首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene conversion hypothesis of MHC evolution: a review   总被引:8,自引:8,他引:0  
 Gene conversion is often invoked to explain the evolution of sequence patterns observed in major histocompatibility complex (MHC) genes and their alleles. This is the gene conversion hypothesis of MHC sequence evolution. These observations and their interpretation probably belong in a larger theoretical framework, namely the evolution of systems of resistance to rapidly evolving pathogens. This review looks critically at the evidence in favor of the gene conversion hypothesis in this context. We conclude that the case for the existence of an adaptive mechanism in the MHC favoring gene conversion mutations is not proven.  相似文献   

2.
Lin YS  Hwang JK  Li WH 《Gene》2007,387(1-2):109-117
Using functional genomic and protein structural data we studied the effects of protein complexity (here defined as the number of subunit types in a protein) on gene dispensability and gene duplicability. We found that in terms of gene duplicability the major distinction in protein complexity is between hetero-complexes, each of which includes at least two different types of subunits (polypeptides), and homo-complexes, which include monomers and complexes that consist of only subunits of one polypeptide type. However, gene dispensability decreases only gradually as the number of subunit types in a protein complex increases. These observations suggest that the dosage balance hypothesis can explain well gene duplicability of complex proteins, but cannot completely explain the difference in dispensabilities between hetero-complex subunits. It is likely that knocking out a gene coding for a hetero-complex subunit would disrupt the function of the whole complex, so that the deletion effect on fitness would increase with protein complexity. We also found that multi-domain polypeptide genes are less dispensable but more duplicable than single-domain polypeptide genes. Duplicate genes derived from the whole genome duplication event in yeast are more dispensable (except for ribosomal protein genes) than other duplicate genes. Further, we found that subunits of the same protein complex tend to have similar expression levels and similar effects of gene deletion on fitness. Finally, we estimated that in yeast the contribution of duplicate genes to genetic robustness against null mutation is approximately 9%, smaller than previously estimated. In yeast, protein complexity may serve as a better indicator of gene dispensability than do duplicate genes.  相似文献   

3.
4.
5.
6.
Darwinian evolution in the light of genomics   总被引:1,自引:0,他引:1       下载免费PDF全文
Comparative genomics and systems biology offer unprecedented opportunities for testing central tenets of evolutionary biology formulated by Darwin in the Origin of Species in 1859 and expanded in the Modern Synthesis 100 years later. Evolutionary-genomic studies show that natural selection is only one of the forces that shape genome evolution and is not quantitatively dominant, whereas non-adaptive processes are much more prominent than previously suspected. Major contributions of horizontal gene transfer and diverse selfish genetic elements to genome evolution undermine the Tree of Life concept. An adequate depiction of evolution requires the more complex concept of a network or ‘forest’ of life. There is no consistent tendency of evolution towards increased genomic complexity, and when complexity increases, this appears to be a non-adaptive consequence of evolution under weak purifying selection rather than an adaptation. Several universals of genome evolution were discovered including the invariant distributions of evolutionary rates among orthologous genes from diverse genomes and of paralogous gene family sizes, and the negative correlation between gene expression level and sequence evolution rate. Simple, non-adaptive models of evolution explain some of these universals, suggesting that a new synthesis of evolutionary biology might become feasible in a not so remote future.  相似文献   

7.
8.
Wolf JB  Hager R 《PLoS biology》2006,4(12):e380
Imprinted genes are expressed either from the maternally or paternally inherited copy only, and they play a key role in regulating complex biological processes, including offspring development and mother–offspring interactions. There are several competing theories attempting to explain the evolutionary origin of this monoallelic pattern of gene expression, but a prevailing view has emerged that holds that genomic imprinting is a consequence of conflict between maternal and paternal gene copies over maternal investment. However, many imprinting patterns and the apparent overabundance of maternally expressed genes remain unexplained and may be incompatible with current theory. Here we demonstrate that sole expression of maternal gene copies is favored by natural selection because it increases the adaptive integration of offspring and maternal genomes, leading to higher offspring fitness. This novel coadaptation theory for the evolution of genomic imprinting is consistent with results of recent studies on epigenetic effects, and it provides a testable hypothesis for the origin of previously unexplained major imprinting patterns across different taxa. In conjunction with existing hypotheses, our results suggest that imprinting may have evolved due to different selective pressures at different loci.  相似文献   

9.
Although lateral gene transfer (LGT) is now recognized as a major force in the evolution of prokaryotes, the contribution of LGT to the evolution and diversification of eukaryotes is less understood. Notably, transfers of complete pathways are believed to be less likely between eukaryotes, because the successful transfer of a pathway requires the physical clustering of functionally related genes. Here, we report that in one of the closest unicellular relatives of animals, the choanoflagellate, Monosiga, three genes whose products work together in the glutamate synthase cycle are of algal origin. The concerted retention of these three independently acquired genes is best explained as the consequence of a series of adaptive replacement events. More generally, this study argues that (i) eukaryote‐to‐eukaryote transfers of entire metabolic pathways are possible, (ii) adaptive functional replacements of primary pathways can occur, and (iii) functional replacements involving eukaryotic genes are likely to have also contributed to the evolution of eukaryotes. Lastly, these data underscore the potential contribution of algal genes to the evolution of nonphotosynthetic lineages.  相似文献   

10.
孙博渊  涂剑波  李英  杨明耀 《遗传》2014,36(6):525-535
顺式调控假说是当前进化发育生物学中重要的理论之一, 该假说认为顺式调控元件的进化是调控外表性状进化的主要遗传机制。然而越来越多的实验结果表明, 仅靠顺式调控假说远不足以解释复杂的进化发育过程, 其他因素也会导致表型的进化, 如:与顺式调控元件相联基因的蛋白序列改变; 基因及染色体组复制; 蛋白结构域与顺式调控元件的灵活性等。文章回顾了近年来顺式调控元件以及与顺式调控元件相联基因的进化发育研究, 探讨了进化发育生物学研究的新方法与新思路。  相似文献   

11.
12.
13.
A fundamental issue in molecular evolution is how to identify the evolutionary forces that determine the fate of duplicated genes. The dosage balance hypothesis has been invoked to explain gene duplication patterns at the genomic level under the premise that a dosage imbalance among protein-complex subunits or interacting partners is often deleterious. Here we examine this hypothesis by investigating the molecular basis of dosage sensitivity. We focus on the extent of protein wrapping, which indicates how strongly the structural integrity of a protein relies on its interactive context. From this perspective, we predict that the duplicates of a highly under-wrapped protein or protein subunit should (1) be more sensitive to dosage imbalance and be less likely to be retained and (2) be more likely to survive from a whole-genome duplication (WGD) than from a non-WGD because a WGD causes little or no dosage imbalance. Our under-wrapping analysis of more than 12,000 protein structures strongly supports these predictions and further reveals that the effect of dosage sensitivity on gene duplicability decreases with increasing organismal complexity.  相似文献   

14.
Swanson WJ  Wong A  Wolfner MF  Aquadro CF 《Genetics》2004,168(3):1457-1465
Genes whose products are involved in reproduction include some of the fastest-evolving genes found within the genomes of several organisms. Drosophila has long been used to study the function and evolutionary dynamics of genes thought to be involved in sperm competition and sexual conflict, two processes that have been hypothesized to drive the adaptive evolution of reproductive molecules. Several seminal fluid proteins (Acps) made in the Drosophila male reproductive tract show evidence of rapid adaptive evolution. To identify candidate genes in the female reproductive tract that may be involved in female-male interactions and that may thus have been subjected to adaptive evolution, we used an evolutionary bioinformatics approach to analyze sequences from a cDNA library that we have generated from Drosophila female reproductive tracts. We further demonstrate that several of these genes have been subjected to positive selection. Their expression in female reproductive tracts, presence of signal sequences/transmembrane domains, and rapid adaptive evolution indicate that they are prime candidates to encode female reproductive molecules that interact with rapidly evolving male Acps.  相似文献   

15.
Imprinted genes are expressed either from the maternally or paternally inherited copy only, and they play a key role in regulating complex biological processes, including offspring development and mother–offspring interactions. There are several competing theories attempting to explain the evolutionary origin of this monoallelic pattern of gene expression, but a prevailing view has emerged that holds that genomic imprinting is a consequence of conflict between maternal and paternal gene copies over maternal investment. However, many imprinting patterns and the apparent overabundance of maternally expressed genes remain unexplained and may be incompatible with current theory. Here we demonstrate that sole expression of maternal gene copies is favored by natural selection because it increases the adaptive integration of offspring and maternal genomes, leading to higher offspring fitness. This novel coadaptation theory for the evolution of genomic imprinting is consistent with results of recent studies on epigenetic effects, and it provides a testable hypothesis for the origin of previously unexplained major imprinting patterns across different taxa. In conjunction with existing hypotheses, our results suggest that imprinting may have evolved due to different selective pressures at different loci.  相似文献   

16.
17.
Regulatory changes have long been hypothesized to play an important role in primate evolution. To identify adaptive regulatory changes in humans, we performed a genome-wide survey for genes in which regulation has likely evolved under natural selection. To do so, we used a multi-species microarray to measure gene expression levels in livers, kidneys, and hearts from six humans, chimpanzees, and rhesus macaques. This comparative gene expression data allowed us to identify a large number of genes, as well as specific pathways, whose inter-species expression profiles are consistent with the action of stabilizing or directional selection on gene regulation. Among the latter set, we found an enrichment of genes involved in metabolic pathways, consistent with the hypothesis that shifts in diet underlie many regulatory adaptations in humans. In addition, we found evidence for tissue-specific selection pressures, as well as lower rates of protein evolution for genes in which regulation evolves under natural selection. These observations are consistent with the notion that adaptive circumscribed changes in gene regulation have fewer deleterious pleiotropic effects compared with changes at the protein sequence level.  相似文献   

18.
19.
Gene regulatory networks exhibit complex, hierarchical features such as global regulation and network motifs. There is much debate about whether the evolutionary origins of such features are the results of adaptation, or the by-products of non-adaptive processes of DNA replication. The lack of availability of gene regulatory networks of ancestor species on evolutionary timescales makes this a particularly difficult problem to resolve. Digital organisms, however, can be used to provide a complete evolutionary record of lineages. We use a biologically realistic evolutionary model that includes gene expression, regulation, metabolism and biosynthesis, to investigate the evolution of complex function in gene regulatory networks. We discover that: (i) network architecture and complexity evolve in response to environmental complexity, (ii) global gene regulation is selected for in complex environments, (iii) complex, inter-connected, hierarchical structures evolve in stages, with energy regulation preceding stress responses, and stress responses preceding growth rate adaptations and (iv) robustness of evolved models to mutations depends on hierarchical level: energy regulation and stress responses tend not to be robust to mutations, whereas growth rate adaptations are more robust and non-lethal when mutated. These results highlight the adaptive and incremental evolution of complex biological networks, and the value and potential of studying realistic in silico evolutionary systems as a way of understanding living systems.  相似文献   

20.
The immune gene repertoire encoded in the purple sea urchin genome   总被引:1,自引:0,他引:1  
Echinoderms occupy a critical and largely unexplored phylogenetic vantage point from which to infer both the early evolution of bilaterian immunity and the underpinnings of the vertebrate adaptive immune system. Here we present an initial survey of the purple sea urchin genome for genes associated with immunity. An elaborate repertoire of potential immune receptors, regulators and effectors is present, including unprecedented expansions of innate pathogen recognition genes. These include a diverse array of 222 Toll-like receptor (TLR) genes and a coordinate expansion of directly associated signaling adaptors. Notably, a subset of sea urchin TLR genes encodes receptors with structural characteristics previously identified only in protostomes. A similarly expanded set of 203 NOD/NALP-like cytoplasmic recognition proteins is present. These genes have previously been identified only in vertebrates where they are represented in much lower numbers. Genes that mediate the alternative and lectin complement pathways are described, while gene homologues of the terminal pathway are not present. We have also identified several homologues of genes that function in jawed vertebrate adaptive immunity. The most striking of these is a gene cluster with similarity to the jawed vertebrate Recombination Activating Genes 1 and 2 (RAG1/2). Sea urchins are long-lived, complex organisms and these findings reveal an innate immune system of unprecedented complexity. Whether the presumably intense selective processes that molded these gene families also gave rise to novel immune mechanisms akin to adaptive systems remains to be seen. The genome sequence provides immediate opportunities to apply the advantages of the sea urchin model toward problems in developmental and evolutionary immunobiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号