首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a first step toward developing a zebrafish model for investigating the role of sulfation in counteracting environmental estrogenic chemicals, we have embarked on the identification and characterization of cytosolic sulfotransferases (STs) in zebrafish. By searching the zebrafish expressed sequence tag database, we have identified two cDNA clones encoding putative cytosolic STs. These two zebrafish ST cDNAs were isolated and subjected to nucleotide sequencing. Sequence data revealed that the two zebrafish STs are highly homologous, being approximately 82% identical in their amino acid sequences. Both of them display approximately 50% amino acid sequence identity to human SULT1A1, rat SULT1A1, and mouse SULT1C1 ST. These two zebrafish STs therefore appear to belong to the SULT1 cytosolic ST gene family. Recombinant zebrafish STs (designated SULT1 STs 1 and 2), expressed using the pGEX-2TK prokaryotic expression system and purified from transformed Escherichia coli cells, migrated as approximately 35 kDa proteins on SDS/PAGE. Purified zebrafish SULT1 STs 1 and 2 displayed differential sulfating activities toward a number of endogenous compounds and xenobiotics including hydroxychlorobiphenyls. Kinetic constants of the two enzymes toward two representative hydroxychlorobiphenyls, 3-chloro-4-biphenylol and 3,3',5,5'-tetrachloro-4,4'-biphenyldiol, and 3,3',5-triiodo-l-thyronine were determined. A thermostability experiment revealed the two enzymes to be relatively stable over the range 20-43 degrees C. Among 10 different divalent metal cations tested, Co2+, Zn2+, Cd2+, and Pb2+ exhibited considerable inhibitory effects, while Hg2+ and Cu2+ rendered both enzymes virtually inactive.  相似文献   

2.
Cytosolic sulfotransferases (STs) are generally thought to be involved in detoxification of xenobiotics, as well as homeostasis of endogenous compounds such as thyroid/steroid hormones and catecholamine hormones/neurotransmitters. We report here the identification and characterization of a zebrafish estrogen-sulfating cytosolic ST. The zebrafish ST was bacterially expressed, purified, and examined for enzymatic activities using a variety of endogenous compounds as substrates. Results showed that the enzyme displayed much higher activities toward two endogenous estrogens, estrone (E(1)) and 17beta-estradiol (E(2)), in comparison with thyroid hormones, 3,3',5-triiodothyronine (T(3)) and thyroxine (T(4)), dopamine, dihydroxyphenylalanine (Dopa), and dehydroepiandrosterone (DHEA). The kinetic parameters, K(m), and V(max), with estrogens and thyroid hormones as substrates were determined. The calculated V(max)/K(m) for E(1), E(2), T(3), and T(4) were, respectively, 31.6, 16.7, 1.5, and 0.8 nmol min(-1) mg(-1) microM(-1), indicating clearly the estrogens being preferred physiological substrates for the enzyme. The inhibitory effects of isoflavone phytoestrogens on the sulfation of E(2) by this zebrafish ST were examined. The IC(50) determined for quercetin, genistein, and daidzein were 0.7, 2.5, and 8 microM, respectively. Kinetic analyses revealed that the mechanism underlying the inhibition by these isoflavones to be of the competitive type.  相似文献   

3.
To investigate whether sulfation, a major Phase II detoxification pathway in vivo, can be employed as a means for the inactivation/disposal of environmental estrogens, recombinant human cytosolic sulfotransferases were prepared and tested for enzymatic activities with bisphenol A, diethylstilbestrol, 4-octylphenol, p-nonylphenol, and 17alpha-ethynylestradiol as substrates. Of the seven recombinant enzymes examined, only SULT1C sulfotransferase #1 showed no activities toward the environmental estrogens tested. Among the other six sulfotransferases, the simple phenol (P)-form phenol sulfotransferase and estrogen sulfotransferase appeared to be considerably more active toward environmental estrogens than the other four sulfotransferases. Metabolic labeling experiments revealed the sulfation of environmental estrogens and the release of their sulfated derivatives by HepG2 human hepatoma cells. Moreover, sulfated environmental estrogens appeared to be incapable of penetrating through the HepG2 cell membrane.  相似文献   

4.
The development of various in vitro screening methods has led to identification of novel estrogenic chemicals of natural and anthropogenic origin. In this study, the (anti)estrogenic potential of several environmental chemicals were compared in an array of in vitro test systems comprising: (i) competitive binding to estrogen receptors derived from the human breast cancer cell line MCF-7 (hER) and rainbow trout (Oncorhynchus mykiss) (rtER), (ii) a proliferation assay with MCF-7 cells (E-SCREEN), and iii) induction of vitellogenin (rtVtg) in isolated rainbow trout hepatocytes. The results showed substantial differences in assay sensitivity for potent estrogens like 17beta-estradiol, diethylstilbestrol and zearalenone (ranking order of sensitivity: E-SCREEN > hER approximately rtER approximately rtVtg). Chemicals like 4-n-nonylphenol and bisphenol A had higher relative binding affinity to the hER, whereas 4-t-butylphenol and 4-n-butylphenol showed highest affinity to the rtER. Zearalenone and the novel estrogen 4-t-butylhexanol displayed a considerable higher relative potency in the E-SCREEN than the rtVtg assay, whereas alkylphenols and the novel estrogen mimic 4-t-butyl-nitrobenzene were most potent in fish cells. Correlation analysis of data from the test systems suggest that interspecies differences is largely due to inter-assay variation of the ER-dependent cellular responses, whereas binding to the ER are fairly similar in the two species tested.  相似文献   

5.
Environmental xenoestrogens have been implicated in human reproductive disorders and an increased incidence of breast cancer. Sulfation, a Phase II detoxification mechanism involving the cytosolic sulfotransferases (STs), may be an important mechanism in vivo for fending off these compounds. In this study, we report on the molecular cloning, expression, and purification of two human cytosolic STs, SULT2B1a and SULT2b1b. The activities of these two enzymes, as well as the other eight known human cytosolic STs previously prepared, toward representative environmental xenoestrogens were examined. Activity data showed that P-form (SULT1A1) PST displayed the highest activity toward these compounds, while SULT1C ST #2 also showed considerable activity, indicating that these enzymes may play a more important role in detoxification of environmental xenoestrogens. SULT1C ST #1, SULT2B1a ST, SULT2B1b ST and NST showed negligible or undetectable activity toward these compounds. The other four enzymes, M-form (SULT1A3) PST, SULT1B2 ST, SULT2A1 ST and SULT1E ST showed intermediate levels of activity toward some of these compounds. Kinetic studies on the sulfation of xenoestrogens by P-form (SULT1A1) PST were performed. The results are interpreted in the context of the endocrine-disrupting nature of these xenoestrogens.  相似文献   

6.
Nomura S  Daidoji T  Inoue H  Yokota H 《Life sciences》2008,83(5-6):223-228
Octylphenols, widely used in a variety of detergents and plastics, are known to exhibit estrogenicity in vivo. The details of their metabolism are needed to better understand the endocrine disruptions. We have previously shown that alkylphenols, having short alkyl chains, are glucuronidated and readily excreted into the bile from the liver, while 4-n-nonylphenol, having longer alkyl chains, remains as the alkylphenol's glucuronide in the tissue. This study elucidated the dependence of the metabolism on the shape of the alkyl chains by comparing 4-n-octylphenol and 4-tert-octylphenols in a perfused rat liver. Both octylphenols were highly glucuronidated by the liver microsomal fractions. The Vmax value of 4-tert-octylphenol glucuronidation was twice as high as that of 4-n-octylphenol in the liver microsomes. On the other hand, the Km values, being measures of enzymatic activity against these chemicals, were similar. 4-n-Octylphenol and 4-tert-octylphenol were both glucuronidated by a UDP-glucuronosyltransferase isoform, UGT2B1, expressed in the liver. In the liver perfusion, almost all of the 4-n-octylphenol perfused was metabolized directly to the glucuronide, whereas a portion of 4-tert-octylphenol was hydroxylated and then glucuronidated. The glucuronide of 4-n-octylphenol accumulated in the liver tissue in the same manner as 4-n-nonylphenol, but 4-tert-octylphenol and the hydroxylated metabolites were excreted readily into the bile. Only a small amount of 4-n-octylphenol-glucuronide and glucuronides of 4-tert-octylphenol and its hydroxylated metabolites could be excreted into the bile of Eisai hyperbilirubinemic rats (EHBR). These animals are deficient in xenobiotic conjugate transporter, multidrug resistance-associated protein (MRP-2), indicating that the glucuronides of both octylphenols are transported by MRP-2. These results indicate that the differences in metabolism of these octylphenols are due to the shape of their alkyl chains, suggesting that the estrogenic activities of not only the parent chemicals but also these metabolites must be taken into consideration.  相似文献   

7.
Environmental xenoestrogens have been implicated in human reproductive disorders and an increased incidence of breast cancer. Sulfation, a Phase II detoxification mechanism involving the cytosolic sulfotransferases (STs), may be an important mechanism in vivo for fending off these compounds. In this study, we report on the molecular cloning, expression, and purification of two human cytosolic STs, SULT2B1a and SULT2b1b. The activities of these two enzymes, as well as the other eight known human cytosolic STs previously prepared, toward representative environmental xenoestrogens were examined. Activity data showed that P-form (SULT1A1) PST displayed the highest activity toward these compounds, while SULT1C ST #2 also showed considerable activity, indicating that these enzymes may play a more important role in detoxification of environmental xenoestrogens. SULT1C ST #1, SULT2B1a ST, SULT2B1b ST and NST showed negligible or undetectable activity toward these compounds. The other four enzymes, M-form (SULT1A3) PST, SULT1B2 ST, SULT2A1 ST and SULT1E ST showed intermediate levels of activity toward some of these compounds. Kinetic studies on the sulfation of xenoestrogens by P-form (SULT1A1) PST were performed. The results are interpreted in the context of the endocrine-disrupting nature of these xenoestrogens.  相似文献   

8.
Summary Increasing concerns over the effects of environmental estrogens on wildlife and humans have highlighted the need for screening systems to assess potentially estrogenic effects of test compounds. As a result, in vitro screening methods such as cell proliferation assays using the estrogen-responsive human breast cancer cell line, MCF-7, have been developed. The present study describes an alternative in vitro approach for the assessment of such xenoestrogens, based on estrogenic rescue of MCF-7 cells from antiestrogen-induced cytotoxicity. This method measures the ability of various estrogenic compounds to compete with a known estrogen-receptor-mediated antihormonal drug, 4-hydroxytamoxifen, using the 1-[4,5-dimethylthiazol-2-yl]-3,5-diphenylformazan (MTT) assay to assess mitochondrial activity. Because 4-hydroxytamoxifen treatment of cells results in a dramatic decrease in mitochondrial dehydrogenase activity which is directly related to their estrogen-receptor content, inhibition of this effect with estrogenic compounds represents an estrogen-receptor interaction, or estrogenic rescue. The estrogenic compounds tested include a weak xenoestrogen, bisphernol A (BPA), and two biological estrogens, 17α- and 17β-estradiol. Competitive inhibition of 4-hydroxytamoxifen-induced cytotoxicity by BPA was compared to that of the biological estrogens. The results indicate that the biological estrogens can successfully compete with the antiestrogen in a dose-dependent manner. In addition, the assay is sensitive enough to detect estrogenic rescue by even the very weak xenoestrogen, BPA, albeit at high BPA concentrations. This simple in vitro method could be used as an alternative or second-line screen for potential xenoestrogens.  相似文献   

9.
实验探讨了低氧条件下血红素加氧酶1(Ho1)对斑马鱼的保护作用。Real-time PCR结果显示,低氧条件下斑马鱼ho1 mRNA水平在斑马鱼胚胎和离体培养细胞ZF4中显著增加,而在成鱼的不同组织中呈现不同的反应。低氧处理24h后,斑马鱼脑、鳃和肝脏中ho1 mRNA表达量明显上升,而在心脏和肾脏中ho1 mRNA表达量显著降低。用锌原卟啉IX(ZnPPIX)抑制ZF4细胞ho1的表达,采用CCK8试剂盒检测细胞存活率,结果显示抑制ho1表达可导致低氧条件下ZF4细胞存活率明显降低。利用Hoechst染色和caspase 3活性检测发现,在低氧条件下抑制ho1表达后ZF4细胞的凋亡率较对照组显著增加,而Ho1的诱导剂可显著降低低氧条件下抑制组的细胞凋亡率。这些结果表明斑马鱼Ho1可能通过抗细胞凋亡发挥低氧保护作用。  相似文献   

10.
Listeriosis is caused by the food-borne pathogen Listeria monocytogenes, which can be found in seafood and processing plants. To evaluate the risk to human health associated with seafood production in New Zealand, multi-virulence-locus sequence typing (MVLST) was used to define the sequence types (STs) of 31 L. monocytogenes isolates collected from seafood-processing plants, 15 from processed foods, and 6 from human listeriosis cases. The STs of these isolates were then compared with those from a collection of seafood isolates and epidemic strains from overseas. A total of 17 STs from New Zealand clustered into two lineages: seafood-related isolates in lineages I and II and all human isolates in lineage II. None of the New Zealand STs matched previously described STs from other countries. Isolates (belonging to ST01-N and ST03-N) from mussels and their processing environments, however, were identical to those of sporadic listeriosis cases in New Zealand. ST03-N isolates (16 from mussel-processing environments, 2 from humans, and 1 from a mussel) contained an inlA premature stop codon (PMSC) mutation. Therefore, the levels of invasiveness of 22 isolates from ST03-N and the three other common STs were compared using human intestinal epithelial Caco-2 cell lines. STs carrying inlA PMSCs, including ST03-N isolates associated with clinical cases, had a low invasion phenotype. The close relatedness of some clinical and environmental strains, as revealed by identical MVLST profiles, suggests that local and persistent environmental strains in seafood-processing environments pose a potential health risk. Furthermore, a PMSC in inlA does not appear to give L. monocytogenes a noninvasive profile.  相似文献   

11.
Environmental estrogens (endocrine disruptive chemicals) have been shown to affect reproduction in wild life and it has been reported that maternal exposure with those chemicals have adverse effects on the male reproductive tract. However, little is known about the potential effects of prepubertal or pubertal exposure with environmental estrogens on the male reproductive tract. Here we examine plasma hormone levels and histology in the testis of mice following either 4- or 8-week oral administration of bisphenol A. Plasma free testosterone levels were dramatically decreased following 8 weeks of bisphenol A treatment compared with control group and morphologically multinucleated giant cells having greater than three nuclei were found in seminiferous tubules in the testis following the 8-week bisphenol A treatment. No differences in plasma corticosterone and luteinizing hormone levels were seen between bisphenol A and control groups. Thus, exposure with bisphenol A around pubertal period may directly disrupt the male reproductive tract. These facts suggest that more detailed studies will warrant the assessment of the risk to the developing human testis from exposure to bisphenol A and other environmental estrogens in prepubertal and pubertal period.  相似文献   

12.
Summary In the present study, we evaluated the individual and combined effects of environmental estrogens and flavonoids on the proliferation of human breast carcinoma MCF-7 cells. These compounds are as follows: (1) pharmaceutical chemicals such as diethylstilbestrol, 17α-ethynylestradiol (17ES), tamoxifen, mestranol, and clomiphene, (2) industrial chemicals such as bisphenol A (BisA), 4-octylphenol (OP), 4-nonylphenol (NP), andp,p′-biphenol, and (3) flavonoids such as daidzein (D), genistein (G), quercetin (Q), and luteolin (L). We found that nanomolar concentrations of 17ES, BisA, OP, and NP were sufficient to stimulate the proliferation of MCF-7 cells. Among then, 1 μM BisA exhibited cell proliferation-stimulating activity as strong as 10 nM 17β-estradiol; and D and G exhibited cell proliferation-stimulating activity at 10 nM. On the other hand, Q and L exhibited cell proliferation-inhibiting activity. We also found that 10 nM flavonoids, such as D, G, Q, and L, were able to inhibit the proliferation-stimulating activity in MCF-7 cells by 1 μM environmental estrogens.  相似文献   

13.
Sulfotransferases (STs) catalyze the transfer reaction of the sulfate group from the ubiquitous donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to an acceptor group of numerous substrates. This reaction, often referred to as sulfuryl transfer, sulfation, or sulfonation, is widely observed from bacteria to humans and plays a key role in various biological processes such as cell communication, growth and development, and defense. The cytosolic STs sulfate small molecules such as steroids, bioamines, and therapeutic drugs, while the Golgi-membrane counterparts sulfate large molecules including glucosaminylglycans and proteins. We have now solved the X-ray crystal structures of four cytosolic and one membrane ST. All five STs are globular proteins composed of a single alpha/beta domain with the characteristic five-stranded beta-sheet. The beta-sheet constitutes the core of the Paps-binding and catalytic sites. Structural analysis of the PAPS-, PAP-, substrate-, and/or orthovanadate (VO(3-)(4))-bound enzymes has also revealed the common molecular mechanism of the transfer reaction catalyzed by sulfotransferses. The X-ray crystal structures have opened a new era for the study of sulfotransferases.  相似文献   

14.
Blastocystis is an intestinal protist, commonly found in the human population and in a wide range of animals globally. Currently, isolates from mammalian and avian hosts are classified into 17 subtypes (STs) based on phylogeny of the small subunit rRNA gene (SSU rDNA), of which ten (ST1-9, 12) are reported in humans. ST10 is a major ST reported from livestock cattle. However, other STs including ST1, 3, 4, 5, and 6, which have the potential to be transmitted to humans, are also reported from cattle in several countries. Although a survey has been conducted previously in western Japan for livestock cattle, there is no information available regarding other parts of Japan. Therefore, this study surveyed the prevalence of Blastocystis and its STs in cattle from Kanagawa prefecture, eastern Japan. Fecal specimens, collected from 133 dairy cattle on four different farms, were subjected to a short-term xenic in vitro culture and Blastocystis were identified by microscopic examination. Seventy-two cattle were positive for Blastocystis (54.1%). Direct sequences for the partial SSU rDNA were obtained for 45 samples. Based on nucleotide sequence homology search and phylogenetic analysis, 44 isolates were identified as ST14 and one as ST10. Our study confirms the presence of these STs in dairy cattle in Japan for the first time. The STs identified here, ST10 and ST14, support previous findings that Bovidae may be the natural host for both STs.  相似文献   

15.
Estrogen inhibition of oocyte maturation (OM) and the role of GPER (formerly known as GPR30) were investigated in zebrafish. Estradiol-17β (E2) and G-1, a GPER-selective agonist, bound to zebrafish oocyte membranes suggesting the presence of GPER which was confirmed by immunocytochemistry using a specific GPER antibody. Incubation of follicle-enclosed oocytes with an aromatase inhibitor, ATD, and enzymatic and manual removal of the ovarian follicle cell layers significantly increased spontaneous OM which was partially reversed by co-treatment with either 100 nM E2 or G-1. Incubation of denuded oocytes with the GPER antibody blocked the inhibitory effects of estrogens on OM, whereas microinjection of estrogen receptor alpha (ERα) antisense oligonucleotides into the oocytes was ineffective. The results suggest that endogenous estrogens produced by the follicle cells inhibit or delay spontaneous maturation of zebrafish oocytes and that this estrogen action is mediated through GPER. Treatment with E2 and G-1 also attenuated the stimulatory effect of the teleost maturation-inducing steroid, 17,20β-dihyroxy-4-pregnen-3-one (DHP), on OM. Moreover, E2 and G-1 down-regulated the expression of membrane progestin receptor alpha (mPRα), the intermediary in DHP induction of OM. Conversely DHP treatment caused a > 50% decline in GPER mRNA levels. The results suggest that estrogens and GPER are critical components of the endocrine system controlling the onset of OM in zebrafish. A model is proposed for the dual control of the onset of oocyte maturation in teleosts by estrogens and progestins acting through GPER and mPRα, respectively, at different stages of oocyte development.  相似文献   

16.
Many adverse effects on carp reproductive organs have been reported to be caused by exposure to environmental estrogens, such as nonylphenol and bisphenol A, which contaminate the aquatic environment. The glucuronidation activities of xenoestrogens (bisphenol A and diethylstilbestrol) and phytoestrogens (coumestrol, genistein and biochanin A), but not nonylphenol and octylphenol, were observed in microsomes prepared from carp organs. The highest levels of glucuronidation of environmental estrogens, for which the optimum temperature was 25-30 degrees C, were observed in the intestinal microsomes of 2-year-old carp. These activities in carp intestine increased developmentally, and the maximum levels corresponded to 5-10 % of that in rat liver microsomes. However, the glucuronidation of phytoestrogen by carp intestinal microsomes corresponded to that of rat liver microsomes. Only bisphenol A-glucuronide was excreted from the everted intestine, indicating that bisphenol A is metabolized in the carp intestine mainly as glucuronide.These results suggest that glucuronidation by carp intestine plays an important role for the detoxification of xenoestrogens and phytoestrogens, except for nonylphenol and octylphenol.  相似文献   

17.
In this study, we investigated the estrogenic activity of environmental estrogens by a competition binding assay using a human recombinant estrogens receptor (hERbeta) and by a proliferation assay using MCF-7 cells and a sulforhodamine-B assay. In the binding assay, pharmaceuticals had a stronger binding activity to hERbeta than that of some phytoestrogens (coumestrol, daidzein, genistein, luteolin, chrysin, flavone, and naringenin) or industrial chemicals, but phytoestrogens such as coumestrol had a binding activity as strong as pharmaceuticals such as 17alpha-ethynylestradiol (EE), tamoxifen (Tam), and mestranol. In the proliferation assay, pharmaceuticals such as diethylstilbestrol, EE, Tam, and clomiphene, and industrial chemicals such as 4-nonylphenol, bisphenol A, and 4-dihydroxybiphenyl had a proliferation-stimulating activity as strong as 17beta-estradiol (ES). In addition, we found that phytoestrogens such as coumestrol, daidzein, luteolin, and quercetin exerted a proliferation stimulating activity as strong as ES. Furthermore, we examined the suppression of proliferation-stimulating activity, induced by environmental estrogen, by flavonoids, such as daidzein, genistein, quercetin, and luteolin, and found that these flavonoids suppressed the induction of the proliferation-stimulating activity of environmental estrogens. The suppressive effect of flavonoids suggests that these compounds have anti-estrogenic and anti-cancer activities.  相似文献   

18.
Some endocrine disrupting compounds such as phthalates and phenols act non-genomically by inhibiting the sulfotransferase (SULT 1E1 and SULT 1A1) isoforms which inactivate estrogens by sulfonation. A range of environmental phenolic contaminants and dietary flavonoids was tested for inhibition of the human SULT 1A1, 1E1 and 2A1 isoforms. In particular, the plasticisers 4-n-octyl- and 4-n-nonyl-phenol inhibit SULT 1E1 with IC50 values of 0.16 μM vs. 10 nM estradiol while the 2-substituted chlorophenols show similar values. Flavonoids are also SULT inhibitors; tricin is a competitive inhibitor of SULT 1E1 with a Ki of 1.5 ± 0.8 nM. In a small pilot study to determine whether ingestion of soy flavonoids would affect SULT1A1 activity in vivo as well as in vitro, sulfonation of daidzein was reduced in a group of women ‘at risk’ of breast cancer, as compared with controls, although the SULT 1A1*1/SULT 1A1*2 allele ratio was not different. Endocrine disrupting effects in man may be multifactorial when components from both the diet and the environment act at the same point in steroid metabolism.  相似文献   

19.
Binding of herpes simplex virus 1 (HSV-1) envelope glycoprotein D (gD) to the receptor 3-O-sulfated heparan sulfate (3-OS HS) mediates viral entry. 3-O-Sulfation of HS is catalyzed by the 3-O-sulfotransferase (3-OST) enzyme. Multiple isoforms of 3-OST are differentially expressed in tissues of zebrafish (ZF) embryos. Here, we performed a comprehensive analysis of the role of ZF 3-OST isoforms (3-OST-1, 3-OST-5, 3-OST-6, and 3-OST-7) in HSV-1 entry. We found that a group of 3-OST gene family isoforms (3-OST-2, -3, -4, and -6) with conserved catalytic and substrate-binding residues of the enzyme mediates HSV-1 entry and spread, while the other group (3-OST-1, -5, and -7) lacks these properties. These results demonstrate that HSV-1 entry can be recapitulated by certain ZF 3-OST enzymes, a significant step toward the establishment of a ZF model of HSV-1 infection and tissue-specific tropism.  相似文献   

20.

Background

Leptospirosis is one of the most important neglected tropical infectious diseases worldwide. Icterohaemorrhagiae has been throughout recent history, and still is, the predominant serogroup of this pathogen in China. However, very little in detail is known about the serovars or genotypes of this serogroup.

Methodology/Principal Findings

In this study, 120 epidemic strains from five geographically diverse regions in China collected over a 50 year period (1958~2008), and 8 international reference strains characterized by 16S rRNA sequencing and MLST analysis. 115, 11 and 2 strains were identified as L. interrogans, L. borgpetersenii, and L. kirschneri, respectively. 17 different STs were identified including 69 ST1 strains, 18 ST17, 18 ST128, 9 ST143 and 2 ST209. The remaining 12 strains belonged to 12 different STs. eBURST analysis demonstrated that, among the clonal complexes isolated (CCs), CC1 accounted for 73.3% (88/120) strains representing three STs: ST1, ST128 and ST98. ST1 was the most likely ancestral strain of this CC, followed by singleton CC17 (17/120) and CC143 (11/120). Further analysis of adding 116 serogroup Icterohaemorrhagiae strains in the MLST database and studies previously described using global eBURST analysis and MST dendrogram revealed relatively similar ST clustering patterns with five main CCs and 8 singletons among these 244 strains. CC17 was found to be the most prevalent clone of pathogenic Leptospira circulating worldwide. This is the first time, to our knowledge, that ST1 and ST17 strains were distributed among 4 distinct serovars, indicating a highly complicated relationship between serovars and STs.

Conclusions/Significance

Our studies demonstrated a high level of genetic diversity in the serogroup Icterohaemorrhagiae strains. Distinct from ST17 or ST37 circulating elsewhere, ST1 included in CC1, has over the past 50 years or so, proven to be the most prevalent ST of pathogenic leptospires isolated in China. Moreover, the complicated relationship between STs and serovars indicates an urgent need to develop an improved scheme for Leptospira serotyping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号