首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S A Bowling  J D Clarke  Y Liu  D F Klessig    X Dong 《The Plant cell》1997,9(9):1573-1584
The cpr5 mutant was identified from a screen for constitutive expression of systemic acquired resistance (SAR). This single recessive mutation also leads to spontaneous expression of chlorotic lesions and reduced trichome development. The cpr5 plants were found to be constitutively resistant to two virulent pathogens, Pseudomonas syringae pv maculicola ES4326 and Peronospora parasitica Noco2; to have endogenous expression of the pathogenesis-related gene 1 (PR-1); and to have an elevated level of salicylic acid (SA). Lines homozygous for cpr5 and either the SA-degrading bacterial gene nahG or the SA-insensitive mutation npr1 do not express PR-1 or exhibit resistance to P. s. maculicola ES4326. Therefore, we conclude that cpr5 acts upstream of SA in inducing SAR. However, the cpr5 npr1 plants retained heightened resistance to P. parasitica Noco2 and elevated expression of the defensin gene PDF1.2, implying that NPR1-independent resistance signaling also occurs. We conclude that the cpr5 mutation leads to constitutive expression of both an NPR1-dependent and an NPR1-independent SAR pathway. Identification of this mutation indicates that these pathways are connected in early signal transduction steps and that they have overlapping functions in providing resistance.  相似文献   

2.
Heidel AJ  Dong X 《Genetics》2006,173(3):1621-1628
We investigated the fitness benefits of systemic acquired resistance (SAR) in Arabidopsis thaliana using a mutational and transformational genetic approach. Genetic lines were designed to differ in the genes determining resistance signaling in a common genetic background. Two mutant lines (cpr1 and cpr5) constitutively activate SAR at different points in SAR signaling, and one mutant line (npr1) has impaired SAR. The transgenic line (NPR1-H) has enhanced resistance when SAR is activated, but SAR is still inducible similarly to wild type. The fitness benefits were also investigated under two nutrient levels to test theories that preventing pathogen damage and realized resistance benefits may be affected by nutrient availability. Under low-nutrient conditions and treatment with the pathogenic oomycete, Hyaloperonospora parasitica, wild type had a higher fitness than the mutant that could not activate SAR, demonstrating that normal inducible SAR is beneficial in these conditions; this result, however, was not found under high-nutrient conditions. The mutants with constitutive SAR all failed to show a fitness benefit in comparison to wild type under a H. parasitica pathogen treatment, suggesting that SAR is induced to prevent an excessive fitness cost.  相似文献   

3.
Disease resistance in Arabidopsis is regulated by multiple signal transduction pathways in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) function as key signaling molecules. Epistasis analyses were performed between mutants that disrupt these pathways (npr1, eds5, ein2, and jar1) and mutants that constitutively activate these pathways (cpr1, cpr5, and cpr6), allowing exploration of the relationship between the SA- and JA/ET-mediated resistance responses. Two important findings were made. First, the constitutive disease resistance exhibited by cpr1, cpr5, and cpr6 is completely suppressed by the SA-deficient eds5 mutant but is only partially affected by the SA-insensitive npr1 mutant. Moreover, eds5 suppresses the SA-accumulating phenotype of the cpr mutants, whereas npr1 enhances it. These data indicate the existence of an SA-mediated, NPR1-independent resistance response. Second, the ET-insensitive mutation ein2 and the JA-insensitive mutation jar1 suppress the NPR1-independent resistance response exhibited by cpr5 and cpr6. Furthermore, ein2 potentiates SA accumulation in cpr5 and cpr5 npr1 while dampening SA accumulation in cpr6 and cpr6 npr1. These latter results indicate that cpr5 and cpr6 regulate resistance through distinct pathways and that SA-mediated, NPR1-independent resistance works in combination with components of the JA/ET-mediated response pathways.  相似文献   

4.
To investigate the signaling pathways through which defense responses are activated following pathogen infection, we have isolated and characterized the cpr22 mutant. This plant carries a semidominant, conditional lethal mutation that confers constitutive expression of the pathogenesis-related (PR) genes PR-1, PR-2, PR-5 and the defensin gene PDF1.2. cpr22 plants also display spontaneous lesion formation, elevated levels of salicylic acid (SA) and heightened resistance to Peronospora parasitica Emco5. The cpr22 locus was mapped to chromosome 2, approximately 2 cM telomeric to the AthB102 marker. By analyzing the progeny of crosses between cpr22 plants and either NahG transgenic plants or npr1 mutants, all of the cpr22-associated phenotypes except PDF1.2 expression were found to be SA dependent. However, the SA signal transducer NPR1 was required only for constitutive PR-1 expression. A cross between cpr22 and ndr1-1 mutants revealed that enhanced resistance to P. parasitica is mediated by an NDR1-dependent pathway, while the other cpr22-induced defenses are not. Crosses between either coi1-1 or etr1-1 mutants further demonstrated that constitutive PDF1.2 expression is mediated by a JA- and ethylene-dependent pathway. Based on these results, the cpr22 mutation appears to induce its associated phenotypes by activating NPR1-dependent and NPR1-independent branches of the SA pathway, as well as an ethylene/JA signaling pathway. Interestingly, the SA-dependent phenotypes, but not the SA-independent phenotypes, are suppressed when cpr22 mutants are grown under high humidity.  相似文献   

5.
J D Clarke  Y Liu  D F Klessig    X Dong 《The Plant cell》1998,10(4):557-569
In Arabidopsis, NPR1 mediates the salicylic acid (SA)-induced expression of pathogenesis-related (PR) genes and systemic acquired resistance (SAR). Here, we report the identification of another component, CPR 6, that may function with NPR1 in regulating PR gene expression. The dominant CPR 6-1 mutant expresses the SA/NPR1-regulated PR genes (PR-1, BGL 2, and PR-5) and displays enhanced resistance to Pseudomonas syringae pv maculicola ES4326 and Peronospora parasitica Noco2 in the absence of SAR induction. cpr 6-1-induced PR gene expression is not suppressed in the cpr 6-1 npr1-1 double mutant but is suppressed when SA is removed by salicylate hydroxylase. Thus, constitutive PR gene expression in cpr 6-1 requires SA but not NPR1. In addition, resistance to P. s. maculicola ES4326 is suppressed in the cpr 6-1 npr1-1 double mutant, despite expression of PR-1, BGL 2, and PR-5. Resistance to P. s. maculicola ES4326 must therefore be accomplished through unidentified antibacterial gene products that are regulated through NPR1. These results show that CPR 6 is an important regulator of multiple signal transduction pathways involved in plant defense.  相似文献   

6.
The Arabidopsis NPR1 protein is an essential regulatory component of systemic acquired resistance (SAR). Mutations in the NPR1 gene completely block the induction of SAR by signals such as salicylic acid (SA). An Arabidopsis mutant, snc1 (suppressor of npr1-1, constitutive 1), was isolated in a screen for suppressors of npr1-1. In the npr1-1 background, the snc1 mutation resulted in constitutive resistance to Pseudomonas syringae maculicola ES4326 and Peronospora parasitica Noco2. High levels of SA were detected in the mutant and shown to be required for manifestation of the snc1 phenotype. The snc1 mutation was mapped to the RPP5 resistance (R) gene cluster and the eds1 mutation that blocks RPP5-mediated resistance suppressed snc1. These data suggest that a RPP5-related resistance pathway is activated constitutively in snc1. This pathway does not employ NPR1 but requires the signal molecule SA and the function of EDS1. Moreover, in snc1, constitutive resistance is conferred in the absence of cell death, which is often associated with R-gene mediated resistance.  相似文献   

7.
8.
Salicylic acid (SA) is reported to protect plants from heat shock (HS), but insufficient is known about its role in thermotolerance or how this relates to SA signaling in pathogen resistance. We tested thermotolerance and expression of pathogenesis-related (PR) and HS proteins (HSPs) in Arabidopsis thaliana genotypes with modified SA signaling: plants with the SA hydroxylase NahG transgene, the nonexpresser of PR proteins (npr1) mutant, and the constitutive expressers of PR proteins (cpr1 and cpr5) mutants. At all growth stages from seeds to 3-week-old plants, we found evidence for SA-dependent signaling in basal thermotolerance (i.e. tolerance of HS without prior heat acclimation). Endogenous SA correlated with basal thermotolerance, with the SA-deficient NahG and SA-accumulating cpr5 genotypes having lowest and highest thermotolerance, respectively. SA promoted thermotolerance during the HS itself and subsequent recovery. Recovery from HS apparently involved an NPR1-dependent pathway but thermotolerance during HS did not. SA reduced electrolyte leakage, indicating that it induced membrane thermoprotection. PR-1 and Hsp17.6 were induced by SA or HS, indicating common factors in pathogen and HS responses. SA-induced Hsp17.6 expression had a different dose-response to PR-1 expression. HS-induced Hsp17.6 protein appeared more slowly in NahG. However, SA only partially induced HSPs. Hsp17.6 induction by HS was more substantial than by SA, and we found no SA effect on Hsp101 expression. All genotypes, including NahG and npr1, were capable of expression of HSPs and acquisition of HS tolerance by prior heat acclimation. Although SA promotes basal thermotolerance, it is not essential for acquired thermotolerance.  相似文献   

9.
In Arabidopsis thaliana, the non-expresser pathogenesis-related (NPR) multigene family members NPR1, NPR3, and NPR4 are necessary for salicylic acid (SA) perception. NPR3 and NPR4 are the CUL3 E3-ligase substrate adaptors allowing for the ubiquitination and turnover of NPR1 by the 26s proteasome. Concurrently, roots treated with the SA agonist benzothiadiazole accumulate autophagic bodies via NPR1-dependent signal pathway. However, the mechanisms by which NPR3 and NPR4 regulate autophagy remain unclear. In the present study, using single, double, and triple npr1-, npr3-, and npr4-null mutants and wild-type plants, the following results were obtained: (1) leaf senescence progressed faster in npr3/npr4 mutants than in wild type, suggesting that NPR3 and NPR4 negatively regulated leaf senescence. Moreover, npr3/npr4 promoted the expression of pathogenesis-related 1 (PR1) gene and enhanced resistance in response to avirulent pathogen infections suppressing cell death. Still, all mutants had similar SA levels, suggesting that NPR3 and NPR4 positive regulation of cell death and disease resistance was not associated with SA levels; (2) the number of autophagosomes, ATG7, and ATG8a-phosphatidylethanolamine and the concentration of free green-fluorescence protein were lower in npr3/npr4 mutants than in wild-type plants, indicating that NPR3 and NPR4 affected the two ubiquitination-like conjugation systems during the autophagosome formation and degradation of autophagic bodies.  相似文献   

10.
Arabidopsis genotypes with a hyperactive salicylic acid-mediated signalling pathway exhibit enhanced disease resistance, which is often coupled with growth and developmental defects, such as dwarfing and spontaneous necrotic lesions on the leaves, resulting in reduced biomass yield. In this article, we report a novel recessive mutant of Arabidopsis, cdd1 (constitutive defence without defect in growth and development1), that exhibits enhanced disease resistance associated with constitutive salicylic acid signalling, but without any observable pleiotropic phenotype. Both NPR1 (NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1)-dependent and NPR1-independent salicylic acid-regulated defence pathways are hyperactivated in cdd1 mutant plants, conferring enhanced resistance against bacterial pathogens. However, a functional NPR1 allele is required for the cdd1-conferred heightened resistance against the oomycete pathogen Hyaloperonospora arabidopsidis. Salicylic acid accumulates at elevated levels in cdd1 and cdd1 npr1 mutant plants and is necessary for cdd1-mediated PR1 expression and disease resistance phenotypes. In addition, we provide data which indicate that the cdd1 mutation negatively regulates the npr1 mutation-induced hyperactivation of ethylene/jasmonic acid signalling.  相似文献   

11.
A novel Arabidopsis mutant has been identified with constitutive expression of GST1-GUS using plants with a pathogen-responsive reporter transgene containing the beta-glucuronidase (GUS) coding region driven by the GST1 promoter. The recessive mutant, called agd2 (aberrant growth and death2), has salicylic acid (SA)-dependent increased resistance to virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae, elevated SA levels, a low level of spontaneous cell death, callose deposition, and enlarged cells in leaves. The enhanced resistance of agd2 to virulent P. syringae requires the SA signaling component NONEXPRESSOR OF PR1 (NPR1). However, agd2 renders the resistance response to P. syringae carrying avrRpt2 NPR1-independent. Thus agd2 affects both an SA- and NPR1-dependent general defense pathway and an SA-dependent, NPR1-independent pathway that is active during the recognition of avirulent P. syringae. agd2 plants also fail to show a hypersensitive cell death response (HR) unless NPR1 is removed. This novel function for NPR1 is also apparent in otherwise wild-type plants: npr1 mutants show a stronger HR, while NPR1-overproducing plants show a weaker HR when infected with P. syringae carrying the avrRpm1 gene. Spontaneous cell death in agd2 is partially suppressed by npr1, indicating that NPR1 can suppress or enhance cell death depending on the cellular context. agd2 plants depleted of SA show a dramatic exacerbation of the cell-growth phenotype and increased callose deposition, suggesting a role for SA in regulating growth and this cell-wall modification. AGD2 may function in cell death and/or growth control as well as the defense response, similarly to what has been described in animals for the functions of NFkappaB.  相似文献   

12.
The Arabidopsis thaliana NPR1 gene is required for salicylic acid (SA)-induced expression of pathogenesis-related (PR) genes and systemic acquired resistance. However, loss-of-function mutations in NPR1 do not confer complete loss of PR gene expression or disease resistance. Thus these responses also can be activated via an NPR1-independent pathway that currently remain to be elucidated. The ssi2-1 mutant, identified in a genetic screen for suppressors of npr1-5, affects signaling through the NPR1-independent defense pathway(s). In comparison with the wild-type (SSI2 NPR1) plants and the npr1-5 mutant (SSI2 npr1-5), the ssi2-1 npr1-5 double mutant and the ssi2-1 NPR1 single mutant constitutively express PR genes [PR-1, BGL2 (PR-2) and PR-5]; accumulate elevated levels of SA; spontaneously develop lesions; and possess enhanced resistance to a virulent strain of Peronospora parasitica. The ssi2-1 mutation also confers enhanced resistance to Pseudomonas syringae pv. tomato (Pst); however, this is accomplished primarily via an NPR1-dependent pathway. Analysis of ssi2-1 NPR1 nahG and ssi2-1 npr1-5 nahG plants revealed that elevated SA levels were not essential for the ssi2-1-conferred phenotypes. However, expression of the nahG transgene did reduce the intensity of some ssi2-1-conferred phenotypes, including PR-1 expression, and disease resistance. Based on these results, SSI2 or an SSI2-generated signal appears to modulate signaling of an SA-dependent, NPR1-independent defense pathway, or an SA- and NPR1-independent defense pathway.  相似文献   

13.
The Arabidopsis lesion initiation 3 (len3) mutant develops lesions on leaves without pathogen attack. len3 plants exhibit stunted growth, constitutively express pathogenesis-related (PR) genes, PR-1, PR-2, and PR-5, and accumulate elevated levels of salicylic acid (SA). Furthermore, len3 is a semidominant, male gametophytic lethal mutation with partial defects in female gametophytic development. To determine the signaling pathway activated in len3 plants, we crossed the len3 plants with nahG, npr1-1, and pad4-1 plants and analyzed the phenotypes of the double mutants. The len3-conferred phenotypes, including cell death and PR-1 expressions, were suppressed in the double mutants. Thus SA, NPR1, and PAD4 are required for the phenotypes. However, none of these double mutants could completely suppress the len3-conferred stunted growth. This result suggests that an SA-, NPR1-, and PAD4-independent pathway is also involved in the phenotype. Treatment with BTH (benzo(1,2,3)thiadiazole-7-carbothioic acid), an SA analog, induced cell death in len3 nahG plants but not in len3 npr1 or len3 pad4 plants, suggesting the involvement of the PAD4-dependent but SA-independent second signal pathway in cell death in len3 plants.  相似文献   

14.
15.
NPR1 (Nonexpressor of Pathogenesis-Related gene 1) is a major co-activator of plant defense. Phosphorylations of NPR 1 play important roles in fine-tuning its activity, however a kinase corresponding to such modification remains uncharacterized. Here, we report that NPR1 interacts with PKS5 (SOS2-like Protein Kinase 5). The AKR (AnK yrin Repeats) motif of NPR1 is required for this interaction.PKS5 phosphorylates NPR1 at the C-temminal region. Expression of PKS5 is induced quickly by Pseudomonas syringae pv. tomato DC3000. Expression level of two NPR1 target genes, WRKY38 and WRKY62, is reduced and/or delayed in pks5 mutants. Moreover, the expression of WRKY38 and WRKY62 displays a similar pattern in npr1-1pks5-1 double mutant comparing to that in npr1-1. Our results suggest that PKS5 functions at the upstream of NPR1 and might mediate expression of WRKY38 and WRKY62 possibly by interacting with and phosphorylating NPR1.  相似文献   

16.
ABSTRACT

A newly identified chemical, 4-{3-[(3,5-dichloro-2-hydroxybenzylidene)amino]propyl}-4,5-dihydro-1H-pyrazol-5-one (BAPP) was characterized as a plant immunity activator. BAPP enhanced disease resistance in rice against rice blast disease and expression of a defense-related gene without growth inhibition. Moreover, BAPP was able to enhance disease resistance in dicotyledonous tomato and Arabidopsis plants against bacterial pathogen without growth inhibition, suggesting that BAPP could be a candidate as an effective plant activator. Analysis using Arabidopsis sid2-1 and npr1-2 mutants suggested that BAPP induced systemic acquired resistance (SAR) by stimulating between salicylic acid biosynthesis and NPR1, the SA receptor protein, in the SAR signaling pathway.  相似文献   

17.
NPR1 is required for systemic acquired resistance, and there are five NPR1 paralogs in Arabidopsis. Here we report knockout analysis of two of these, NPR3 and NPR4. npr3 single mutants have elevated basal PR-1 expression and the npr3 npr4 double mutant shows even higher expression. The double mutant plants also display enhanced resistance against virulent bacterial and oomycete pathogens. This enhanced disease resistance is partially dependent on NPR1, can be in part complemented by either wild-type NPR3 or NPR4, and is not associated with an elevated level of salicylic acid. NPR3 and NPR4 interact with TGA2, TGA3, TGA5 and TGA6 in yeast two-hybrid assays. Using bimolecular fluorescence complementation analysis, we show that NPR3 interacts with TGA2 in the nucleus of onion epidermal cells and Arabidopsis mesophyll protoplasts. Combined with our previous finding that basal PR-1 levels are also elevated in the tga2 tga5 tga6 triple mutant, we propose that NPR3 and NPR4 negatively regulate PR gene expression and pathogen resistance through their association with TGA2 and its paralogs.  相似文献   

18.
Arabidopsis map kinase 4 negatively regulates systemic acquired resistance   总被引:52,自引:0,他引:52  
Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) levels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern and microarray hybridizations. MPK4 kinase activity is required to repress SAR, as an inactive MPK4 form failed to complement mpk4. Analysis of mpk4 expressing the SA hydroxylase NahG and of mpk4/npr1 double mutants indicated that SAR expression in mpk4 is dependent upon elevated SA levels but is independent of NPR1. PDF1.2 and THI2.1 gene induction by jasmonate was blocked in mpk4 expressing NahG, suggesting that MPK4 is required for jasmonic acid-responsive gene expression.  相似文献   

19.
Arabidopsis gain‐of‐resistance mutants, which show HR‐like lesion formation and SAR‐like constitutive defense responses, were used well as tools to unravel the plant defense mechanisms. We have identified a novel mutant, designated constitutive expresser of PR genes 30 (cpr30), that exhibited dwarf morphology, constitutive resistance to the bacterial pathogen Pseudomonas syringae and the dramatic induction of defense‐response gene expression. The cpr30‐conferred growth defect morphology and defense responses are dependent on ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), PHYTOALEXIN DEFICIENT 4 (PAD4), and NONRACE‐SPECIFIC DISEASE RESISTANCE 1 (NDR1). Further studies demonstrated that salicylic acid (SA) could partially account for the cpr30‐conferred constitutive PR1 gene expression, but not for the growth defect, and that the cpr30‐conferred defense responses were NPR1 independent. We observed a widespread expression of CPR30 throughout the plant, and a localization of CPR30‐GFP fusion protein in the cytoplasm and nucleus. As an F‐box protein, CPR30 could interact with multiple Arabidopsis‐SKP1‐like (ASK) proteins in vivo. Co‐localization of CPR30 and ASK1 or ASK2 was observed in Arabidopsis protoplasts. Based on these results, we conclude that CPR30, a novel negative regulator, regulates both SA‐dependent and SA‐independent defense signaling, most likely through the ubiquitin‐proteasome pathway in Arabidopsis.  相似文献   

20.
Arabidopsis dnd1 and dnd2 mutants lack cyclic nucleotide-gated ion channel proteins and carry out avirulence or resistance gene-mediated defense with a greatly reduced hypersensitive response (HR). They also exhibit elevated broad-spectrum disease resistance and constitutively elevated salicylic acid (SA) levels. We examined the contributions of NPR1, SID2 (EDS16), NDR1, and EIN2 to dnd phenotypes. Mutations that affect SA accumulation or signaling (sid2, npr1, and ndr1) abolished the enhanced resistance of dnd mutants against Pseudomonas syringae pv. tomato and Hyaloperonospora parasitica but not Botrytis cinerea. When SA-associated pathways were disrupted, the constitutive activation of NPR1-dependent and NPR1-independent and SA-dependent pathways was redirected toward PDF1.2-associated pathways. This PDF1.2 overexpression was downregulated after infection by P. syringae. Disruption of ethylene signaling abolished the enhanced resistance to B. cinerea but not P. syringae or H. parasitica. However, loss of NPR1, SID2, NDR1, or EIN2 did not detectably alter the reduced HR in dnd mutants. The susceptibility of dnd ein2 plants to B. cinerea despite their reduced-HR phenotype suggests that cell death repression is not the primary cause of dnd resistance to necrotrophic pathogens. The partial restoration of resistance to B. cinerea in dnd1 npr1 ein2 triple mutants indicated that this resistance is not entirely EIN2 dependent. The above findings indicate that the broad-spectrum resistance of dnd mutants occurs due to activation or sensitization of multiple defense pathways, yet none of the investigated pathways are required for the reduced-HR phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号