首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity and mRNA level of hepatic enzymes in fatty acid oxidation and synthesis were compared in rats fed diets containing either 15% saturated fat (palm oil), safflower oil rich in linoleic acid, perilla oil rich in α-linolenic acid or fish oil rich in eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) for 15 days. The mitochondrial fatty acid oxidation rate was 50% higher in rats fed perilla and fish oils than in the other groups. Perilla and fish oils compared to palm and safflower oils approximately doubled and more than tripled, respectively, peroxisomal fatty acid oxidation rate. Compared to palm and safflower oil, both perilla and fish oils caused a 50% increase in carnitine palmitoyltransferase I activity. Dietary fats rich in n-3 fatty acids also increased the activity of other fatty acid oxidation enzymes except for 3-hydroxyacyl-CoA dehydrogenase. The extent of the increase was greater with fish oil than with perilla oil. Interestingly, both perilla and fish oils decreased the activity of 3-hydroxyacyl-CoA dehydrogenase measured using short- and medium-chain substrates. Compared to palm and safflower oils, perilla and fish oils increased the mRNA level of many mitochondrial and peroxisomal enzymes. Increases were generally greater with fish oil than with perilla oil. Fatty acid synthase, glucose-6-phosphate dehydrogenase, and pyruvate kinase activity and mRNA level were higher in rats fed palm oil than in the other groups. Among rats fed polyunsaturated fats, activities and mRNA levels of these enzymes were lower in rats fed fish oil than in the animals fed perilla and safflower oils. The values were comparable between the latter two groups. Safflower and fish oils but not perilla oil, compared to palm oil, also decreased malic enzyme activity and mRNA level. Examination of the fatty acid composition of hepatic phospholipid indicated that dietary α-linolenic acid is effectively desaturated and elongated to form EPA and DHA. Dietary perilla oil and fish oil therefore exert similar physiological activity in modulating hepatic fatty acid oxidation, but these dietary fats considerably differ in affecting fatty acid synthesis.  相似文献   

2.
The interaction of sesamin, one of the most abundant lignans in sesame seed, and types of dietary fats affecting hepatic fatty acid oxidation was examined in rats. Rats were fed purified experimental diets supplemented with 0% or 0.2% sesamin (1:1 mixture of sesamin and episesamin), and containing 8% of either palm, safflower or fish oil for 15 days. Among the groups fed sesamin-free diets, the activity of various fatty acid oxidation enzymes was higher in rats fed fish oil than in those fed palm and safflower oils. Dietary sesamin increased enzyme activities in all groups of rats given different fats. The extent of the increase depended on dietary fat type, and a diet containing sesamin and fish oil in combination appeared to increase many of these parameters synergistically. In particular, the peroxisomal palmitoyl-CoA oxidation rate and acyl-CoA oxidase activity levels were much higher in rats fed sesamin and fish oil in combination than in animals fed sesamin and palm or safflower oil in combination. Analyses of mRNA levels revealed that a diet containing sesamin and fish oil increased the gene expression of various peroxisomal fatty acid oxidation enzymes and PEX11alpha, a peroxisomal membrane protein, in a synergistic manner while it increased the gene expression of mitochondrial fatty acid oxidation enzymes and microsomal cytochrome P-450 IV A1 in an additive manner. It was concluded that a diet containing sesamin and fish oil in combination synergistically increased hepatic fatty acid oxidation primarily through up-regulation of the gene expression of peroxisomal fatty acid oxidation enzymes.  相似文献   

3.
Interrelated effects of γ-linolenic acid (GLA) and sesamin, a sesame lignan, on hepatic fatty acid synthesis and oxidation were examined. Rats were fed experimental diets supplemented with 0 or 2 g/kg sesamin (1:1 mixture of sesamin and episesamin) and containing 100 g/kg of palm oil (saturated fat), safflower oil rich in linoleic acid, or oil of evening primrose origin containing 43% GLA (GLA oil) for 18 days. In rats fed sesamin-free diets, GLA oil, compared with other oils, increased the activity and mRNA levels of various enzymes involved in fatty acid oxidation, except for some instances. Sesamin greatly increased these parameters, and the enhancing effects of sesamin on peroxisomal fatty acid oxidation rate and acyl-CoA oxidase, enoyl-CoA hydratase and acyl-CoA thioesterase activities were more exaggerated in rats fed GLA oil than in the animals fed other oils. The combination of sesamin and GLA oil also synergistically increased the mRNA levels of some peroxisomal fatty acid oxidation enzymes and of several enzymes involved in fatty acid metabolism located in other cell organelles. In the groups fed sesamin-free diets, GLA oil, compared with other oils, markedly reduced the activity and mRNA levels of various lipogenic enzymes. Sesamin reduced all these parameters, except for malic enzyme, in rats fed palm and safflower oils, but the effects were attenuated in the animals fed GLA oil. These changes by sesamin and fat type accompanied profound alterations in serum lipid levels. This may be ascribable to the changes in apolipoprotein-B-containing lipoproteins.  相似文献   

4.
By using comparisons with a safflower oil diet (15% w/w) and a control, low-fat diet, the ability of a fish oil diet (15% MaxEPA) rich in the (n-3) fatty acids, eicosapentaenoic acid and docosahexaenoic acid, to alter hepatic activities has been determined in adult, male rats. Compared with the safflower diet, treatment for 2 weeks with the fish oil diet caused significant increases in the ratio of liver weight/body weight and the specific activities in liver homogenates of peroxisomal enzymes fatty acyl-CoA oxidase (263%) and catalase (149%) and caused a significant lowering of plasma triacylglycerol levels. Fish oil diets rich in (n-3) fatty acids should thus be placed in the category of hypotriglyceridemic agents which stimulate peroxisomal beta-oxidation activity. In contrast to the effects seen with the other hypotriglyceridemic, peroxisomal proliferating agents such as clofibrate, hepatic glutathione peroxidase and glutathione S-transferase activities are unchanged or are increased rather than inhibited with the fish oil diet.  相似文献   

5.
The physiological activity of fish oil, and ethyl esters of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) affecting hepatic fatty acid oxidation was compared in rats. Five groups of rats were fed various experimental diets for 15 days. A group fed a diet containing 9.4% palm oil almost devoid of n-3 fatty acids served as a control. The test diets contained 4% n-3 fatty acids mainly as EPA and DHA in the form of triacylglycerol (9.4% fish oil) or ethyl esters (diets containing 4% EPA ethyl ester, 4% DHA ethyl ester, and 1% EPA plus 3% DHA ethyl esters). The lipid content of diets containing EPA and DHA ethyl esters was adjusted to 9.4% by adding palm oil. The fish oil diet and ethyl ester diets, compared to the control diet containing 9.4% palm oil, increased activity and mRNA levels of hepatic mitochondrial and peroxisomal fatty acid oxidation enzymes, though not 3-hydroxyacyl-CoA dehydrogenase activity. The extent of the increase was, however, much greater with the fish oil than with EPA and DHA ethyl esters. EPA and DHA ethyl esters, compared to the control diet, increased 3-hydroxyacyl-CoA dehydrogenase activity, but fish oil strongly reduced it. It is apparent that EPA and DHA in the form of ethyl esters cannot mimic the physiological activity of fish oil at least in affecting hepatic fatty acid oxidation in rat.  相似文献   

6.
1. Rat liver peroxisomal fractions were isolated in iso-osmotic Percoll gradients by using vertical-rotor centrifugation. The fractions obtained with rats given various dietary treatments were characterized. 2. The effect on peroxisomal beta-oxidation of feeding 15% by wt. of dietary fat for 3 weeks was investigated. High-fat diets caused induction of peroxisomal beta-oxidation, but diets rich in very-long-chain mono-unsaturated fatty acids produced a more marked induction. 3. Peroxisomal beta-oxidation induced by diets rich in very-long-chain mono-unsaturated fatty acids can oxidize such acids. Trans-isomers of mono-unsaturated fatty acids are oxidized at rates that are faster than, or similar to, those obtained with corresponding cis-isomers. 4. Rates of oxidation of [14-14C]erucic acid by isolated rat hepatocytes isolated from rats fed on high-fat diets increased with the time on those diets in a fashion very similar to that previously reported for peroxisomal beta-oxidation [see Neat, Thomassen & Osmundsen (1980) Biochem, J. 186, 369-371]. 5. Total liver capacities for peroxisomal beta-oxidation (expressed as acetyl groups produced per min) were estimated to range from 10 to 30% of mitochondrial capacities, depending on dietary treatment and fatty acid substrate. A role is proposed for peroxisomal beta-oxidation in relation to the metabolism of fatty acids that are poorly oxidized by mitochondrial beta-oxidation, and, in general, as regards oxidation of fatty acids during periods of sustained high hepatic influx of fatty acids.  相似文献   

7.
Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid oxidation may also contribute to the physiological activity of gamma-linolenic acid in decreasing body fat mass.  相似文献   

8.
The effects of clofibrate feeding on the metabolism of polyunsaturated fatty acids were studied in isolated rat hepatocytes. Administration of clofibrate stimulated the oxidation and particularly the peroxisomal beta-oxidation of all the fatty acids used. The increase in oxidation products was markedly higher when n-3 fatty acids were used as substrate, indicating that peroxisomes contribute more to the oxidation of n-3 than n-6 fatty acids. The whole increase in oxidation could be accounted for by a corresponding decrease in acylation in triacylglycerol while the esterification in phospholipids remained unchanged. A marked stimulation of the amounts of newly synthesized C16 and C18 fatty acids recovered, was observed when 18:2(n-6), 20:3(n-6), 18:3 (n-3) and 20:5(n-3), but not when 20:4(n-6) and 22:4(n-6) were used as substrate. This agrees with the view that extra-mitochondrial acetyl-CoA produced from peroxisomal beta-oxidation is more easily used for fatty acid new synthesis than acetyl-CoA from mitochondrial beta-oxidation. The delta 6 and delta 5 desaturase activities were distinctly higher in cells from clofibrate fed rats indicating a stimulating effect.  相似文献   

9.
The metabolism of long chain unsaturated fatty acids was studied in cultured fibroblasts from patients with X-linked adrenoleukodystrophy (ALD) and with neonatal ALD. By using [14-14C] erucic acid (22:1(n-9)) as substrate it was shown that the peroxisomal beta-oxidation, measured as chain shortening, was impaired in cells from patients with neonatal ALD. The beta-oxidation of adrenic acid (22:4(n-6)), measured as acid-soluble products, was also reduced in the neonatal ALD cells. The peroxisomal beta-oxidation of [14-14C]erucic acid (22:1(n-9)) and [2-14C]adrenic acid (22:4(n-6)) was normal in cells from X-ALD patients. The beta-oxidation, esterification and chain elongation of [1-14C]arachidonic acid (20:4(n-6)) and [1-14C]eicosapentaenoic acid (20:5(n-3)) was normal in both X-linked ALD and in neonatal ALD. Previous studies suggest that the activation of very long chain fatty acids by a lignoceryl (24:0)-CoA ligase is deficient in X-linked ALD, while the peroxisomal beta-oxidation enzymes are deficient in neonatal ALD. The present results suggest that the peroxisomal very long-chain acyl-CoA ligase is not required for activation of unsaturated C20 and C22 fatty acids and that these fatty acids can be efficiently activated by the long chain acyl-(palmityl)-CoA ligase.  相似文献   

10.
Effects of dietary fats differing in fatty acid composition on insulin-stimulated glucose metabolism in adipocytes isolated from rat white adipose tissue were compared. Rats were fed experimental diets containing various fats differing in fatty acid composition for 7 days. In the first experiment, rats were fed palm oil mainly consisting of palmitic (45.3%) and oleic acids (39.1%) or safflower oil rich in linoleic acid (71.6%). In the second trial, rats were fed palm oil, or a fat mixture rich in linoleic acid or mold oil rich in gamma-linolenic acid. Contents of fatty acids except for linoleic and gamma-linolenic acid were comparable between the fat mixture and mold oil. The former was devoid of gamma-linolenic acid and contained 42.0% linoleic acid, while the latter contained 25.9% gamma-linolenic and 15.7% linoleic acids. In the first experiment, the insulin-dependent increase in glucose oxidation and incorporation into lipids was higher in rats fed safflower oil compared to those fed palm oil. In the second experiment, the insulin-dependent increase in glucose oxidation and incorporation into lipids was higher in rats fed the fat mixture and mold oil than in those fed palm oil. However, the extent of the increase in these parameters was much greater in rats fed mold oil than in those fed the fat mixture. Therefore, dietary gamma-linolenic acid compared to linoleic acid increases glucose metabolism in response to insulin stimuli in isolated rat adipocytes.  相似文献   

11.
Evidence supporting a common peroxisomal beta-oxidation pathway for the coenzyme A thioesters of medium-chain-length dicarboxylic acids (DCn-CoA) and monocarboxylic acids (MCn-CoA) has been obtained. Using the mono-CoA esters of dodecanedioic acid (DC12-CoA) and lauroyl-CoA (MC12-CoA) as substrates, parallel inductions of activities and parallel increases in specific activities during purification of peroxisomal fatty acyl-CoA oxidase (EC 1.3.99.3) from rat liver after di(2-ethylhexyl)phthalate treatment were seen. The purified enzyme was used for antiserum production in rabbits; antiserum specificity was verified by immunoblot analysis. Coincident losses of oxidase activities with MC12-CoA and DC12-CoA were found in immunotitration experiments with rat liver homogenates, supporting the hypothesis that peroxisomal fatty acyl-CoA oxidase is solely responsible for the oxidation of medium-chain length dicarboxylic acid substrates. Kinetic studies with purified enzyme using the mono-CoA esters of sebacic (DC10-CoA), suberic (DC8-CoA), and adipic (DC6-CoA) acids along with DC12-CoA revealed substrate inhibition. Although these substrates exhibited similar calculated Vmax values, with decreasing chain length, the combination of increasing Km values and decreasing substrate inhibition constant (Ki) caused the maximum obtainable velocity to decrease. These studies offer an explanation for the previously observed limit of the ability of peroxisomes to chain-shorten dicarboxylates and increased urinary excretion of adipic acid when peroxisomal oxidation of dicarboxylic acids is enhanced.  相似文献   

12.
This study was performed to determine the effects of dietary perilla oil, a n-3 alpha-linolenic acid (ALA) source, on hepatic lipogenesis as a possible mechanism of lowering triacylglycerol (TG) levels. Male Sprague-Dawley rats were trained for a 3-hour feeding protocol and fed one of five semipurified diets as follows: 1% (w/w) corn oil control diet, or one of four diets supplemented with 10% each of beef tallow, corn oil, perilla oil, and fish oil. Two separate experiments were performed to compare the effects of feeding periods, 4 weeks and 4 days. Hepatic and plasma TG levels were decreased in rats fed perilla oil and fish oil diets, compared with corn oil and beef tallow diets. The activities of hepatic lipogenic enzymes such as fatty acid synthase (FAS), glucose-6-phosphate dehydrogenase, and malic enzyme were suppressed in the fish oil, perilla oil, and corn oil-fed groups, and the effect was the most significant in the fish oil-fed group. Also, the activities of glycolytic enzymes, glucokinase, and L-pyruvate kinase showed the similar trend as that of lipogenic enzymes. The activity of FAS, the key regulatory enzyme in lipogenesis, was positively correlated with hepatic and plasma TG levels and reduced significantly in the perilla oil-fed group compared with corn oil-fed group. In addition, the FAS activity was negatively correlated with the hepatic microsomal content of EPA and DHA. In conclusion, suppression of FAS plays a significant role in the hypolipidemic effects observed in rats fed ALA rich perilla oil and these effects were associated with the increase of hepatic microsomal EPA and DHA contents.  相似文献   

13.
The intracellular localization of the oxidation of [2-14C]adrenic acid (22:4(n-6)) and [1-14C]docosahexaenoic acid (22:6(n-3)) was studied in isolated liver cells. The oxidation of 22:4(n-6) was 2-3-times more rapid than the oxidation of 22:6(n-3), [1-14C]arachidonic acid (20:4(n-6)) or [1-14C]oleic acid (18:1). (+)-Decanoylcarnitine and lactate, both known to inhibit mitochondrial beta-oxidation, reduced the oxidation of 18:1 distinctly more efficiently than with 22:4(n-6) and 22:6(n-3). In liver cells from rats fed a diet containing partially hydrogenated fish oil, the oxidation of 22:6(n-6) and 22:6(n-3) was increased by 30-40% compared with cells from rats fed a standard pellet diet. With 18:1 as substrate, the amount of fatty acid oxidized was very similar in cells from animals fed standard pellets or partially hydrogenated fish oil. Shortened fatty acids were not produced from [5,6,8,9,11,12,14,15-3H]arachidonic acid. In hepatocytes from rats starved and refed 20% fructose, a large fraction of 14C from 22:4 was recovered in 14C-labelled C14-C18 fatty acids. Oxidation of 22:4 thus caused a high specific activity of the extramitochondrial pool of acetyl-CoA. The results suggest that 22:4(n-6) and to some extent 22:6(n-3) are oxidized by peroxisomal beta-oxidation and by this are retroconverted to arachidonic acid and eicosapentaenoic acid.  相似文献   

14.
Rats fed dietary fats rich in 20- and 22-carbon polyenoic fatty acids deposit less fat and expend more energy at rest than rats fed other types of fats. We hypothesized that this decrease in energetic efficiency was the product of: (a) enhanced peroxisomal fatty acid oxidation and/or (b) the up-regulation of genes encoding proteins that were involved with enhanced heat production, i.e. mitochondrial uncoupling proteins (UCP-2, UCP-3) and peroxisomal fatty acid oxidation proteins. Two groups of male Fisher 344 rats 3-4 week old (n=5 per group) were pair fed for 6 weeks a diet containing 40% of its energy fat derived from either fish oil or corn oil. Epididymal fat pads from rats fed the fish oil diet weighed 25% (P < 0.05) less than those found in rats fed corn oil. The decrease in fat deposition associated with fish oil ingestion was accompanied by a significant increase in the abundance of skeletal muscle UCP-3 mRNA. The level of UCP-2 mRNA skeletal muscle was unaffected by the type of dietary oil, but the abundance of UCP-2 mRNA in the liver and heart were significantly lower (P < 0.05) in rats fed fish oil than in rats fed corn oil. In addition to inducing UCP-3 expression, dietary fish oil induced peroxisomal acyl-CoA oxidase gene expression 2-3 fold in liver, skeletal muscle and heart. These data support the hypothesis that dietary fish oil reduces fat deposition by increasing the expression of mitochondrial uncoupling proteins and increasing fatty acid oxidation by the less efficient peroxisomal pathway.  相似文献   

15.
Kim HK  Choi H 《Life sciences》2005,77(12):1293-1306
The effect of dietary polyunsaturated fatty acids (PUFA) on hepatic peroxisomal oxidation was investigated with respect to the postprandial triacylglycerol levels. Male Sprague--Dawley rats were fed semipurified diets containing either 1% (w/w) corn oil, or 10% each of beef tallow, corn oil, perilla oil, and fish oil for 4 weeks and 4 days. Hepatic and plasma triacylglycerol levels were reduced in rats fed fish and perilla oil diets compared with corn oil and beef tallow diets. The peroxisomal beta-oxidation, catalase activity, and acyl-CoA oxidase (AOX) activity were markedly increased by fish oil feeding. To a lesser extent, perilla oil elevated AOX activity in a 4-day feeding although the effect gradually decreased in a 4-week feeding. Similarly, the mRNA levels were increased in rats fed fish and perilla oils. AOX activity was negatively correlated with postprandial triacylglycerol levels. In addition, the stimulation of AOX was highly associated with the content of long chain n-3 PUFA such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in hepatic microsome. These effects were evident within 4 days of initiating feeding. Therefore, alpha-linolenic perilla oil exerts a similar effect to fish oil in stimulating hepatic activity and gene expression of AOX by enriching long chain n-3 PUFA in hepatic membrane fraction, which can partly account for the reduction of postprandial triglyceridemia.  相似文献   

16.
The effects of different types of dietary fat on the activities of hepatic enzymes related to fatty acid synthesis [glucose-6-phosphate dehydrogenase (G6PDH) and acetyl-CoA carboxylase (ACC)], oxidation [acyl-CoA synthetase (AST), carnitine palmitoyl transferase (CPT), and peroxisomal beta-oxidation (PbetaOX)], and lipogenesis [phosphatidate phosphohydrolase (PAP), diacylglycerol acyltransferase (DGAT), and phosphocholine diacylglycerol transferase (PCDGT)], and plasma and liver lipid levels were investigated in male Wistar rats. The animals were 6 weeks old and about 120 g of body weight, and were fed on test diets containing 20% of a mixture of tripalmitin, tristearin and corn oil (SFA), olive oil (OLI), sunflower oil (SUN), linseed oil (LIS), and sardine oil (SAR) for 2 weeks. The concentrations of plasma total cholesterol (T-CHOL), high-density lipoprotein-cholesterol (HDL-CHOL), triacylglycerol (TG) and phospholipid (PL) were generally higher in the rats fed on SFA and OLI than in those given SUN, LIS and SAR. The rats fed on OLI had a higher level of liver T-CHOL than those fed on the other fats. The liver TG content was nearly higher from the intake of SFA and OLI than from SUN, LIS and SAR, although the liver PL level was not affected by the type of dietary fat. The SFA and OLI groups had the highest activities of hepatic G6PDH and ACC, and the SAR group, the lowest activities. The activities of AST and CPT, and peroxisomal PbetaOX in the liver were higher in the rats fed on the LIS and SAR diets than in those given the other diets. The hepatic PAP activity was higher from the intake of OLI and SUN, and tended to be higher from SFA than from LIS and SAR. The activity of liver DGAT was higher from SFA and inclined to be higher from OLI, SUN, and LIS than from SAR, while the PCDGT activity in the liver was not effected by the type of dietary fat. The concentrations of plasma and liver TG were generally positively correlated with the activities of liver enzymes related to the synthesis of fatty acids and lipids, and negatively with those involved in fatty acid oxidation. Based on these results, it is suggested that the levels of plasma and liver TG were controlled by different types of dietary fat through changes in the hepatic enzyme activities related to fatty acid synthesis, lipogenesis, and fatty acid oxidation.  相似文献   

17.
The beta-oxidation and esterification of medium-chain fatty acids were studied in hepatocytes from fasted, fed and fructose-refed rats. The beta-oxidation of lauric acid (12:0) was less inhibited by fructose refeeding and by (+)-decanoyl-carnitine than the oxidation of oleic acid was, suggesting a peroxisomal beta-oxidation of lauric acid. Little lauric acid was esterified in triacylglycerol fraction, except at high substrate concentrations or in the fructose-refed state. With [1-14C]myristic acid (14:0), [1-14C]lauric acid (12:0), [1-14C]octanoic acid (8:0) and [2-14C]adrenic acid (22:4(n - 6] as substrate for hepatocytes from carbohydrate-refed rats, a large fraction of the 14C-labelled esterified fatty acids consisted of newly synthesized palmitic acid (16:0), stearic acid (18:0) and oleic acid (18:1) while intact [1-14C]oleic acid substrate was esterified directly. With [9,10-3H]myristic acid as the substrate, small amounts of shortened 3H-labelled beta-oxidation intermediates were found. With [U-14C]palmitic acid, no shortened fatty acids were detected. It was concluded that when the mitochondrial fatty acid oxidation is down-regulated such as in the carbohydrate-refed state, medium-chain fatty acids can partly be retailored to long-chain fatty acids by peroxisomal beta-oxidation followed by synthesis of C16 and C16 fatty acids which can then stored as triacylglycerol.  相似文献   

18.
Peroxisomes are subcellular organelles present in virtually all eukaryotic cells catalysing a number of indispensable functions in cellular metabolism. The importance of peroxisomes in man is stressed by the existence of an expanding group of genetic diseases in which there is an impairment in one or more peroxisomal functions. One of the major functions of peroxisomes concerns their role in lipid metabolism, which includes: (i) fatty acid betaoxidation; (ii) ether phospholipid synthesis; (iii) fatty acid alpha-oxidation; and (iv) isoprenoid biosynthesis. In this paper, we review the current state of knowledge concerning the peroxisomal fatty acid alpha- and beta-oxidation systems with particular emphasis on the enzymes involved and the various disorders of fatty acid oxidation in peroxisomes. We also pay attention to the fact that some of the metabolites that accumulate as the result of a defect in peroxisomal alpha- and/or beta-oxidation are activators of members of the family of nuclear receptors, including peroxisome-proliferator-activated receptor alpha.  相似文献   

19.
The effects of dietary conjugated linoleic acid (CLA) on the activity and mRNA levels of hepatic enzymes involved in fatty acid synthesis and oxidation were examined in mice. In the first experiment, male ICR and C57BL/6J mice were fed diets containing either a 1.5% fatty acid preparation rich in CLA or a preparation rich in linoleic acid. In the second experiment, male ICR mice were fed diets containing either 1.5% linoleic acid, palmitic acid or the CLA preparation. After 21 days, CLA relative to linoleic acid greatly decreased white adipose tissue mass but caused hepatomegaly accompanying an approximate 10-fold increase in the tissue triacylglycerol content irrespective of mouse strain. CLA compared to linoleic acid greatly increased the activity and mRNA levels of various lipogenic enzymes in both experiments. Moreover, CLA increased the mRNA expression of Delta6- and Delta5-desaturases, and sterol regulatory element binding protein-1 (SREBP-1). The mitochondrial and peroxisomal palmitoyl-CoA oxidation rate was about 2.5-fold higher in mice fed CLA than in those fed linoleic acid in both experiments. The increase was associated with the up-regulation of the activity and mRNA expression of various fatty acid oxidation enzymes. The palmitic acid diet compared to the linoleic acid diet was rather ineffective in modulating the hepatic lipid levels or activity and mRNA levels of enzymes in fatty acid metabolism. It is apparent that dietary CLA concomitantly increases the activity and mRNA levels of enzymes involved in fatty acid synthesis and oxidation, and desaturation of polyunsaturated fatty acid in the mouse liver. Both the activation of peroxisomal proliferator alpha and up-regulation of SREBP-1 may be responsible for this.  相似文献   

20.
Despite the importance of peroxisomal oxidation in branched-chain lipid (phytol, cholesterol) detoxification, little is known regarding the factors regulating the peroxisomal uptake, targeting, and metabolism of these lipids. Although in vitro data suggest that sterol carrier protein (SCP)-x plays an important role in branched-chain lipid oxidation, the full physiological significance of this peroxisomal enzyme is not completely clear. To begin to resolve this issue, SCP-x-null mice were generated by gene ablation of SCP-x from the SCP-x/SCP-2 gene and fed a phytol-enriched diet to characterize the effects of lipid overload in a system with minimal 2/3-oxoacyl-CoA thiolytic activity. It was shown that SCP-x gene ablation 1) did not result in reduced expression of SCP-2 (previously thought to be derived in considerable part by posttranslational cleavage of SCP-x); 2) increased expression levels of key enzymes involved in alpha- and beta-oxidation; and 3) altered lipid distributions, leading to decreased hepatic fatty acid and triglyceride levels. In response to dietary phytol, lack of SCP-x resulted in 1) accumulation of phytol metabolites despite substantial upregulation of hepatic peroxisomal and mitochondrial enzymes; 2) reduced body weight gain and fat tissue mass; and 3) hepatic enlargement, increased mottling, and necrosis. In summary, the present work with SCP-x gene-ablated mice demonstrates, for the first time, a direct physiological relationship between lack of SCP-x and decreased ability to metabolize branched-chain lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号