首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibility of direct oxidation of external NADH in rat liver mitochondria and of the inner membrane potential generation in this process is still not clear. In the present work, the energy-dependent swelling of mitochondria in the medium containing valinomycin and potassium acetate was measured as one of the main criteria of the proton-motive force generation by complex III, complex IV, and both complexes III and IV of the respiratory chain. Mitochondria swelling induced by external NADH oxidation was compared with that induced by succinate or ferrocyanide oxidation, or by electron transport from succinate to ferricyanide. Mitochondria swelling, nearly equal to that promoted by ferrocyanide oxidation, was observed under external NADH oxidation, but only after the outer mitochondrial membrane was ruptured as a result of the swelling-contraction cycle, caused by succinate oxidation and its subsequent inhibition. In this case, significantly accelerated intermembrane electron transport and well-detected inner membrane potential generation, in addition to mitochondria swelling, were also observed. Presented results suggest that exogenous NADH and cytochrome c do not support the inner membrane potential generation in intact rat liver mitochondria, because the external NADH-cytochrome c reductase system, oriented in the outer mitochondrial membrane toward the cytoplasm, is inaccessible for endogenous cytochrome c reduction; as well, the inner membrane cytochrome c oxidase is inaccessible for exogenous cytochrome c oxidation.  相似文献   

2.
It was found that the 1.4-naphthoquinone derivative AK-135 (2-methyl-3-piperidine-methyl-1.4-naphthoquinone hydrochloride) possesses a marked acceptor capacity during succinate and glutamate oxidation by rat liver and rabbit heart mitochondria. AK-135 fully restores the rate of glutamate (but not succinate) oxidation by liver and heart mitochondria catalyzed by rotenone, antimycin A and cyanide. In non-phosphorylating preparations of liver and heart mitochondria, AK-135 eliminates the inhibition of respiration on exogenous NADH induced by the same electron transport inhibitors. In liver mitochondria, the stimulation of succinate oxidation is due to a reverse electron transfer, whereas in the heart it proceeds via the rotenone-insensitive pathway. The experimental results suggest that in the liver and heart AK-135 accepts electrons from NADH-dehydrogenase oxidizing endogenous NADH. Besides, in the liver this compound is also capable of accepting electrons from NADH-cytochrome b5 reductase.  相似文献   

3.
Mitochondria of the yeastlike fungus Moniliella tomentosa oxidize reduced nicotinamide adenine dinucleotide, reduced nicotinamide adenine dinucleotide phosphate, succinate, isocitrate, and lactate. These oxidations are completely inhibited by cyanide or antimycin A in mitochondria isolated from cells grown in the standard medium. On the other hand, the oxidation of all substrates, except lactate, is almost completely insensitive to cyanide or antimycin A in mitochondria from cells grown in the presence of ethidium bromide. In this instance, the oxidation is mainly mediated by an alternate oxidase which can be blocked by salicyl hydroxamic acid. The alternate oxidase can be specifically stimulated by adenosine 5'-monophosphate and this provides a new method for the characterization of the alternate oxidase in mitochondria of M. tomentosa.  相似文献   

4.
Oxidation of mitochondrial pyridine nucleotides followed by their hydrolysis promotes Ca2+ release from intact liver mitochondria. In most of the previous studies oxidation was achieved with pro-oxidants which were added to mitochondria respiring on succinate in the presence of rotenone, a site I-specific inhibitor of the respiratory chain. Here we investigate pro-oxidant dependent and independent Ca2+ release from mitochondria when respiration is supported either by the NAD+-linked substrate β-hydroxybutyrate, or by succinate. In the presence, as well as in the absence, of the pro-oxidant t-butylhydroperoxide mitochondria retain Ca2+ much better with succinate than with β-hydroxybutyrate, as respiratory substrate. When Ca2+ release is induced by t-butylhydroperoxide succinate-supported Ca2+ retention is impeded by rotenone. Ca2+ release (pro-oxidant dependent or independent) is paralleled by oxidation and hydrolysis of intramitochondrial pyridine nucleotides, and Ca2+ retention is paralleled by reduction of pyridine nucleotides. It is concluded that the pyridine nucleotide-linked Ca2+ release from mitochondria can be controlled by respiratory substrates which regulate the intramitochondrial hydrolysis of oxidized pyridine nucleotides.  相似文献   

5.
D S Beattie  L Clejan 《Biochemistry》1986,25(6):1395-1402
Mitochondria isolated from coenzyme Q deficient yeast cells had no detectable NADH:cytochrome c reductase or succinate:cytochrome c reductase activity but contained normal amounts of cytochromes b and c1 by spectral analysis. Addition of the exogenous coenzyme Q derivatives including Q2, Q6, and the decyl analogue (DB) restored the rate of antimycin- and myxothiazole-sensitive cytochrome c reductase with both substrates to that observed with reduced DBH2. Similarly, addition of these coenzyme Q analogues increased 2-3-fold the rate of cytochrome c reduction in mitochondria from wild-type cells, suggesting that the pool of coenzyme Q in the membrane is limiting for electron transport in the respiratory chain. Preincubation of mitochondria from the Q-deficient yeast cells with DBH2 at 25 degrees C restored electrogenic proton ejection, resulting in a H+/2e- ratio of 3.35 as compared to a ratio of 3.22 observed in mitochondria from the wild-type cell. Addition of succinate and either coenzyme Q6 or DB to mitochondria from the Q-deficient yeast cells resulted in the initial reduction of cytochrome b followed by a slow reduction of cytochrome c1 with a reoxidation of cytochrome b. The subsequent addition of antimycin resulted in the oxidant-induced extrareduction of cytochrome b and concomitant oxidation of cytochrome c1 without the "red" shift observed in the wild-type mitochondria. Similarly, addition of antimycin to dithionite-reduced mitochondria from the mutant cells did not result in a red shift in the absorption maximum of cytochrome b as was observed in the wild-type mitochondria in the presence or absence of exogenous coenzyme Q analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The factors affecting the rate of nitrate reduction and the nitrate reductase content in Selenomonas ruminantium were examined. The rate of nitrate reduction per cell mass was higher when S. ruminantium was grown on lactate than when grown on glucose, and the rate was further enhanced when grown on succinate. The nitrate reduction rate was parallel to the nitrate reductase content in cells, suggesting that the amount of nitrate reductase limits the rate of nitrate reduction. The amount of nitrate reductase was inversely related to growth rate. The growth rate was related to the level of intracellular ATP, which was inversely related to the levels of ADP and AMP. The ratio of NADH to NAD+was related to the rate of nitrate reduction and to the amount of nitrate reductase. From these results, it is conceivable that the synthesis of nitrate reductase is regulated in response to the sufficiency of energy and electron supply. Intracellular concentrations of adenine nucleotides and pyridine nucleotides may be the regulating factors. The amount of nitrate reductase was increased by the presence of nitrate, suggesting that the synthesis of nitrate reductase is enhanced by nitrate. In addition, nitrate reduction altered the fermentation pattern as a result of electron consumption.  相似文献   

7.
L Clejan  D S Beattie 《Biochemistry》1986,25(24):7984-7991
Mitochondria isolated from coenzyme Q deficient yeast cells had no detectable NADH:cytochrome c reductase or succinate:cytochrome c reductase but had comparable amounts of cytochromes b and c1 as wild-type mitochondria. Addition of succinate to the mutant mitochondria resulted in a slight reduction of cytochrome b; however, the subsequent addition of antimycin resulted in a biphasic reduction of cytochrome b, leading to reduction of 68% of the total dithionite-reducible cytochrome b. No "red" shift in the absorption maximum was observed, and no cytochrome c1 was reduced. The addition of either myxothiazol or alkylhydroxynaphthoquinone blocked the reduction of cytochrome b observed with succinate and antimycin, suggesting that the reduction of cytochrome b-562 in the mitochondria lacking coenzyme Q may proceed by a pathway involving cytochrome b at center o where these inhibitors block. Cyanide did not prevent the reduction of cytochrome b by succinate and antimycin the the mutant mitochondria. These results suggest that the succinate dehydrogenase complex can transfer electrons directly to cytochrome b in the absence of coenzyme Q in a reaction that is enhanced by antimycin. Reduced dichlorophenolindophenol (DCIP) acted as an effective bypass of the antimycin block in complex III, resulting in oxygen uptake with succinate in antimycin-treated mitochondria. By contrast, reduced DCIP did not restore oxygen uptake in the mutant mitochondria, suggesting that coenzyme Q is necessary for the bypass. The addition of low concentrations of DCIP to both wild-type and mutant mitochondria reduced with succinate in the presence of antimycin resulted in a rapid oxidation of cytochrome b perhaps by the pathway involving center o, which does not require coenzyme Q.  相似文献   

8.
《BBA》1986,850(1):64-71
NAD+ supplied to purified Solanum tuberosum mitochondria caused progressive inhibition of succinate oxidation in State 3. This inhibition was especially pronounced at alkaline pH and at low succinate concentrations. Glutamate counteracted the inhibition. NAD+ promoted oxaloacetate accumulation in State 3; supplied oxaloacetate inhibited O2 uptake in the presence of succinate much more severely in State 3 than in State 4. NAD reduction linked to succinate oxidation by ATP-dependent reverse electron transport was likewise inhibited by oxaloacetate. We conclude that NAD+-induced inhibition of succinate oxidation is due to an inhibition of succinate dehydrogenase resulting from increased accumulation of oxaloacetate generated from malate oxidation via malate dehydrogenase. The results are discussed in the context of the known regulatory characteristics of plant succinate dehydrogenase.  相似文献   

9.
Storey BT 《Plant physiology》1971,48(6):694-701
Energy-linked reverse electron transport from succinate to endogenous NAD in tightly coupled mung bean (Phaseolus aureus) mitochondria may be driven by ATP if the two terminal oxidases of these mitochondria are inhibited, or may be driven by the free energy of succinate oxidation. This reaction is specific to the first site of energy conservation of the respiratory chain; it does not occur in the presence of uncoupler. If mung bean mitochondria become anaerobic during oxidation of succinate, their endogenous NAD becomes reduced in the presence of uncoupler, provided that both inorganic phosphate (Pi) and ATP are present. No reduction occurs in the absence of Pi, even in the presence of ATP added to provide a high phosphate potential. If fluorooxaloacetate is present in the uncoupled, aerobic steady state, no reduction of endogenous NAD occurs on anaerobiosis; this compound is an inhibitor of malate dehydrogenase. This result implies that endogenous NAD is reduced by malate formed from the fumarate generated during succinate oxidation. The source of free energy is most probably the endogenous energy stores in the form of acetyl CoA, or intermediates convertible to acetyl CoA, which removes the oxaloacetate formed from malate, thus driving the reaction towards reduction of NAD.  相似文献   

10.
Mitochondria were prepared from the spadices of skunk cabbage (Symplocarpus foetidus) whose respiratory rate with succinate and malate showed 15% to 30% sensitivity to cyanide inhibition, and which showed respiratory control by added ADP. The observed respiratory control ratios ranged from 1.1 to 1.4. The change in pH of the mitochondrial suspension was recorded simultaneously with oxygen uptake: alkalinization of the medium, expected for phosphorylation of ADP, coincided with the period of acceleration in oxygen uptake caused by addition of an ADP aliquot. The ADP/O ratios obtained were 1.3 for succinate and 1.9 for malate. In the presence of 0.3 mm cyanide, the ADP/O ratio for succinate was zero, while that for malate was 0.7. These results are consistent with the existence of an alternate oxidase which interacts with the flavoprotein and pyridine nucleotide components of the respiratory chain and which, in the presence of cyanide, allows the first phosphorylation site to function with an efficiency of about 70%. In the absence of respiratory inhibitors, the efficiency of each phosphorylation site is also about 70%. This result implies that diversion of reducing equivalents through the alternate oxidase, thereby bypassing the 2 phosphorylation sites associated with the cytochrome components of these mitochondria, occurs to a negligible extent during the oxidative phosphorylation of ADP or State 3.Addition of ADP or uncoupler to skunk cabbage mitochondria respiring in the controlled state or State 4, results in reduction of cytochrome c and the oxidation of the cytochromes b, ubiquinone and pyridine nucleotide. A site of interaction of ADP with the respiratory chain between cytochromes b and cytochrome c is thereby identified by means of the crossover theorem. Flavoprotein measured by fluorescence is also oxidized upon addition of ADP or uncoupler, but flavoprotein measured by optical absorbance changes becomes more reduced under these conditions. Depletion of the mitochondria by pretreatment with ADP and uncoupler prevents reduction of most of the fluorescent flavoprotein by succinate. These results indicate that skunk cabbage mitochondria contain both high and low potential flavo-proteins characterized by different fluorescence/absorbance ratios similar to those demonstrated to be part of the respiratory chain in mitochondria from animal tissues.  相似文献   

11.
The properties of mitochondria from the cells of the "fermentative" variant of End. magnusii were studied. The induced fermentative transformation was brought about by a non-balanced vitamin cultivation. It was shown that the "fermentative" variant of End. magnusii represents an interesting model, in which the energy required for the cell functioning is provided for by a high fermentative activity and a normally functioning respiratory chain. The "fermentative" variant mitochondria were tightly coupled and possessed theoretical efficiency during oxidation of NAD-dependent substrates, which suggested the existence of all the three sites of energy coupling and phosphorylation at the substrate level. A specificity of energy regulation of the End. magnusii "fermentative" variant mitochondria, e. g. tight coupling during oxidation of succinate and lack of tight coupling during oxidation of exogenous NADH, is discussed. The tight coupling during succinate oxidation is confirmed by the observation of reverse electron transfer. Thus, the energy-dependent reduction of NAD during succinate oxidation has been firstly demonstrated for the mitochondria of yeast grown on a fermentable substrate.  相似文献   

12.
Sara Streichman  Y. Avi-Dor 《BBA》1970,216(2):262-269
The effect of 2-thenoyltrifluoroacetone on electron transport with and against the redox potential gradient, with succinate or ascorbate plus N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) as electron donor, was studied in rat liver mitochondria. It was found that 2-thenoyltrifluoroacetone inhibited succinate-linked intramitochondrial pyridine nucleotide reduction at low concentrations, which neither affected succinate oxidation in the controlled state nor interfered with intramitochondrial pyridine nucleotide reduction in the ascorbate plus TMPD case. The effect of 2-thenoyltrifluoroacetone on succinate-linked intramitochondrial pyridine nucleotide reduction is not attributable either to blocking of the overall rate of electron flow in the succinate dehydrogenase branch of the respiratory chain or to interference with energy transformation. Transition from the controlled to the active state enhanced the inhibitory effect of 2-thenoyltrifluoroacetone on succinate-linked respiration, and it became as sensitive to 2-thenoyltrifluoroacetone as the succinate-linked intramitochondrial pyridine nucleotide reduction. In the light of the above findings, the possibility is discussed that electrons from succinate enter the main branch of the respiratory chain by different routes, according to whether the flow is with or against the potential gradient.  相似文献   

13.
A series of triphenyl-, tricyclohexyl- and tribenzyltin compounds have been synthesized and examined as inhibitors of mitochondrial oxidative phosphorylation. All compounds tested inhibit oxidative phosphorylation linked to succinate oxidation by potato tuber mitochondria. All of the organotin compounds inhibit ADP-stimulated O2 uptake linked to succinate oxidation with concentrations for 50% inhibition in the range 2-50 microM. This inhibition is not due to inhibition of electron transport from succinate to O2 per se: none of the organotin compounds at 50 microM substantially inhibit the rate of succinate oxidation in the presence of 2,4-dinitrophenol. Representative organotin compounds at 0.5-50 microM do not act as uncouplers of succinate oxidation. It is concluded that the organotin compounds act as energy transfer inhibitors to inhibit oxidative phosphorylation in potato tuber mitochondria. A similar mode of action of representative organotin compounds was found with rat liver mitochondria. These organotin compounds inhibit a hydrophobic Ca2+-dependent plant protein kinase in the absence but not in the presence of thiols.  相似文献   

14.
Y Mori  H Suzuki  T Nei 《Cryobiology》1986,23(1):64-71
The effect of freeze-thawing on the yeast respiratory system was studied at rapid rates of cooling. Freezing of whole cells with liquid nitrogen induced decrease of respiratory activity to under 20% of that of original cells. Mitochondria harvested from freeze-thawed cells have markedly decreased succinate oxidizing activity. Activity of succinate cytochrome c reductase was reduced significantly after freeze-thawing of whole cells while activities of succinate dehydrogenase and cytochrome c oxidase were reduced slightly. By spectrophotometric analysis it was found that about one-half the amount of cytochrome c + c1 was eluted from mitochondria to cytosol after freeze-thawing of cells. The activities of succinate oxidation in mitochondria from freeze-thawed cells were restored to normal levels by the addition of cytochrome c. Freeze-thawing of isolated mitochondria did not induce deactivation of succinate oxidizing activities and succinate cytochrome c reductase, and no elution of cytochrome c was observed. It was concluded that the decreased respiratory activities of yeast cells by freezing of cells with liquid nitrogen can be attributed primarily to the elution of cytochrome c from mitochondria.  相似文献   

15.
Malate metabolism was investigated in lactate grown cells of Desulfovibrio gigas ; 3 mol of malate are converted into 2 mol succinate and 1 mol acetate. The malic enzyme (L-malate:NADP+ oxidoreductase) was purified to homogeneity and partially characterized. The enzyme is monomeric with molecular weight of 45 kDa. Its spectrum has no visible absorption and the activity is stimulated by K+ and Mg2+. The presence of an NAD(P)+ transhydrogenase, the observation of partial reduction of adenylylsulfate reductase by NADH (via NADH-rubredoxin oxidoreductase) and evidence for NADH-linked fumarate reductase activity support the involvement of pyridine nucleotides in the electron pathway toward the reduction of sulfur compounds and/or fumarate. An electron transfer chain to fumarate is proposed, taking into consideration these results and the stoichiometry of end-products derived from malate dismutation.  相似文献   

16.
We measured production of reactive oxygen species by intact mitochondria from rat skeletal muscle, heart, and liver under various experimental conditions. By using different substrates and inhibitors, we determined the sites of production (which complexes in the electron transport chain produced superoxide). By measuring hydrogen peroxide production in the absence and presence of exogenous superoxide dismutase, we established the topology of superoxide production (on which side of the mitochondrial inner membrane superoxide was produced). Mitochondria did not release measurable amounts of superoxide or hydrogen peroxide when respiring on complex I or complex II substrates. Mitochondria from skeletal muscle or heart generated significant amounts of superoxide from complex I when respiring on palmitoyl carnitine. They produced superoxide at considerable rates in the presence of various inhibitors of the electron transport chain. Complex I (and perhaps the fatty acid oxidation electron transfer flavoprotein and its oxidoreductase) released superoxide on the matrix side of the inner membrane, whereas center o of complex III released superoxide on the cytoplasmic side. These results do not support the idea that mitochondria produce considerable amounts of reactive oxygen species under physiological conditions. Our upper estimate of the proportion of electron flow giving rise to hydrogen peroxide with palmitoyl carnitine as substrate (0.15%) is more than an order of magnitude lower than commonly cited values. We observed no difference in the rate of hydrogen peroxide production between rat and pigeon heart mitochondria respiring on complex I substrates. However, when complex I was fully reduced using rotenone, rat mitochondria released significantly more hydrogen peroxide than pigeon mitochondria. This difference was solely due to an elevated concentration of complex I in rat compared with pigeon heart mitochondria.  相似文献   

17.
Storey BT 《Plant physiology》1972,49(3):314-322
The cytochromes c of mung bean (Phaseolus aureus) mitochondria become reduced when sulfide, a cytochrome oxidase inhibitor free from uncoupling side effects, is added to the aerobic mitochondrial suspension in the absence of added substrate. The cytochromes b remain largely oxidized. Subsequent addition of ATP results in partial oxidation of the cytochromes c and partial reduction of the cytochromes b due to ATP-driven reverse electron transport through the second site of energy conservation, or coupling site, of the respiratory chain. Cytochrome a is also oxidized under these conditions, but there is no concomitant reduction of the flavoprotein components, of ubiquinone, or of endogenous pyridine nucleotide. The reaction is abolished by oligomycin. The reducing equivalents transported from the cytochromes c and a in ATP-driven reverse electron transport are about 2-fold greater than those which appear in the cytochromes b. It is suggested that the equivalents not accounted for are present in a coupling site enzyme at the second site of energy conservation which interacts with the respiratory chain carriers by means of the dithiol-disulfide couple; this couple would not show absorbance changes with redox state over the wavelength range examined. With succinate present, reverse electron transport can be demonstrated at both coupling sites in both the aerobic steady state and in anaerobiosis. ATP-driven reverse electron transport in anaerobiosis maintains cytochrome a 30% oxidized while endogenous pyridine nucleotide is 50% reduced.  相似文献   

18.
Mitochondrial permeability transition is commonly characterized as a Ca2+ -dependent non-specific increase in inner membrane permeability that results in swelling of mitochondria and their de-energization. In the present study, the effect of different inhibitors of phospholipase A2--p-bromophenacyl bromide, dibucaine, and aristolochic acid--on hydroperoxide-induced permeability transitions in rat liver mitochondria was tested. p-Bromophenacyl bromide completely prevented the hydroperoxide-induced mitochondrial permeability transition while the effects of dibucaine or aristolochic acid were negligible. Organic hydroperoxides added to mitochondria undergo reduction to corresponding alcohols by mitochondrial glutathione peroxidase. This reduction occurs at the expense of GSH which, in turn, can be reduced by glutathione reductase via oxidation of mitochondrial pyridine nucleotides. The latter is considered a prerequisite step for mitochondrial permeability transition. Among all the inhibitors tested, only p-bromophenacyl bromide completely prevented hydroperoxide-induced oxidation of mitochondrial pyridine nucleotides. Interestingly, p-bromophenacyl bromide had no affect on mitochondrial glutathione peroxidase, but reacted with mitochondrial glutathione that prevented pyridine nucleotides from being oxidized. Our data suggest that p-bromophenacyl bromide prevents hydroperoxide-induced deterioration of mitochondria via interaction with glutathione rather than through inhibition of phospholipase A2.  相似文献   

19.
H A Dailey  Jr 《Journal of bacteriology》1976,127(3):1286-1291
The membrane-bound respiratory system of the gram-negative bacterium Spirillum itersonii was investigated. It contains cytochromes b (558), c (550), and o (558) and beta-dihydro-nicotinamide adenine dinucleotide (NADH) and succinate oxidase activities under all growth conditions. It is also capable of producing D-lactate and alpha-glycerophosphate dehydrogenases when grown with lactate or glycerol as sole carbon source. Membrane-bound malate dehydrogenase was not detectable under any conditions, although there is high activity of soluble nicotinamide adenine dinucleotide: malate dehydrogenase. When grown with oxygen as the sole terminal electron acceptor, approximately 60% of the total b-type cytochrome is present as cytochrome o, whereas only 40% is present as cytochrome o in cells grown with nitrate in the presence of oxygen. Both NADH and succinate oxidase are inhibited by azide, cyanide, antimycin A, and 2-n-heptyl-4-hydroxyquinoline-N-oxidase at low concentrations. The ability of these inhibitors to completely inhibit oxidase activity at low concentrations and their effects upon the aerobic steady-state reduction levels of b- and c-type cytochromes as well as the aerobic steady-state reduction levels obtained with NADH, succinate, and ascorbate-dichlorophenolindophenol suggest that presence of an unbranched respiratory chain in S. itersonii with the order ubiquinone leads to b leads to c leads to c leads to oxygen.  相似文献   

20.
Lambert AJ  Buckingham JA  Brand MD 《FEBS letters》2008,582(12):1711-1714
The relationship between the rate of superoxide production by complex I and NAD(P)H redox state was investigated in rat skeletal muscle mitochondria. A high rate of superoxide production was observed during succinate oxidation; the rate during pyruvate oxidation was over fourfold lower. However, the NAD(P)H pool was significantly less reduced during succinate oxidation than during pyruvate oxidation. We conclude that there is no unique relationship between superoxide production by complex I and the reduction state of the NAD(P)H pool. Our data suggest that less than 10% of the superoxide originates from the flavin site during reverse electron transport from succinate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号