首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Bruno  W D Horrocks  R J Zauhar 《Biochemistry》1992,31(31):7016-7026
The effects of minor differences in the amino acid sequences between a vertebrate (bovine testes) and an invertebrate (octopus) calmodulin on metal ion binding were investigated via laser-induced Eu3+ and Tb3+ luminescence. Amino acid substitutions at residues which are coordinated to the metal ion do not produce any detectable changes in the 7F0----5D0 excitation spectrum of the Eu3+ ion bound to octopus calmodulin relative to bovine testes calmodulin; only minor differences in the excited-state lifetime values in D2O solution are observed. The dissociation constants for Eu3+ (1.0 +/- 0.2 microM) and Tb3+ (5 +/- 1 microM) from the weak lanthanide binding sites (III and IV, numbered from the amino terminus) of octopus calmodulin were measured using luminescence techniques. Both values agree well with those reported previously for bovine testes calmodulin [Mulqueen, P. M., Tingey, J. M., & Horrocks, W. D., Jr. (1985) Biochemistry 24, 6639-6645]. The measured dissociation constant of Eu3+ bound in the tight lanthanide binding sites (I and II) is 6 +/- 2 nM for octopus calmodulin and 12 +/- 2 nM for bovine testes calmodulin. The distances between sites I and II (12.4 +/- 0.5 A) and sites III and IV (11.7 +/- 0.8 A) were determined from F?rster-type energy transfer in D2O solutions of octopus calmodulin containing bound Eu3+ donor and Nd3+ acceptor ions. F?rster theory parameters for nonradiative energy transfer between Tyr138 and Tb3+ ions bound at sites III and IV of octopus calmodulin were comprehensively evaluated, including a dynamics simulation of the orientation factor kappa 2. This theory is found to account quantitatively for the observed energy-transfer efficiency as evaluated from the observed sensitized Tb3+ emission.  相似文献   

2.
This work reports Eu(III) and Tb(III) luminescence titrations in which the lanthanide ions were used as spectroscopic probes for Ca(II) ions to determine the metal binding ability of Ac-NESVKEEGGW-NH(2) and Ac-NESVKEDGGW-NH(2). These decapeptides correspond to the putative calcium binding region of the plant antifungal proteins SI-alpha1 from Sorghum bicolor and of Zeathionin from Zea mays, respectively. The luminescence spectra for the Eu(III)-decapeptide system (red emission) with the excitation at the Trp band at 280 nm showed an enhancement of the intensities of the 5D(0)-->7F(J) transitions (where J=0-4) with increments of Eu(III) ion concentration. The photoluminescence titration data of the terbium ion (green emission) in the decapeptide solutions showed intensification of the 5D(4)-->7F(J) transitions (J=0-6), similar to that observed for the Eu(III) ion. Thus, energy transfer from Ac-NESVKEEGGW-NH(2) and Ac-NESVKEDGGW-NH(2) to the trivalent lanthanide ions revealed that these peptides are capable of binding to these metal ions with association constants of the order of 10(5) M(-1). The amino acid derivative Ac-Trp-OEt also transferred energy to Tb(III) and Eu(III) ions as judged from the quenching of tryptophan luminescence. However, the energy transfers were significantly lower. Taken together the luminescence titration data indicated that Ac-NESVKEEGGW-NH(2) and Ac-NESVKEDGGW-NH(2) bind efficiently to both trivalent lanthanide ions and that these ions may be used as probes to distinguish an anionic peptide from a neutral amino acid derivative.  相似文献   

3.
Some lanthanide (Ln) complexes (Ln = Er, Nd, Yb) with an organic ligand, 6-diphenylamine carbonyl 2-pyridine carboxylic acid (HDPAP), have been synthesized. The crystal structure and near infrared luminescence of these complexes (Er-DPAP, Nd-DPAP and Yb-DPAP) have been investigated. The results showed that the lanthanide complexes have electroneutral structures and the near infrared (NIR) emission exhibits characteristic narrow emission of the lanthanide ions. The energy transfer mechanisms in the lanthanide complexes were discussed.  相似文献   

4.
Fluorescence detection is extensively used in high throughput screening. In HTS there is a continuous migration toward higher density plates and smaller sample volumes. In the present report we describe the advantages of two-photon or multiphoton excitation for HTS. Multiphoton excitation (MPE) is the simultaneous absorption of two long-wavelength photons to excite the lowest singlet state of the fluorophore. MPE is typically accomplished with short but high-intensity laser pulses, which allows simultaneous absorption of two or more photons. The intensity of the multiphoton-induced fluorescence is proportional to the square, cube, or higher power of the instantneous photon flux. Consequently, two-photon or multiphoton excitation only occurs at the focal point of the incident beam. This property of two-photon excitation allows the excited volume to be very small and to be localized in the center of each well in the HTS plate. We show that two-photon-induced fluorescence of fluorescein can be reliably measured in microwell plates. We also show the use of 6-carboxy fluorescein as a pH probe with two-photon excitation, and measure 4'-6-diamidino-2-phenylindole (DAPI) binding and two-photon-induced fluorescence. In further studies we measure the time-dependent intensity decays of DAPI bound to DNA and of calcium-dependent fluorophores. Finally, we demonstrate the possibility of three-photon excitation of several fluorophores, including indole, in the HTS plate. These results suggest that MPE can be used in high-density multiwell plates.  相似文献   

5.
Laser light microscopy enables observation of various simultaneously occurring events in living cells. This capability is important for monitoring the spatiotemporal patterns of the molecular interactions underlying such events. Two-photon excited fluorescence microscopy (two-photon microscopy), a technology based on multiphoton excitation, is one of the most promising candidates for such imaging. The advantages of two-photon microscopy have spurred wider adoption of the method, especially in neurological studies. Multicolor excitation capability, one advantage of two-photon micro-scopy, has enabled the quantification of spatiotemporal patterns of [Ca(2+)](i) and single episodes of fusion pore openings during exocytosis. In pancreatic acinar cells, we have successfully demonstrated the existence of "sequential compound exocytosis" for the first time, a process which has subsequently been identified in a wide variety of secretory cells including exocrine, endocrine and blood cells. Our newly developed method, the two-photon extracellular polar-tracer imaging-based quantification (TEPIQ) method, can be used for determining fusion pores and the diameters of vesicles smaller than the diffraction-limited resolution. Furthermore, two-photon microscopy has the demonstrated capability of obtaining cross-sectional images from deep layers within nearly intact tissue samples over long observation times with excellent spatial resolution. Recently, we have successfully observed a neuron located deeper than 0.9 mm from the brain cortex surface in an anesthetized mouse. This microscopy also enables the monitoring of long-term changes in neural or glial cells in a living mouse. This minireview describes both the current and anticipated capabilities of two-photon microscopy, based on a discussion of previous publications and recently obtained data.  相似文献   

6.
Mikhail Tsvirko 《Luminescence》2022,37(8):1387-1394
The luminescence and absorption spectra of the lanthanide ions in solids and coordination compounds are characterized by sharp pure electronic lines, which are accompanied by much weaker lines of vibronic transitions. The vibronic spectroscopy is a good probing tool for investigations of the properties of surrounding ion ligands. The lanthanides formates are efficient luminescent crystals and can be viewed as the elementary type in the whole class of the oxygen-containing lanthanide coordination compounds. The intensity of vibronic transitions in spectra of luminescence and excitation europium (5D07F2, 7F05D2), terbium (7F65D4), gadolinium (6P7/28S7/2) in anhydrous formates of the type Ln(HCOO)3 (Ln = Eu, Tb, Gd) and Y(HCOO)3.2H2O doped with Eu3+ and Tb3+ (C ~1 mol%) are reported. Also, the infrared and Raman spectra were obtained for the same compounds. Related integral intensity vibronic sidebands depend on the type of electronic transition of the same ion and varies for the same electronic transitions in different crystals. The obtained experimental data referring to the rate constants of vibronic transitions and intensity distribution in vibronic spectra on normal vibrations of the formate groups are in agreement with the predictions based on the Stavola–Dexter theory of cooperative vibronic transitions.  相似文献   

7.
Pulsed dye laser excitation spectroscopy of the 7F0----5D0 transition of Eu(III) reveals only a single peak as this ion is titrated into apocalmodulin. A titration based on the intensity of this transition shows that the first two Eu(III) ions bind quantitatively to two tight sites, followed by weaker binding (Kd = 2 microM) to two additional sites under conditions of high ionic strength (0.5 M KC1). This excitation experiment is also shown to be a general method for measuring contaminating levels of EDTA down to 0.2 microM in proton solutions. Experiments with Tb(III) using both direct laser excitation and indirect sensitization of Tb(III) luminescence through tyrosine residues in calmodulin also give evidence for two tight and two weaker binding sites (Kd = 2-3 microM). The indirect sensitization results primarily upon binding to the two weaker sites, implying that Tb(III) binds first to domains I and II, which are remote from tyrosine-containing domains III and IV. The 7F0----5D0 excitation signal of Eu(III) was used to measure the relative overall affinities of the tripositive lanthanide ions, Ln(III), across the series. Ln(III) ions at the end of the series are found to bind more weakly than those at the beginning and middle of the series. Eu(III) excited-state lifetime measurements in H2O and D2O reveal that two water molecules are coordinated to the Eu(III) at each of the four metal ion binding sites. Measurements of F?rster-type nonradiative energy-transfer efficiencies between Eu(III) and Nd(III) in the two tight sites were carried out by monitoring the excited-state lifetimes of Eu(III) in the presence and absence of the energy acceptor ion Nd(III).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Recently, lanthanide (Ln) luminescent nanocrystals have attracted increasing attention in various fields such as biomedical imaging, lasers, and anticounterfeiting. However, due to the forbidden 4f–4f transition of lanthanide ions, the absorption cross-section and luminescence brightness of lanthanide nanocrystals are limited. To address the challenge, we constructed an optical oscillator-like system to repeatedly simulate lanthanide nanocrystals to enhance the absorption efficiency of lanthanide ions on excitation photons. In this optical system, the upconversion luminescence (UCL) of Tm3+ emission of ~450 nm excited by a 980 nm laser can be amplified by a factor beyond 104. The corresponding downshifting luminescence of Tm3+ at 1460 nm was enhanced by three orders of magnitude. We also demonstrated that the significant luminescence enhancement in the designed optical oscillator-like system was general for various lanthanide nanocrystals including NaYF4:Yb3+/Ln3+, NaErF4@NaYF4 and NaYF4:Yb3+/Ln3+@NaYF4:Yb3+@NaYF4 (Ln = Er, Tm, Ho) regardless of the wavelengths of excitation sources (808 and 980 nm). The mechanism study revealed that both elevated laser power in the optical system and multiple excitations on lanthanide nanocrystals were the main reason for the luminescence amplification. Our findings may benefit the future development of low-threshold upconversion and downshifting luminescence of lanthanide nanocrystals and expand their applications.  相似文献   

9.
The luminescent lanthanides are potentially useful probes of cation-induced events involving phospholipid membranes. In this work, the spectroscopic properties of Tb3+, Ce3+ and Eu3+ are shown to be complementary in defining three forms of complex with phosphatidic acid vesicles. Ce3+, in particular, is useful for studying dilute cation-lipid complexes because it has strong excitation bands in the near ultraviolet. In addition to providing a means for detecting chemically distinct forms of lanthanide-lipid complexes, the luminescence can be used to monitor cation-induced lateral segregation. Ce3+ to Tb3+ energy transfer was observed at lanthanide levels as low as 1:1000 Ln3+/phosphatidic acid, indicating clustering or phase separation. Initial clustering occurs on a subsecond timescale, followed by a much slower aggregation continuing for several minutes to hours. Addition of a chelator results in slow release of the lanthanides. In the case of the dioleoylphosphatidic acid complexes, release is bimodal and indicative of cation entrapment; dimyristoylphosphatidic acid complexes exhibit this behavior only at high temperatures. These observations are consistent with the relative tendencies of these two lipids to form the HII phase. This work sets the foundation for experiments designed to determine the size of nucleation sites for cation-induced events such as intramembrane inverted micelle formation and membrane fusion.  相似文献   

10.
Two-photon fluorescence excitation has been found to be a very powerful method for enhancing the sensitivity and resolution in far-field light microscopy. Two-photon fluorescence excitation also provides a substantially background-free detection on the single-molecule level. It allows direct monitoring of formation of labelled biomolecule complexes in solution. Two-photon excitation is created when, by focusing an intensive light source, the density of photons per unit volume and per unit time becomes high enough for two photons to be absorbed into the same chromophore. In this case, the absorbed energy is the sum of the energies of the two photons. In two-photon excitation, dye molecules are excited only when both photons are absorbed simultaneously. The probability of absorption of two photons is equal to the product of probability distributions of absorption of the single photons. The emission of two photons is thus a quadratic process with respect to illumination intensity. Thus in two-photon excitation, only the fluorescence that is formed in the clearly restricted three-dimensional vicinity of the focal point is excited. We have developed an assay concept that is able to distinguish optically between the signal emitted from a microparticle in the focal point of the laser beam, and the signal emitted from the surrounding free labelled reagent. Moreover, the free labels outside the focal volume do not contribute any significant signal. This means that the assay is separation-free. The method based on two-photon fluorescence excitation makes possible fast single-step and separation-free immunoassays, for example, for whole blood samples. Since the method allows a separation-free assay in very small volumes, the method is very useful for high-throughput screening assays. Consequently we believe that two-photon fluorescence excitation will make a remarkable impact as a research tool and a routine method in many fields of analysis.  相似文献   

11.
Multiphoton imaging based on two‐photon excitation is making its way into the clinics, particularly for skin cancer diagnostics. It has been suggested that endogenously formed protoporphyrin IX (PpIX) induced by aminolevulinic acid or methylaminolevulinate can be applied to improve tumor contrast, in connection to imaging of tissue autofluorescence. However, previous reports are limited to cell studies and data from tissue are scarce. No report shows conclusive evidence that endogenously formed PpIX increases tumor contrast when performing multiphoton imaging in the clinical situation. We here demonstrate by spectral analysis that two‐photon excitation of endogenously formed PpIX does not provide additional contrast in superficial basal cell carcinomas. In fact, the PpIX signal is overshadowed by the autofluorescent background. The results show that PpIX should be excited at a wavelength giving rise to one‐photon anti‐Stokes fluorescence, to overcome the autofluorescent background. Thus, this study reports on a plausible method, which can be implemented for clinical investigations on endogenously formed PpIX using multiphoton microscopy (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Fluorescence resonance energy transfer (FRET) between fluorescent proteins (FPs) is a powerful method to visualize and quantify protein-protein interaction in living cells. Unfortunately, the emission bleed-through of FPs limits the usage of this complex technique. To circumvent undesirable excitation of the acceptor fluorophore, using two-photon excitation, we searched for FRET pairs that show selective excitation of the donor but not of the acceptor fluorescent molecule. We found this property in the fluorescent cyan fluorescent protein (CFP)/yellow fluorescent protein (YFP) and YFP/mCherry FRET pairs and performed two-photon excited FRET spectral imaging to quantify protein interactions on the later pair that shows better spectral discrimination. Applying non-negative matrix factorization to unmix two-photon excited spectral imaging data, we were able to eliminate the donor bleed-through as well as the autofluorescence. As a result, we achieved FRET quantification by means of a single spectral acquisition, making the FRET approach not only easy and straightforward but also less prone to calculation artifacts. As an application of our approach, the intermolecular interaction of amyloid precursor protein and the adaptor protein Fe65 associated with Alzheimer's disease was quantified. We believe that the FRET approach using two-photon and fluorescent YFP/mCherry pair is a promising method to monitor protein interaction in living cells.  相似文献   

13.
Luminescence emission, polarization, and excitation spectra of polyadenylic acid (poly(A)) have been studied in room-temperature aqueous solution (pH 8). The temperature dependence of the luminescence of poly(A) at two different excitation wavelengths in the range 10-70 degrees C has also been studied and compared with that of adenosine 5'-monophosphate (AMP). It has been found that the luminescence excitation spectrum and the polarization curve of poly(A) solution reveal a low-intensity electronic transition at about 320 nm which is red-shifted by approximately 0.9 eV from the maximum of the absorption spectrum at 260 nm. A model of two luminescent stacked forms is suggested. The difference in the ground state levels of these two stacked forms obtained from the temperature dependencies of the emissions is insignificant ( approximately 1 kcal/mol). This means a lowering of the excited state of the stacked form with the 320 nm/420 nm absorption/emission bands by approximately 0.9 eV as compared to the main form with the 260 nm/400 nm absorption/emission bands. The low-lying excited states suggest the stronger electronic coupling of the bases in a certain stacked form. It is proposed that such clusters of the stacked bases could provide the wire-like conductivity in the short segments of DNA.  相似文献   

14.
The microstructural basis for the mechanical properties of blood vessels has not been directly determined because of the lack of a nondestructive method that yields a three-dimensional view of these vascular wall constituents. Here, we demonstrate that multiphoton microscopy can be used to visualize the microstructural basis of blood vessel mechanical properties, by combining mechanical testing (distension) of excised porcine coronary arteries with simultaneous two-photon excited fluorescence and second-harmonic generation microscopy. Our results show that second-harmonic generation signals derived from collagen can be spectrally isolated from elastin and smooth muscle cell two-photon fluorescence. Two-photon fluorescence signals can be further characterized by emission maxima at 495 nm and 520 nm, corresponding to elastin and cellular contributions, respectively. Two-dimensional reconstructions of spectrally fused images permit high-resolution visualization of collagen and elastin fibrils and smooth muscle cells from intima to adventitia. These structural features are confirmed by coregistration of multiphoton microscopy images with conventional histology. Significant changes in mean fibril thickness and overall wall dimension were observed when comparing no load (zero transmural pressure) and zero-stress conditions to 30 and 180 mmHg distension pressures. Overall, these data suggest that multiphoton microscopy is a highly sensitive and promising technique for studying the morphometric properties of the microstructure of the blood vessel wall.  相似文献   

15.
A novel ligand containing multiple coordinating groups (sulfinyl, carboxyl and carbonyl groups), acetophenonylcarboxymethyl sulphoxide, was synthesized. Its corresponding two lanthanide (III) binary complexes were synthesized and characterized by element analysis, molar conductivity, FT‐IR, TG‐DTA and UV spectroscopy. Results showed that the composition of these complexes was REL3L (ClO4)2·3H2O (RE = Eu (III), Tb (III); L = C6H5COCH2SOCH2COOH; L = C6H5COCH2SOCH2COO). FT‐IR results indicated that acetophenonylcarboxymethyl sulphoxide was bonded with an RE (III) ion by an oxygen atom of the sulfinyl and carboxyl groups and not by an oxygen atom of the carbonyl group due to high steric hinderance. Fluorescent spectra showed that the Tb (III) complex had excellent luminescence as a result of a transfer of energy from the ligand to the excitation state energy level (5D4) of Tb (III). The Eu (III) complex displayed weak luminescence, attributed to low energy transfer efficiency between the triplet state energy level of its ligand and the excited state (5D0) of Eu (III). As a result, the Tb (III) complex displayed a good antenna effect for luminescence. The fluorescence decay curves of Eu (III) and Tb (III) complexes were also measured. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The O-alkylation of glycolate with maleate yielding carboxymethoxysuccinate (cmos) is a lanthanide(III) promoted reaction. It is demonstrated that the reaction can be studied on-line with the help of an optical fiber setup, monitoring the luminescence of the Eu(III) optical probe. During the reaction the 5D0→F0 transition shifts to lower wavenumbers and the average lifetime of the excited 5D0 level of the Eu(III) ion increases, when substantial amounts of Eu(cmos)2 are formed. The average number of OH oscillators in the first coordination sphere of the Eu(III) ion is decreased by two if one cmos per Eu(III) is formed. The concentration of cmos can be obtained by on-line measurements of the lifetime of the 5D0 excited stare.  相似文献   

17.
Dinuclear lanthanide complexes of the general for Ln2(TTA)4(PAN)2 (Ln = Eu, Gd, Tb, Yb; TTA and monodeprotonated thenoyltrifluoroacetone and PAN 1-(2-pyridylazo)-2-naphthol, respectively) were prepared and structurally characterized. These novel complexes, representing the first examples of crystallographically characterized lanthanide-PAN complexes, each feature a dinuclear core with the metal atoms bridged by the phenolato O atoms of the chelating-bridging PAN ligands. Electronic spectroscopic and photoluminescence studies were carried out for the Eu(III) complex, and the results are consistent with ligand-mediated energy transfer and ligand-sensitized luminescence characteristic of Eu(III). The Eu(III) complex doped into a polymeric film was shown to effectively limit a nanosecond 523-nm laser pulse, and the limiting effect is rationalized in terms of reverse saturable absorption due to the strong absorption of the metal’s excited triplet states that are populated by intersystem crossing.  相似文献   

18.
Luminescence methods were used to examine the interaction of Eu(III) and Tb(III) with parvalbumin isozyme III from pike (Esox lucius). The bound lanthanide ions were excited both directly, via laser irradiation, and indirectly, via fluorescence energy transfer from adjacent phenylalanine residues. At high (175 microM) protein concentrations, the lanthanide titration curves exhibited pronounced quenching of luminescence at Ln3+:parvalbumin ratios above 2:1, in agreement with earlier reports (Donato, H., Jr., and Martin, R. B. (1974) Biochemistry 13, 4575-4579). However, in experiments performed with lower concentrations (10 microM), the titrations were well behaved and indicated a lanthanide:protein stoichiometry of 2:1. Equilibrium dialysis measurements performed with Eu(III) ruled out the existence of a third strong binding site which could cause the quenching of the luminescence at high protein concentrations. Similarly, careful analysis of the spectrum that results from direct excitation of the 7F0----5D0 transition of parvalbumin-bound Eu3+ ion revealed no peak attributable to a third Ln3+-binding site. The peak which has been construed by others (Rhee, M.-J., Sudnick, D. R., Arkle, V. K., and Horrocks, W. DeW., Jr. (1981) Biochemistry 20, 3328-3334) as evidence for a third site was shown to result from a pH-dependent spectral transition involving the europium ions bound at the CD and EF sites. Luminescent lifetime measurements performed on Tb(III)/parvalbumin solutions follow Stern-Volmer quenching kinetics at terbium:protein ratios in excess of 2:1, suggesting that the quenching results from collisional deactivation of the tightly bound ions by excess terbium ion free in solution.  相似文献   

19.
Six water-soluble free-base porphyrin-Ru(II) conjugates, 1-3, and Zn(II) porphyrin-Ru(II) conjugates, 4-6, with different linkers between the hydrophobic porphyrin moiety and the hydrophilic Ru(II)-polypyridyl complex, have been synthesized. The linear and two-photon-induced photophysical properties of these conjugates were measured and evaluated for their potential application as dual in vitro imaging and photodynamic therapeutic (PDT) agents. Conjugates 1-3, with their high luminescence and singlet oxygen quantum yields, were selected for further study of their cellular uptake, subcellular localization, and cytotoxic and photocytotoxic (under linear and two-photon excitation) properties using HeLa cells. Conjugate 2, with its hydrophobic phenylethynyl linker, was shown to be highly promising for further development as a bifunctional probe for two-photon (NIR) induced PDT and in vitro imaging. Cellular uptake and subcellular localization properties were shown to be crucial to its PDT efficacy.  相似文献   

20.
H A Tajmir-Riahi 《Biopolymers》1991,31(9):1065-1075
The interaction of the La (III) and Tb (III) ions with adenosine-5'-monophosphate (5'-AMP), guanosine-5'-monophosphate (5'-GMP), and 2'-deoxyguanosine-5'-monophosphate (5'-dGMP) anions with metal/nucleotide ratios of 1 and 2 has been studied in aqueous solution in acidic and neutral pHs. The solid complexes were isolated and characterized by Fourier transform ir and 1H-nmr spectroscopy. The lanthanide (III)-nucleotide complexes are polymeric in nature both in the solid and aqueous solutions. In the metal-nucleotide complexes isolated from acidic solution, the nucleotide binding is via the phosphate group (inner sphere) and an indirect metal-N-7 interaction (outer-sphere) with the adenine N-1 site protonated. In the complexes obtained from neutral solution, metal chelation through the N-7 and the PO3(2-) group is prevailing. In aqueous solution, an equilibrium between the inner and outer sphere metal-nucleotide interaction has been observed. The ribose moiety shows C2'-endo/anti pucker in the free AMP anion and in the lanthanide (III)-AMP complexes, whereas the GMP anion with C2'-endo/anti sugar conformation exhibits a mixture of the C2'-endo/anti and C3'-endo/anti sugar puckers in the lanthanide (III)-GMP salts. The deoxyribose has O4'-endo/anti sugar pucker in the free dGMP anion and a C3'-endo/anti, in the lanthanide (III)-dGMP complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号