首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Myxococcus xanthus asg genes ( asgA, asgB , and asgC ) are necessary for production of extracellular A-signal, which is thought to function as a cell-density signal. Previous analyses of the asgA and asgB genes suggest that they perform regulatory functions. In this work, we localized asgC to a region that contains genes homologous to rpsU, dnaG , and rpoD of the Escherichia coli macromolecular synthesis (MMS) operon. Surprisingly, asgC767 was found to be a mutant allele of rpoD , the gene encoding the major sigma factor of M. xanthus . The mutation in asgC767 results in a glutamate to lysine substitution at amino acid 598, which lies within conserved region 3.1 of the major sigma factors. Previous studies have shown that the asg mutants share a number of growth and developmental phenotypes. We found that A-signal restores developmental expression of an A-signal-dependent gene (Ω4521) in the asgC767 ( rpoDEK598 ) mutant background in a manner similar to that seen in the asgA and asgB mutants. Because the asg mutants have very similar phenotypes and the asg genes encode proteins that appear to have regulatory functions, we hypothesize that the asg gene products function together in a regulatory pathway that is required for extracellular A-signal production.  相似文献   

2.
The deduced amino acid sequence of the Myxococcus xanthus AsgA protein contains an N-terminal domain that is homologous to the receiver of response regulators and a C-terminal domain that is homologous to the transmitter of histidine protein kinases. We overexpressed affinity-tagged AsgA in Escherichia coli, purified the recombinant protein, and showed that AsgA has autokinase activity in vitro. The results of chemical-stability assays suggest that AsgA is phosphorylated on a histidine and provide no evidence for transfer of the phosphoryl group to the conserved aspartate of the receiver domain.  相似文献   

3.
Myxococcus xanthus has a complex life cycle that includes fruiting body formation. One of the first stages in development has been called A-signalling. The asg (A-signalling) mutants have been proposed to be deficient in producing A-signal, resulting in development arresting at an early stage. In this paper, we report the identification of a new asg locus asgD. This locus appears to be involved in both environmental sensing and intercellular signalling. Expression of asgD was undetected during vegetative growth, but increased dramatically within 1 h of starvation. The AsgD protein is predicted to contain 773 amino acids and to be part of a two-component regulatory system because it has a receiver domain located at the N-terminus and a histidine protein kinase at the C-terminus. An asgD null mutant was defective in fruiting body formation and sporulation on CF medium. However, the defects of the mutant were complemented extracellularly when cells were mixed with wild-type strains or with bsgA, csgA, dsgA or esgA mutants, but were not complemented extracellularly by asgA, asgB or asgC mutants. In addition, the mutant was rescued by a subset of A-factor amino acids. Surprisingly, when the mutant was plated on stringent starvation medium rather than CF, cells were able to form fruiting bodies. Thus, it appears that AsgD is directly or indirectly involved in sensing nutritionally limiting conditions. The discovery of the asgD locus provides an important sensory transduction component of early development in M. xanthus.  相似文献   

4.
We describe an unusual hybrid histidine protein kinase, which is important for spatially coupling cell aggregation and sporulation during fruiting body formation in Myxococcus xanthus. A rodK mutant makes abnormal fruiting bodies and spores develop outside the fruiting bodies. RodK is a soluble, cytoplasmic protein, which contains an N-terminal sensor domain, a histidine protein kinase domain and three receiver domains. In vitro phosphorylation assays showed that RodK possesses kinase activity. Kinase activity is essential for RodK function in vivo. RodK is present in vegetative cells and remains present until the late aggregation stage, after which the level decreases in a manner that depends on the intercellular A-signal. Genetic evidence suggests that RodK may regulate multiple temporally separated events during fruiting body formation including stimulation of early developmental gene expression, inhibition of A-signal production and inhibition of the intercellular C-signal transduction pathway. We speculate that RodK undergoes a change in activity during development, which is reflected in changes in phosphotransfer to the receiver domains.  相似文献   

5.
Abstract Progression through early Myxococcus xanthus multicellular fruiting body development requires the generation of and response to extracellular A signal. Extracellular A signal is a specific set of amino acids at an extracellular concentration greater than 10 μM. It functions as a cell density signal during starvation that allows the cells to sense that a minimal cell density has been reached and development can proceed. The generation of extracellular A signal requires the products of three asg genes. They have recently been identified as AsgA, a fused two-component histidine protein kinase and response regulator; AsgB, a putative DNA-binding protein; and AsgC, the M. xanthus major sigma factor. Other elements of the A signaling pathway map to the sasB locus and appear to be A signal transducers. These elements are regulators of the earliest A signal-dependent gene, whose promoter is a member of the sigma-54 family. Continued study of the A signaling pathway is expected to identify additional components of this network required for the complex behavioural response of fruiting body formation.  相似文献   

6.
Myxococcus xanthus DNA segments related to the highly conserved central sequence of ς54 activator proteins have been investigated. A genetic technique designed to inactivate a gene that encodes such an activator by inserting a plasmid-borne internal fragment of the putative gene has been tested. When the internal fragment inserted by homologous recombination into the corresponding chromosomal locus, the expected duplication of the gene was observed by Southern hybridization. The single restriction fragment characteristic of each segment was replaced in the insertion strains by two hybridizing fragments, and one of these fragments hybridized with the kanamycin resistance gene of the plasmid vector. The combined molecular weights of the two fragments from the insertion strains were equal to the molecular weight of the original fragment plus the expected molecular weight contributed by the vector. In the duplication, one copy is expected to have an N-terminal deletion and the other copy is expected to have a C-terminal deletion. In most cases, the net result should be loss of activator function. If an activator is essential for vegetative growth, then it should not be possible to obtain the insertion strain by plasmid integration. Indeed, integrants for three of the segments were not obtained in repeated trials; however, a plausible explanation for these results other than lethality can be offered. Of the seven insertions validated by Southern hybridization, four strains exhibited defects in the development of fruiting bodies. One of these failed to develop in submerged culture, though it developed normally on agar. The other three showed arrested development of fruiting bodies, each at a morphologically different stage of aggregation. One of the mutants may be defective in the reception pathway of A-signal.  相似文献   

7.
asg-carrying strains of Myxococcus xanthus arose in a selection for mutants defective in cell-cell signalling during fruiting body development. All 15 asg mutations examined were found to lie in one of three genetic loci, asgA, asgB, or asgC. The loci were defined by linkage to different insertions of transposon Tn5 and molecular cloning of asgA. asg mutants of all three types were deficient in the aggregation of cells into mounds of the sort that normally give rise to fruiting bodies. asg mutants were also deficient in spore formation; sporulation is normally one of the last steps in fruiting body development. Consistent with a requirement for cell-to-cell signalling, at 1 to 2 h asg+-carrying cells release a material called A-factor that can rescue development of asg mutants. asgA, asgB, and asgC mutants released 5% or less of the asg+ level of A-factor, as measured by bioassay. The experimental results are consistent with the hypothesis that a deficiency in A-factor production or release is the primary developmental defect in asg mutants and that aggregation and sporulation depend on A-factor. asg mutations at all three loci also changed the color and morphology of growing colonies, and failure to release A-factor may itself arise from a defect in growing cells.  相似文献   

8.
9.
Tse H  Gill RE 《Journal of bacteriology》2002,184(5):1455-1457
Mutations in spdR, previously reported to bypass the developmental requirement for B-signaling in Myxococcus xanthus, also bypass the requirement for A-signaling but not C-, D-, or E-signaling. Mutations in spdR restored nearly wild-type levels of sporulation to representative A-signal-deficient mutants carrying asgA476, asgB480, and asgC767 and improved the quality of fruiting body formation in the asgB480 mutant. The defect in A-factor production by the asgB480 mutant was not restored in the spdR2134 asgB480 double mutant.  相似文献   

10.
The genomic structure of integrins is important to our understanding of the evolution of this complex family. The alpha subunit of the leukocyte integrin p150,95 (CD11c) is a transmembrane polypeptide of 1144 residues whose long extracellular region contains three putative divalent cation binding repeats and a 200- amino acid inserted or "I" domain. The p150,95 alpha subunit gene extends over 25 kilobases and is comprised of at least 31 exons grouped in five clusters. The I domain, which is only present in some integrins and is homologous to domains in von Willebrand factor, cartilage matrix protein, complement factor B and the alpha 1 and alpha 2 chains of collagen type VI, is distributed in four exons. Each one of the three divalent cation binding repeats is encoded by a separate exon. Surprisingly, a sequence homologous to the first two putative divalent cation binding repeats is present in an inverted orientation in the intron following the last exon of the I domain. Both the signal peptide and the transmembrane domain are split in two exons. Putative proteolytic cleavage sequences in other integrin alpha subunits align as inserts within the p150,95 alpha subunit gene falling at exon boundaries. The organization of the p150,95 alpha subunit gene provides further insights into the structure and evolution of the integrins.  相似文献   

11.
A mutation linked to autistic spectrum disorders encodes an Arg to Cys replacement in the C-terminal portion of the extracellular domain of neuroligin-3. The solvent-exposed Cys causes virtually complete retention of the protein in the endoplasmic reticulum when the protein is expressed in transfected cells. An identical Cys substitution was reported for butyrylcholinesterase through genotyping patients with post-succinylcholine apnea. Neuroligin, butyrylcholinesterase, and acetylcholinesterase are members of the alpha,beta-hydrolase fold family of proteins sharing sequence similarity and common tertiary structures. Although these proteins have distinct oligomeric assemblies and cellular dispositions, homologous Arg residues in neuroligin-3 (Arg-451), in butyrylcholinesterase (Arg-386), and in acetylcholinesterase (Arg-395) are conserved in all studied mammalian species. To examine whether an homologous Arg to Cys mutation affects related proteins similarly despite their differing capacities to oligomerize, we inserted homologous mutations in the acetylcholinesterase and butyrylcholinesterase cDNAs. Using confocal fluorescence microscopy and analysis of oligosaccharide processing, we find that the homologous Arg to Cys mutation also results in endoplasmic reticulum retention of the two cholinesterases. Small quantities of mutated acetylcholinesterase exported from the cell retain activity but show a greater K(m), a much smaller k(cat), and altered substrate inhibition. The nascent proteins associate with chaperones during processing, but the mutation presumably restricts processing through the endoplasmic reticulum and Golgi apparatus, because of local protein misfolding and inability to oligomerize. The mutation may alter the capacity of these proteins to dissociate from their chaperone prior to oligomerization and processing for export.  相似文献   

12.
13.
The combination of denaturing gradient gel electrophoresis (DGGE) and in vitro DNA amplification has allowed us to (1) localize a DNA mutation to a given 100-bp region of the human genome and (2) rapidly sequence the DNA without cloning. DGGE showed that a mutation had occurred, but the technique revealed little about the nature or position of that mutation. The region of the genome containing the mutation was amplified by the polymerase chain-reaction technique, providing DNA of sufficient quality and quantity for direct sequencing. Amplification was performed with a 32P end-labeled primer that allowed direct Maxam-Gilbert sequencing of the amplified product without cloning. HPRTMunich was found to contain a single-base-pair substitution, a C-to-A transversion at base-pair position 397. We report the generation of a 169-bp, wild-type DNA probe that encompasses most of exon 3 of the human hypoxanthine guanine phosphoribosyltransferase (HPRT) gene and contains a low-temperature melting domain of approximately 100 bp. HPRTMunich, an HPRT mutant isolated from a patient with gout, has a single amino acid substitution; the corresponding DNA sequence alteration must lie within the low-temperature melting domain of exon 3. We report the separation of HPRTMunich from the wild-type sequence using DGGE. In addition to base-pair substitutions, DGGE is also sensitive to the methylation state of the molecule. The cDNA for HPRT was cloned into a vector and propagated in Escherichia coli dam+ and dam- strains; thus, methylated and unmethylated HPRT cDNA was obtained.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The gene coding for glycoprotein B2 (gB2) of herpes simplex virus type 2 (HSV-2) strain 333 was mapped and its nucleotide sequence determined. Open reading frame analysis deduced a polypeptide consisting of 902 amino acids and having close homology to gB1 of HSV type 1. Several predicted features of gB2 are consistent with a membrane-bound glycoprotein, i.e., a signal peptide sequence, a hydrophilic extracellular domain containing possible N-linked glycosylation sites, a hydrophobic membrane spanning sequence, and a cytoplasmic domain. Computer analysis on hydrophilicity, accessibility, and flexibility of the gB2 amino acid sequence, produced a composite surface value plot. At least nine major antigenic regions were predicted on the extracellular domain. The amino acids between residues 59-74, 127-139, 199-205, 460-476, and 580-594 exhibited the highest surface values. Comparison of the primary sequence with gB1 revealed localized regions showing amino acid diversity. Several of these locations correspond to major antigenic regions. Chou and Fasman analyses indicated that the amino acid substitutions, between positions 57-66, 461-472, and 473-481, induced changes in the secondary structure of gB. These sites could represent site-specific epitopes in the gB polypeptide.  相似文献   

15.
16.
Glycine at position 9 is replaced by aspartic acid in the mutant b-subunit of Escherichia coli F1F0-ATPase coded for by the uncF476 allele. The mutant b-subunit is not assembled into the membrane in haploid strains carrying the uncF476 allele, but, if the mutant allele is incorporated into a multicopy plasmid, then some assembly of the mutant b-subunit occurs. Two revertant strains were characterized, one of which (AN2030) was a full revertant, the other (AN1953) a partial revertant. DNA sequencing indicated that in strain AN2030 the uncF476 mutation had reverted to give the sequence found in the normal uncF gene. The partial-revertant strain AN1953, however, retained the DNA sequence of the uncF476 allele, and complementation analysis indicated that the second mutation may be in the uncA gene. Membranes prepared from the partial-revertant strain carried out oxidative phosphorylation, although the membranes appeared to be impermeable to protons, and the ATPase activity was sensitive to the inhibitor dicyclohexylcarbodi-imide.  相似文献   

17.
18.
The Dexras1 gene responds to glucocorticoids with a rapid and profound induction. A glucocorticoid response element (GRE) was identified in the 3'-flanking region (2.3 kb downstream of poly(A) signal) of the human Dexras1 gene. This element conferred rapid glucocorticoid responsiveness when inserted into a homologous promoter-driven luciferase reporter. A point mutation within the 15-bp GRE abolished this glucocorticoid responsiveness.  相似文献   

19.
Cell-cell adhesion and morphogenesis in Dictyostelium discoideum   总被引:1,自引:0,他引:1  
During development of Dictyostelium discoideum, cells acquire EDTA-resistant cell-cell adhesion at the aggregation stage. The EDTA-resistant cell binding activity is associated with a cell surface glycoprotein of Mr 80,000 (gp80), which mediates cell-cell binding via homophilic interaction. Analysis of the structure of gp80 deduced from cDNA sequence reveals the presence of three internally homologous segments in the NH2-terminal domain, which also contains regions with homology to the neural cell adhesion molecule. Secondary structure predictions show an abundance of beta-structures and very few alpha-helices. This is confirmed by circular dichroism measurements. It is likely that the homologous segments are organized into globular structures, extended from the cell surface by a Pro-rich stalk domain. The cell binding activity of gp80 resides within the first globular repeat of the NH2-terminal domain and has been mapped to a 51 amino acid region between Val123 and Leu173. Synthetic oligopeptides corresponding to sequences within this region have been prepared and assayed for their ability to bind to cell surface gp80. Results lead to identification of the homophilic binding site to an octapeptide sequence within this region. Synthetic peptides containing this octapeptide sequence and univalent antibodies directed against this site block the formation of organized cell streams during aggregation. Although cell aggregates are eventually formed, most fail to undergo further development to give rise to slugs and fruiting bodies, indicating that cell-cell adhesion involving gp80 is an important step in normal morphogenesis.  相似文献   

20.
The fruiting body development of Myxococcus xanthus consists of two separate but interacting pathways: one for aggregation of many cells to form raised mounds and the other for sporulation of individual cells into myxospores. Sporulation of individual cells normally occurs after mound formation, and is delayed at least 30 h after starvation under our laboratory conditions. This suggests that M. xanthus has a mechanism that monitors progress towards aggregation prior to triggering sporulation. A null mutation in a newly identified gene, espA (early sporulation), causes sporulation to occur much earlier compared with the wild type (16 h earlier). In contrast, a null mutation in an adjacent gene, espB, delays sporulation by about 16 h compared with the wild type. Interestingly, it appears that the espA mutant does not require raised mounds for sporulation. Many mutant cells sporulate outside the fruiting bodies. In addition, the mutant can sporulate, without aggregation into raised mounds, under some conditions in which cells normally do not form fruiting bodies. Based on these observations, it is hypothesized that EspA functions as an inhibitor of sporulation during early fruiting body development while cells are aggregating into raised mounds. The aggregation-independent sporulation of the espA mutant still requires starvation and high cell density. The espA and espB genes are expressed as an operon and their translations appear to be coupled. Expression occurs only under developmental conditions and does not occur during vegetative growth or during glycerol-induced sporulation. Sequence analysis of EspA indicates that it is a histidine protein kinase with a fork head-associated (FHA) domain at the N-terminus and a receiver domain at the C-terminus. This suggests that EspA is part of a two-component signal transduction system that regulates the timing of sporulation initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号