactis biovar diacetylactis DPC 3286 (lactocin D) and Lact. lactis subsp. cremoris LMG2130 (lactococcin A) was compared in TYT media and seven other culture media (Elliker lactic broth, M17, M17 dialysate, MRS, tryptose phosphate, tryptone yeast extract broth, yeast glucose Lemco broth). Bacteriocin production in TYT media was comparable with that in M17 and MRS, which had a higher peptide content. TYT30 allowed good production of enterocin 1146 and lactocin D while TYT11 proved acceptable for all the strains tested.  相似文献   

14.
AIMS: To characterize bacteriocin production, antimicrobial spectrum and plasmid content in bacteriocinogenic enterococci from foods. METHODS AND RESULTS: Bacteriocinogenic Enterococcus faecium (14 isolates) and Enterococcus faecalis (three isolates) showed two different patterns of bacteriocin production in liquid broth: exponential-phase and stationary-phase production. Bacteriocin concentrates from all enterococci were inactivated by trypsin, but seldom by heat (100-117 degrees C), extremes of pH (2.0 to 9.0) or reducing agents (such as dithiothreitol). All bacteriocin concentrates were active against Listeria innocua and Listeria monocytogenes, and most were also active against many Ent. faecalis and Ent. faecium isolates. Enterococci clustered in three main groups according to their plasmid content (which included plasmids from 2.0 to 53 kb). Several isolates from different foods showed almost identical plasmid profiles. The enterocin P structural gene (entP) was detected by hybridization on plasmids of c. 19, 26 and/or 35-38 kb. CONCLUSIONS: Enterococci from food show different patterns of bacteriocin production and different plasmid content in spite of carrying similar bacteriocin-encoding genes. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides information on the diversity of bacteriocinogenic enterococci from food sources carrying apparently similar enterocin genes.  相似文献   

15.
AIMS: To screen bacteriocin-producing lactic acid bacteria (LAB) in 52 type and reference strains, which have not previously been studied, with respect to bacteriocins, and to characterize the presence of bacteriocins. METHODS AND RESULTS: Only Enterococcus faecium JCM 5804T showed bacteriocin-like activity. It inhibited the growth of Lactobacillus spp., Enterococcus spp., Clostridium spp., Listeria monocytogenes, and vancomycin resistant Enterococcus (VRE). However, it was not effective against Gram-negative strains, Weisella spp., Leuconostoc spp., Lactococcus spp., or methicillin resistant Staphylococcus aureus (MRSA). The inhibitory activity of Ent. faecium JCM 5804T was inactivated by proteinase K, trypsin, alpha-chymotrypsin, and papain, but not by lysozyme, lipase, catalase, or beta-glucosidase. The inhibitory activity was stable at 100 degrees C for 30 min, and had a pH range from 2 to 10. The molecular weight of the partially purified bacteriocin(s) was approx. 4.5 kDa, according to tricine-sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Polymerase chain reaction and direct sequencing methods identified three different types of bacteriocins produced by Ent. faecium JCM 5804T, enterocin A, enterocin B, and enterocin P-like bacteriocin. CONCLUSION: Enterococcus faecium JCM 5804T produced three different types of bacteriocins, and they inhibited LAB and pathogens. SIGNIFICANCE AND IMPACT OF STUDY: This is the first report of enterocin A, enterocin B, and enterocin P-like bacteriocin, detected in Ent. faecium JCM 5804T among LAB type and reference strains.  相似文献   

16.
Enterococcus sp. K-4, with a bacteriocin-like activity against E. faecium, was isolated from grass silage in Thailand. Morphological, physiological, and phylogenetic studies clearly identified strain K-4 as a strain of E. faecalis. Strain K-4 produced a maximal amount of bacteriocin at 43-45 degrees C. We purified, for the first time, the bacteriocin produced at high temperature by E. faecalis to homogeneity, using adsorption on cells of the producer strain and reversed-phase liquid chromatography. The bacteriocin, designated enterocin SE-K4, is a peptide of about 5 kDa as measured by SDS-PAGE, and Mass spectrometry analysis found the molecular mass of 5356.2, which is in good agreement. The amino acid sequencing of the N-terminal end of enterocin SE-K4 showed apparent sequence similarity to class IIa bacteriocins. Enterocin SE-K4 was active against E. faecium, E. faecalis, Bacillus subtilis, Clostridium beijerinckii, and Listeria monocytogenes. Enterocin SE-K4 is very heat stable.  相似文献   

17.
AIMS: Isolation of bacteriocinogenic lactic acid bacteria (LAB) from the Malaysian mould-fermented product tempeh and characterization of the produced bacteriocin(s). METHODS AND RESULTS: LAB were present in high numbers in final products as well as during processing. Isolates, Enterococcus faecium B1 and E. faecium B2 (E. faecium LMG 19827 and E. faecium LMG 19828, respectively) inhibited Gram-positive indicators, including Listeria monocytogenes. Partially purified bacteriocins showed a proteinaceous nature. Activity was stable after heat-treatment except at alkaline pH values. Both strains displayed a bacteriostatic mode of action. Bacteriocin production was associated with late exponential/early stationary growth. Molecular mass, calculated by SDS-PAGE, was 3.4 kDa for B1 bacteriocin, and 3.4 kDa and 5.8 kDa for B2 bacteriocins. PCR screening of enterocin-coding genes revealed three amplified fragments in total genomic DNA that may correspond with PCR signals for enterocin P, enterocin L50A and enterocin L50B. Both B1 and B2 contained a 42-kb plasmid. No differences in bacteriocinogenic capacity were found between wild type strains and plasmid-cured strains. CONCLUSIONS: It was possible to isolate bacteriocinogenic E. faecium active against various Gram-positive bacteria from final products of tempeh. SIGNIFICANCE AND IMPACT OF THE STUDY: A first step in applying biopreservation to fermented South-east Asian foods is to obtain bacteriocinogenic LAB from this source. Such isolates may also be used for biopreservation of mould-fermented foods in general, including various types of mould-ripened cheese.  相似文献   

18.
AIMS: The partial characterization of bacteriocins produced by an environmental strain Enterococcus faecium EK13, isolated from cattle dung water. METHODS AND RESULTS: A bacteriocin was partially purified by ammonium sulphate precipitation, followed by a SP-Sepharose column, reverse-phase chromatography and N-terminal region sequenced. The anti-microbial substance produced was found to be a heat-stable polypeptide with molecular mass 4.83 kDa, which was determined by N-terminal amino acid sequencing to be enterocin A. A second substance was specified by PCR as enterocin P. Bacteriocins were stable at 4 and -20 degrees C for long storage periods. The optimum of bacteriocin production was observed in the range of pH 5.0-6.5 at 30 and 37 degrees C. The most active substances are produced by strain EK13 in logarithmic growth phase and bacteriocins are produced after 1 h of fermentation. The highest activity detected in fermentation experiments was 51 200 AU ml(-1) and the most sensitive indicator strain was found to be Listeria innocua LMG 13568. Differences in bacteriocin activity against two indicators could be explained by more than one type of enterocin production by strain EK13, or with different mode of action or in different sensitivity of strains. CONCLUSION: Enterococcus faecium strain EK13 isolated from cattle dung water produces two bacteriocins, enterocin A and P, with an inhibitory effect against the strain of the genera Enterococcus, Leuconostoc, Lactobacillus, Streptococcus, Staphylococcus, Bacillus and Listeria (in different origin). SIGNIFICANCE AND IMPACT OF THE STUDY: Enterococcus faecium EK13 environmental strain is a new producer of enterocin A and P. The E. faecium EK13, isolated from cattle dung water, is presented with the further aim to utilize it for waste treatment by biotechnological processes.  相似文献   

19.
Enterocin A produced by Enterococcus faecium EFM01 displayed a narrow antimicrobial spectrum, mainly directed against Listeria spp. In particular, the bacteriocin was extremely active against 13 Listeria monocytogenes strains. This high specificity of action of enterocin A for Listeria spp. relative to lactic acid bacteria, together with its broad range of activity from pH 4.0 to pH 9.0, are factors which may be of great interest with respect to the potential antilisterial use of this bacteriocin in fermented foods. Assessment of the effect of enterocin A concentration on the extent and kinetics of bactericidal activity on L. monocytogenes Lm 6 (107 cfu ml-1 in culture broth), suggested that viability losses of higher than 5 log10, and time intervals necessary for maximum loss of viability of less than 2 h, could not be obtained. Moreover, it was shown that both parameters are closely dependent on the Listeria strain used. On the other hand, at concentrations inducing destruction of approximately 2 log10 cycles, maximum loss of viability was achieved within time intervals which varied widely from one lactic acid bacteria bacteriocin to another.  相似文献   

20.
Lactobacillus sake CTC494 isolated from a naturally fermented sausage, produced an antibacterial agent active against selected strains of Listeria monocytogenes and L. innocua. The agent was bacteriolytic against L. monocytogenes and sensitive to proteolytic enzymes; it was identified as a bacteriocin and was designated as sakacin K. The ability of Lact. sake CTC494 to inhibit the growth of listeria, compared to a bacteriocinogenic negative control strain, was examined in a model sausage system and in dry fermented sausages. In dry fermented sausages Lact. sake CTC494 was able not only to suppress the growth of listeria but to diminish their number by 1.25 log compared to the non-bacteriocinogenic control strain. Thus, Lact. sake CTC494 has proved to be a good starter culture providing good organoleptical and sensorial qualities to the product and can be employed as a bioprotective starter culture in fermented meat products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号