首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. We studied the relative role of local habitat variables and landscape pattern on vole–plant interactions in a system with grey-sided voles ( Clethrionomys rufocanus (Sund.)) and their favourite winter food plant, bilberry ( Vaccinium myrtillus L.). The study was conducted during a vole peak year (1992–93) in a tundra area in northern Norway.
2. Using Mantel statistics we were able to separate the direct effects of the spatial patterning of habitats and the indirect effects due to spatial aggregations of similar habitats.
3. Results indicate that knowledge about the explicit spatial patterning of patches does not improve our understanding of the system. Instead, two local factors, vegetation height and bilberry biomass, explained more than 50% of the variation in cutting intensity in winter (defined as the proportion of above-ground shoots cut). Increasing vegetation height increased, and increasing bilberry biomass decreased, the cutting intensity.
4. The conclusion that grey-sided voles are able to distribute themselves relative to habitat quality was also partially supported by our estimated over-winter persistence by voles in the various habitats. Vole persistence was uncorrelated with vegetation height, the important predictor of autumn vole density, but tended to correlate with the deviation from the relation between vegetation height and autumn vole density. This conforms to the expectations from the theory of ideal-free habitat distribution.
5. The cue for vole habitat choice, i.e. vegetation height, indicates that either predation or freezing risk is important for voles when selecting over-wintering habitat.  相似文献   

2.
Phase dependence in winter physiological condition of cyclic voles   总被引:4,自引:0,他引:4  
Lack of food resources has been suggested as a factor which limits the growth of cyclic vole populations. During peak phases of the cycle, vole population growth typically ceases during late autumn or early winter, and is followed by a decrease in density over the winter. To investigate whether this decrease is due to increased mortality induced by a depletion of food resources, we studied overwinter food consumption and physiological condition of field voles ( Microtus agrestis ) in western Finland in both an increase and a decrease phase of a three-year population cycle. The growth rate of vole populations was negatively related both to prevailing vole densities and to densities six months earlier. The condition index of voles, as well as their blood levels of haematocrit, proteins, free fatty acids and immunoglobulin G, were positively related to population growth rate when populations were declining. When populations were increasing, these parameters tended to be negatively related to population growth rate. The overall physiological condition of voles was lower in the winter of the decrease phase as compared to the increase phase. The return rate of voles, a proxy of survival, was also lower in the decrease than in the increase phase of the cycle and positively related to haematocrit levels. Almost 90% of all green vegetation shoots were consumed by voles during the winter of the decrease phase while only two thirds were eaten in the increase phase. Our results suggest that the winter decrease phase of cyclic vole populations is associated with both a deterioration in the physiological condition of voles and a significant depletion of winter food resources. This implies that malnutrition induces poor physiological condition in voles, which in turn may increase mortality either directly through starvation or indirectly through increased susceptibility to predators and pathogens.  相似文献   

3.
The grey-sided vole (Clethrionomys rufocanus) is distributed over the entire island of Hokkaido, Japan, across which it exhibits multi-annual density cycles in only parts of the island (the north-eastern part); in the remaining part of the island, only seasonal density changes occur. Using annual sampling of 189 grey-sided vole populations, we deduced the geographical structure in their second-order density dependence. Building upon our earlier suggestion, we deduce the seasonal density-dependent structure for these populations. Strong direct and delayed density dependence is found to occur during winter, whereas no density dependence is seen during the summer period. The direct density dependence during winter may be seen as a result of food being limited during that season: the delayed density dependence during the winter is consistent with vole-specialized predators (e.g. the least weasel) responding to vole densities so as to have a negative effect on the net growth rate of voles in the following year. We conclude that the observed geographical structure of the population dynamics may be properly seen as a result of the length of the summer in interaction with the differential seasonal density-dependent structure. Altogether, this indicates that the geographical pattern in multi-annual density dynamics in the grey-sided vole may be a result of seasonal forcing.  相似文献   

4.
Based on recent advances in time-series analyses of ecological dynamics using statistical and mathematical models, we summarise our recent results on the seasonal processes in the annual population dynamics of the grey-sided vole Clethrionomys rufocanus (Sundevall, 1846) in Hokkaido, Japan, and report additional analyses on annual and seasonal density dependence. Annual direct density dependence was strong in almost all populations. In contrast, delayed density dependence was generally weak, although clear delayed density dependence was detected in some of the studied populations. Although seasonal density dependence was observed both in winter and summer, direct density dependence was much more profound during winter; thus, winter density dependence contributed most to the overall annual direct density dependence. We found no correlation between the seasonal components of annual direct density dependence; however, the corresponding seasonal components for annual delayed density dependence were positively correlated. We conclude that winter conditions influence the strength of annual direct density dependence most profoundly. Moreover, we conclude that direct density dependence during summer and winter may be generated by different mechanisms, whereas delayed density dependence seems to be generated by a common mechanism. Candidate mechanisms are discussed in relation to general knowledge of northern rodent populations and to specific insights provided by earlier studies of grey-sided voles in Hokkaido.  相似文献   

5.
Animals that feed on forest tree seeds, such as Apodemus mice, increase in number after a mast year. At high latitudes, there is a similar delayed response by Myodes voles to high seed crops of bilberry (Vaccinium myrtillus), but here the mechanism is hypothesised to be increased forage quality, caused by a trade-off between reproduction and defence in the plants. Both Apodemus mice and Myodes voles eat berries, but only the latter feed on bilberry plants. Hence, only Myodes voles are predicted to respond to bilberry peak years. A second prediction is that the effect should last longer than any possible direct impacts of bilberries, because the plants would not be able to rebuild their defence until the succeeding summer. During a 21-year snap-trapping study of small rodents in Southern Norway, the spring population of bank vole (Myodes glareolus) was positively related to a bilberry seed index of the previous year, indicating increased winter survival, whereas the wood mouse (Apodemus sylvaticus) was not affected. Also the succeeding autumn population index of the bank vole was positively related to the bilberry index of the previous year, even when controlling for spring population levels. The wood mouse population responded to mast years of sessile oak (Quercus petraea), whereas seeds of Norway spruce (Picea abies) seemed to have some impact on both species. It is concluded that these rodents are mainly limited from below, but by different mechanisms for the granivorous and the herbivorous species.  相似文献   

6.
The plant stress hypothesis states that plant stress factors other than herbivory improve herbivore performance due to changes in the content of nutritive or defensive compounds in the plants. In Norway, the bilberry (Vaccinium myrtillus) is important forage for the bank vole (Myodes glareolus) in winter and for the moose (Alces alces) in summer and autumn. The observed peaks in bank vole numbers after years with high production of bilberries are suggested to be caused by increased winter survival of bank voles due to improved forage quality. High production of bilberries should also lead to higher recruitment rates in moose in the following year. We predict, however, that there is an increasing tendency for a 1-year delay of moose indices relative to vole indices with decreasing summer temperatures, because low temperatures prolong the period needed by plants to recover in the vole peak year, and thus positively affect moose reproduction also in the succeeding year. In eight out of nine counties in south-eastern Norway, there was a positive relationship between the number of calves observed per female moose during hunting and a bilberry seed production index or an autumn bank vole population index. When dividing the study area into regions, there was a negative relationship between a moose-vole time-lag index and the mean summer temperature of the region. These patterns suggest that annual fluctuations in the production of bilberries affect forage quality, but that the effect on moose reproduction also depends on summer temperatures.  相似文献   

7.
In order to gain a better understanding of the consequences of population density cycles and landscape structure for the genetic composition in time and space of vole populations, we analyzed the multiannual genetic structure of the two numerically dominant, sympatric small rodent species of northernmost Fennoscandia. Red voles Myodes rutilus and grey-sided voles M. rufocanus were trapped in the subarctic birch forest along three fjords over five years. Along each fjord, there were four or five altitudinal transects each with five trapping stations. Spring and fall population densities were estimated from mark–recapture data. Grey-sided voles exhibited higher amplitude density fluctuations than red voles. Polymorphism at eight or nine microsatellite loci, determined in 1228 voles, was used to estimate local genetic diversity and differentiation among samples. Genetic diversity was higher in grey-sided voles than in red voles. Spring densities had no effect on local genetic diversity or on differentiation. The amplitude of density fluctuations and the extent of favorable habitat (sub-arctic birch forest) surrounding each site had a positive effect on genetic diversity, and the amplitude of density fluctuations had a negative effect on differentiation in red voles, for which fluctuating populations were compared with more stable populations. The harmonic mean of densities, reflecting average population sizes, had a negative effect on genetic diversity in red voles, but a positive effect in grey-sided voles, for which only fluctuating populations were compared. No other effects were significant for grey-sided voles. A temporal assignment test showed that the spatial structure was more stable in time for populations with more stable population dynamics. Altogether our results suggest that high amplitude density fluctuations lead to more gene flow and higher genetic diversity in vole populations.  相似文献   

8.
In this study we examined the responses of the dominant understorey plant species, Vaccinium myrtillus, in a Swedish boreal forest to nitrogen applications and repeated damage by clipping. Four years of clipping V. myrtillus reduced its abundance, regardless of whether the clipping was combined with fertilization or not. The treatments also induced changes in growth form and concentration of phenolic compounds in the shoots. Repeated damage to the shrub caused reductions in both the length and diameter of the shoots, while fertilization alone increased their diameter. Fertilization also decreased the concentration of condensed tannins in shoots of V. myrtillus, while clipping had no significant effect in this respect. Condensed tannin concentrations were higher in shoots given the combined fertilization and clipping treatment than in shoots that were fertilized but not clipped. The effect on tannins is in accordance with the predictions of the CNB‐hypothesis. Among the seven individual phenolic compounds analysed only one, a cinnamic acid derivate, showed a significant effect of the treatments. Repeated damage resulted in decreased concentration of this phenolic acid. In addition there was a tendency towards treatment effects on both nitrogen and carbon concentration of the V. myrtillus shoots, but none of these effects were statistically significant. The treatment‐induced changes in V. myrtillus also affected the food preferences of grey‐sided voles (Clethrionomys rufocanus), resulting in the following order of preference among the treatments: 1) fertilization and clipping, 2) fertilization, 3) control and 4) clipping. Not only biochemical changes, but also changes in growth form were found to influence the preferences, as the voles avoided the smallest shoots. This size‐dependent feeding may partly explain the observed differences in their preferences. Thus, induced changes in growth form need to be considered when conclusions about changes in herbivores’ preference are made.  相似文献   

9.
We compared the abundance, population structure and palatability of bilberry ramets on vole-free islands, islands with voles but no predators (predator-free islands) and mainland sites with both voles and predators. As expected, bilberry biomass was strongly correlated with the herbivory pressure exerted by the voles, since it was significantly lower on the mainland, and much (>80%) lower on the predator-free islands, than on the vole-free islands. However, another finding, which conflicts with hypotheses postulating that herbivory generally induces plant defenses, was that voles preferred ramets from predator-free islands. Bilberry plants were fairly tolerant to grazing since they compensated for some of the lost tissue by producing more new ramets. This response should promote stability in the plant–herbivore interaction by reducing the impact of past grazing on current food production and thus minimizing time delays in the interactions that could potentially generate population cycles.  相似文献   

10.
Assemblages of large herbivores may compete for food or facilitate one another. However, small vertebrate herbivore species co-occurring with large herbivores may be affected by large herbivore grazing through changes in plant species composition, nutrient content and vegetation structure. These changes can be either positive or negative for the smaller herbivores, but this may depend on the species of small herbivores. We experimentally tested the impact of cattle grazing on habitat choice of European rabbits (Oryctolagus cuniculus) and common voles (Microtus arvalis). We excluded cattle for 7 years and measured changes in vegetation parameters, and the response of rabbits and voles. Rabbits were facilitated by cattle, whereas voles strongly preferred vegetation without cattle. The facilitation effect was stronger at low rabbit densities. Vegetation biomass and nitrogen concentration were not affected by cattle grazing, but vegetation height increased significantly where cattle were excluded. Plant species composition also changed following cattle exclusion; however, the main food plants of rabbits and voles remained abundant in each grazing treatment. We conclude that the response of both rabbits and voles predominantly reflect the differences in vegetation height in the presence and absence of cattle, but in a contrasting fashion. The difference in response between rabbits and voles may result from reduced perceived predation risk, which is lowest in high vegetation for voles, but in short vegetation for rabbits, which depend on their burrows for safety. The use of large herbivores in grassland conservation management can thus have a contrasting effect on different species of small herbivores.  相似文献   

11.
The aim with this study was to, under controlled conditions, determine the food preference of mountain haresLepus timidus Linnaeus, 1758 and bank volesClethrionomys glareolus (Schreber, 1780) for a substantial part of the woody plants potentially available for these herbivores during winter. In addition, we compared hare and vole preference patterns. Thirteen woody plant species were simultaneously presented to 9 captive voles and 9 captive hares in preference tests during winter. Consumption by hares from 50 g bundles (one per species) was measured after 3 h, whereas shoot consumption by voles was measured after 12 h. Both hares and voles preferred deciduous species to conifers,Populus tremula, andVaccinium myrtillus being the most preferred species. However, there was considerable variation in palatability among deciduous plant species and only a marginally significant correlation was found between hare and vole preference. One striking differences between hares and voles was that Sorbusaucuparia was the most utilised by voles but the least preferred by hares. In conclusion, deciduous plant species were generally considerably more palatable to hares and voles than conifers, which is consistent with current theories. Nevertheless, the high variation in palatability among deciduous trees and the difference in preference between hares and voles indicate more complex and species-specific patterns with regard to plant— animal interactions. The latter also suggests that hares and voles differ in their dietary adaptations and have different dietary constrains.  相似文献   

12.
Ecological theory predicts the strongest ecosystem effects of herbivory when dominant and ecologically important species are consumed. Bilberry, Vaccinium myrtillus, is such a key plant species, attractive to many other species in the boreal forests, for example ungulate and invertebrate herbivores. Large herbivores may remove substantial biomass and alter plant quality and therefore affect abundance and populations of invertebrate animals sharing the same food plant. We combined experimental exclusion of ungulates with a browsing intensity gradient to investigate the 15-year effect of ungulate (Cervus elaphus and Ovis aries) browsing on bilberry plant size and on bilberry-feeding herbivorous larvae (Lepidoptera and Symphyta), in a Norwegian old growth boreal forest ecosystem. Bilberry ramets in exclosure plots had nearly nine times higher dry mass and three times higher abundance of invertebrates feeding on them than in ungulate-access plots. Sweep-netting data verified these findings as larval numbers were twice as high in exclosure plots. The pattern in the large herbivore effects on bilberry size and abundance of herbivorous larvae were identical along the browsing gradient. Differences in larval abundance between treatments, as indicated by leaf-chewing, increased during the 15-year study period, and the community fluctuations were larger when ungulate herbivores were excluded. The browsing effect was moderated by plant quality as larval densities were lowest on both heavily-browsed and non-browsed plants, and highest on ramets that had 50–74% of annual shoots browsed. Our study supports previous findings in that bilberry is relatively disturbance tolerant and may recover quickly, but that ungulates may compete with herbivorous larvae for food biomass. Additionally, our results strongly indicates that population insect community peaks and fluctuations are dampened by ungulate consumption. Our findings add to the understanding on how ungulates may structure forest ecosystems directly and indirectly.  相似文献   

13.
In prey communities with shared predators, variation in prey vulnerability is a key factor in shaping community dynamics. Conversely, the hunting efficiency of a predator depends on the prey community structure, preferences of the predator and antipredatory behavioural traits of the prey. We studied experimentally, under seminatural field conditions, the preferences of a predator and the antipredatory responses of prey in a system consisting of two Myodes species of voles, the grey-sided vole (M. rufocanus Sund.) and the bank vole (M. glareolus Schreb.), and their specialist predator, the least weasel (Mustela nivalis nivalis L.). To quantify the preference of the weasels, we developed a new modelling framework that can be used for unbalanced data. The two vole species were hypothesised to have different habitat-dependent vulnerabilities. We created two habitats, open and forest, to provide different escape possibilities for the voles. We found a weak general preference of the weasels for the grey-sided voles over the bank voles, and a somewhat stronger preference specifically in open habitats. The weasels clearly preferred male grey-sided voles over females, whereas in bank voles, there was no difference. The activity of voles changed over time, so that voles increased their movements immediately after weasel introduction, but later adjusted their movements to times of lowered predation risk. Females that were more active had an elevated mortality risk, whereas in the case of males, the result was the opposite. We conclude that, in vulnerability to predation, the species- or habitat-specific characteristics of these prey species are playing a minor role compared to sex-specific characteristics.  相似文献   

14.
Malondialdehyde (MDA) concentration is a widely used method to analyse lipid peroxidation in biological material. In plant tissues, however, certain compounds (anthocyanins, carbohydrates) may interfere with measurements which may lead to an overestimation of the MDA levels. Two methods were compared for analysing lipid peroxidation, either uncorrected or corrected for interfering compounds. The comparison was performed in three separate experiments with respect to cold treatments (snow removal in winter, reacclimation in summer and cold acclimation in autumn) in bilberry (Vaccinium myrtillus L.). During winter and autumn the methods seem to measure different compounds, but during active growth in the summer the difference between the methods was less. This is obviously due to carbohydrates which act as cryoprotectants and increase in concentration during cold acclimation as well as due to the anthocyanins. It is thus suggested that the validity of the uncorrected method to measure MDA and thereby lipid peroxidation is best in plant tissue which is in an active growth state.  相似文献   

15.
In northern Sweden two field experiments with the reforestation techniques soil scarification, ploughing, burning and grass herbicidal treatment were performed. Small rodents were trapped regularly on the managed plots and their stomachs were examined microscopically for diet composition. Both bank voles Clethrionomys glareolus and field voles Microtus agrestis were common on the reforestation areas while only a small number of grey-sided voles Clethrionomys rufocanus were taken. All three species underwent a population cycle during the studies. The management techniques generally resulted in small and irregular effects on the food selection. The most pronounced changes were lower intake of grasses by M. agrestis after herbicidal treatment and of filamentous tree lichens by C. glareolus after most treatments.
Both bank voles and field voles ate predominantly forbs in the summer half of the year, whereas the field voles took also a considerable amount of grass. As a complement to green vegetable-matter bank voles ate berries and fungi in summer-autumn and tree lichens at other times of the year, but seeds and animals food only in very small amounts. Ail three species consumed large quantities of dwarf-shrubs in autumn and especially in winter. Considerable amounts of bark were eaten by field voles and a smaller proportion by bank voles in autumn-winter.
Both for bank and field voles there were indications of worsening food conditions as the population cycle went on, There were, for example, an increase in grass and bark intake in field voles and a decrease in seeds and berries for the hank vole.  相似文献   

16.
The functional response is a key element of predator–prey interactions. Basic functional response theory explains foraging behavior of individual predators, but many empirical studies of free-ranging predators have estimated functional responses by using population-averaged data. We used a novel approach to investigate functional responses of an avian predator (the rough legged-buzzard Buteo lagopus Pontoppidan, 1763) to intra-annual spatial variation in rodent density in subarctic Sweden, using breeding pairs as the sampling unit. The rough-legged buzzards responded functionally to Norwegian lemmings (Lemmus lemmus L. 1758), grey-sided voles (Myodes rufocanus Sundevall, 1846) and field voles (Microtus agrestis L. 1761), but different rodent prey were not utilised according to relative abundance. The functional response to Norwegian lemmings was a steep type II curve and a more shallow type III response to grey-sided voles. The different shapes of these two functional responses were likely due to combined effects of differences between lemmings and grey-sided voles in habitat utilisation, anti-predator behaviour and size-dependent vulnerability to predation. Diet composition changed less than changes in relative prey abundance, indicating negative switching, with high disproportional use of especially lemmings at low relative densities. Our results suggest that lemmings and voles should be treated separately in future empirical and theoretical studies in order to better understand the role of predation in this study system.  相似文献   

17.
Vole–vegetation interactions in a predation‐free taiga environment of northern Fennoscandia were studied by transferring vegetation from natural Microtus habitats into a greenhouse, where three habitat islands of about 30 m2 were created. The ‘islands’ were subjected to simulated summer conditions and a paired female field vole, Microtusagrestis, was introduced to each ‘island’. The development of the female and her young was followed by recurrent live trapping. The development of the vegetation was followed by recurrent marking and censusing of plant shoots at intervals of five days. In the next growing season, two ‘islands’ were subjected to a new grazing treatment to study the impacts of repeated grazing on the vegetation and on the growth and reproduction of voles. Plant biomasses were harvested at the end of each trial. In all trials, the biomasses of graminoids and non‐toxic herbs other than ferns, fireweeds and rosaceous plants were profoundly decimated. Even the biomass of a toxic herb Aconitum lycoctonum decreased largely at pace with the palatable herbs. The least preferred plant categories maintained their biomasses at control levels. Their neutral collective response was created by opposite species‐level trends. Species typical for moist and nutrient‐rich forests suffered from vole grazing, whereas the biomass of species adapted to disturbed habitats increased. In spite of the dramatic changes in the vegetation, the introduced female voles survived throughout the trials and reproduced normally. The young of their first litters survived well and reached the final weights typical for individuals starting to winter as immatures. We conclude that most of the plant biomass found on productive boreal forest floors is potential food for field voles and remains palatable for them even when subjected to recurrent, severe grazing. If nothing else than summer resources were limiting the growth of the field vole populations, the plants currently dominating moist and nutrient‐rich taiga floors could not survive in this habitat.  相似文献   

18.
We studied the indirect effects of vertebrate predator exclusion on plant communities in boreal grassland in western Finland to find out whether the removal of the top trophic level would result in a trophic cascade. Predators were excluded from 1996 to 2000 by eight predator-proof fences (each 0.5 ha) constructed on old fields. Despite a major increase in vole densities, the expected trophic cascade attenuated rapidly so that the indirect effects of predator exclusion were restricted to a few plant species. The cause for the rapid attenuation of the trophic cascade appeared to be strong seasonality, as peak densities of voles were attained at the end of the growing season of vegetation, and vole populations declined before the next growing season so that the herbivory pressure during the growing season remained low or moderate. Accordingly, most plants escaped the heaviest grazing pressure either in time (plants completed their reproduction and withered before winter) or in space (living parts hidden under frozen ground and ice). However, heavy winter herbivory reduced the biomass of available vegetation and killed woody species (willows) at vole peaks, which implies that predator exclusion may have a strong effect on secondary succession. During summer, voles reduced the coverage of only a few preferred food plants ( Elymus repens , Phleum pratense , Vicia cracca ). Voles also maintained annual and biennial species in the community by creating gaps in the closed vegetation. We conclude that abiotic factors (harsh winter conditions) limited peak numbers of herbivores below a threshold density where herbivores could have caused a community-level decline in the biomass of herbaceous plants during summer.  相似文献   

19.
Indirect interaction between two competing species via a shared predator may be an important determinant of population and community dynamics. We studied the effect of predation risk imposed by the least weasel Mustela nivalis nivalis on space use, foraging and activity of two competing vole species, the grey-sided vole Myodes rufocanus, and the bank vole Myodes glareolus. The experiment was conducted in a large indoor arena, consisting of microhabitat structures providing food, shelter, trees for refuge and separated areas with high and low predation risk. Voles were followed for 5 days: 2 days before, 1 day during and 2 days after the presence of weasel. Our results suggest an effect of weasel presence on the vole community. Voles of both species shifted their activity from risky to less risky areas, climbed trees more often and were less active. Seed consumption was not affected by weasel presence. The time spent in the risky and less risky area did not differ between species, but bank voles spent more time in trees than grey-sided voles. Males of both species were more exposed to predation risk than females, i.e. generally spent more time in the risky area. Proportion of time spent in the risky area, the use of area, trees and food stations were sex dependent. Activity and use of trees were species dependent. We found no evidence for despotic distribution between our two species, although bank voles seemed to be more affected by coexistence, since they lost weight during the experiment. Based on our results we conclude that predator response was largely similar between species, while the sex-specific responses dominated. Besides a stronger escape response in the bank vole, the strongest individual differences were sex specific, i.e. males were more prone to take risks in space use and activity.  相似文献   

20.
We studied inter-annual, spatial and sexual variation in the body mass of bank volesMyodes glareolus Schreber, 1780 and grey-sided volesMyodes rufocanus Sundevall, 1846 using live trappings from two grids on the southand north-facing slopes of a mountain valley in Southern Norway. Variation in spring density of the four populations was consistent with cyclic dynamics (n=7,s-values >0.5). Individuals caught on the south-facing slope were larger than those caught on the north-facing slope. Reproductively mature bank vole males were smaller than females, whereas reproductively mature grey-sided vole males were larger than females. Body mass was related to density in both species. In bank voles, we found a direct positive density dependence caused by a higher rate of survival at higher densities resulting from individual allocation of resources from reproduction to survival and growth. In grey-sided voles, we found a negative delayed density dependence resulting from grazing on preferred plants that determined the resource available for individual vole growth the following year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号