首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cdc7p and Dbf4p proteins form an active kinase complex in Saccharomyces cerevisiae that is essential for the initiation of DNA replication. A genetic screen for mutations that are lethal in combination with cdc7-1 led to the isolation of seven lsd (lethal with seven defect) complementation groups. The lsd7 complementation group contained two temperature-sensitive dbf4 alleles. The lsd1 complementation group contained a new allele of RAD53, which was designated rad53-31. RAD53 encodes an essential protein kinase that is required for the activation of DNA damage and DNA replication checkpoint pathways, and that is implicated as a positive regulator of S phase. Unlike other RAD53 alleles, we demonstrate that the rad53-31 allele retains an intact checkpoint function. Thus, the checkpoint function and the DNA replication function of RAD53 can be functionally separated. The activation of DNA replication through RAD53 most likely occurs through DBF4. Two-hybrid analysis indicates that the Rad53p protein binds to Dbf4p. Furthermore, the steady-state level of DBF4 message and Dbf4p protein is reduced in several rad53 mutant strains, indicating that RAD53 positively regulates DBF4. These results suggest that two different functions of the cell cycle, initiation of DNA replication and the checkpoint function, can be coordinately regulated through the common intermediate RAD53.  相似文献   

2.
The Saccharomyces cerevisiae Rad53 protein kinase is required for the execution of checkpoint arrest at multiple stages of the cell cycle. We found that Rad53 autophosphorylation activity depends on in trans phosphorylation mediated by Mec1 and does not require physical association with other proteins. Uncoupling in trans phosphorylation from autophosphorylation using a rad53 kinase-defective mutant results in a dominant-negative checkpoint defect. Activation of Rad53 in response to DNA damage in G(1) requires the Rad9, Mec3, Ddc1, Rad17 and Rad24 checkpoint factors, while this dependence is greatly reduced in S phase cells. Furthermore, during recovery from checkpoint activation, Rad53 activity decreases through a process that does not require protein synthesis. We also found that Rad53 modulates the lagging strand replication apparatus by controlling phosphorylation of the DNA polymerase alpha-primase complex in response to intra-S DNA damage.  相似文献   

3.
Dbf4 is a conserved eukaryotic protein that functions as the regulatory subunit of the Dbf4-dependent kinase (DDK) complex. DDK plays essential roles in DNA replication initiation and checkpoint activation. During the replication checkpoint, Saccharomyces cerevisiae Dbf4 is phosphorylated in a Rad53-dependent manner, and this, in turn, inhibits initiation of replication at late origins. We have determined the minimal region of Dbf4 required for the interaction with the checkpoint kinase Rad53 and solved its crystal structure. The core of this fragment of Dbf4 folds as a BRCT domain, but it includes an additional N-terminal helix unique to Dbf4. Mutation of the residues that anchor this helix to the domain core abolish the interaction between Dbf4 and Rad53, indicating that this helix is an integral element of the domain. The structure also reveals that previously characterized Dbf4 mutants with checkpoint phenotypes destabilize the domain, indicating that its structural integrity is essential for the interaction with Rad53. Collectively, these results allow us to propose a model for the association between Dbf4 and Rad53.  相似文献   

4.
In Saccharomyces cerevisiae the rate of DNA replication is slowed down in response to DNA damage as a result of checkpoint activation, which is mediated by the Mec1 and Rad53 protein kinases. We found that the Srs2 DNA helicase, which is involved in DNA repair and recombination, is phosphorylated in response to intra-S DNA damage in a checkpoint-dependent manner. DNA damage-induced Srs2 phosphorylation also requires the activity of the cyclin-dependent kinase Cdk1, suggesting that the checkpoint pathway might modulate Cdk1 activity in response to DNA damage. Moreover, srs2 mutants fail to activate Rad53 properly and to slow down DNA replication in response to intra-S DNA damage. The residual Rad53 activity observed in srs2 cells depends upon the checkpoint proteins Rad17 and Rad24. Moreover, DNA damage-induced lethality in rad17 mutants depends partially upon Srs2, suggesting that a functional Srs2 helicase causes accumulation of lethal events in a checkpoint-defective context. Altogether, our data implicate Srs2 in the Mec1 and Rad53 pathway and connect the checkpoint response to DNA repair and recombination.  相似文献   

5.
Dbf4/Cdc7 (Dbf4-dependent kinase (DDK)) is activated at the onset of S-phase, and its kinase activity is required for DNA replication initiation from each origin. We showed that DDK is an important target for the S-phase checkpoint in mammalian cells to suppress replication initiation and to protect replication forks. We demonstrated that ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) proteins directly phosphorylate Dbf4 in response to ionizing radiation and replication stress. We identified novel ATM/ATR phosphorylation sites on Dbf4 and showed that ATM/ATR-mediated phosphorylation of Dbf4 is critical for the intra-S-phase checkpoint to inhibit DNA replication. The kinase activity of DDK, which is not suppressed upon DNA damage, is required for fork protection under replication stress. We further demonstrated that ATM/ATR-mediated phosphorylation of Dbf4 is important for preventing DNA rereplication upon loss of replication licensing through the activation of the S-phase checkpoint. These studies indicate that DDK is a direct substrate of ATM and ATR to mediate the intra-S-phase checkpoint in mammalian cells.  相似文献   

6.
DNA replication fork stalling poses a major threat to genome stability. This is counteracted in part by the intra-S phase checkpoint, which stabilizes arrested replication machinery, prevents cell-cycle progression and promotes DNA repair. The checkpoint kinase Mec1/ATR and RecQ helicase Sgs1/BLM contribute synergistically to fork maintenance on hydroxyurea (HU). Both enzymes interact with replication protein A (RPA). We identified and deleted the major interaction sites on Sgs1 for Rpa70, generating a mutant called sgs1-r1. In contrast to a helicase-dead mutant of Sgs1, sgs1-r1 did not significantly reduce recovery of DNA polymerase α at HU-arrested replication forks. However, the Sgs1 R1 domain is a target of Mec1 kinase, deletion of which compromises Rad53 activation on HU. Full activation of Rad53 is achieved through phosphorylation of the Sgs1 R1 domain by Mec1, which promotes Sgs1 binding to the FHA1 domain of Rad53 with high affinity. We propose that the recruitment of Rad53 by phosphorylated Sgs1 promotes the replication checkpoint response on HU. Loss of the R1 domain increases lethality selectively in cells lacking Mus81, Slx4, Slx5 or Slx8.  相似文献   

7.
Dbf4p is an essential regulatory subunit of the Cdc7p kinase required for the initiation of DNA replication. Cdc7p and Dbf4p orthologs have also been shown to function in the response to DNA damage. A previous Dbf4p multiple sequence alignment identified a conserved approximately 40-residue N-terminal region with similarity to the BRCA1 C-terminal (BRCT) motif called "motif N." BRCT motifs encode approximately 100-amino-acid domains involved in the DNA damage response. We have identified an expanded and conserved approximately 100-residue N-terminal region of Dbf4p that includes motif N but is capable of encoding a single BRCT-like domain. Dbf4p orthologs diverge from the BRCT motif at the C terminus but may encode a similar secondary structure in this region. We have therefore called this the BRCT and DBF4 similarity (BRDF) motif. The principal role of this Dbf4p motif was in the response to replication fork (RF) arrest; however, it was not required for cell cycle progression, activation of Cdc7p kinase activity, or interaction with the origin recognition complex (ORC) postulated to recruit Cdc7p-Dbf4p to origins. Rad53p likely directly phosphorylated Dbf4p in response to RF arrest and Dbf4p was required for Rad53p abundance. Rad53p and Dbf4p therefore cooperated to coordinate a robust cellular response to RF arrest.  相似文献   

8.
The yeast Saccharomyces cerevisiae Cdc7p/Dbf4p protein kinase complex was purified to near homogeneity from insect cells. The complex efficiently phosphorylated yeast Mcm2p and less efficiently the remaining Mcm proteins or other replication proteins. Significantly, when pretreated with alkaline phosphatase, Mcm2p became completely inactive as a substrate, suggesting that it must be phosphorylated by other protein kinase(s) to be a substrate for the Cdc7p/Dbf4p complex. Mutant Cdc7p/Dbf4p complexes containing either Cdc7-1p or Dbf4-1 approximately 5p were also partially purified from insect cells and characterized in vitro. Furthermore, the autonomously replicating sequence binding activity of various dbf4 mutants was also analyzed. These studies suggest that the autonomously replicating sequence-binding and Cdc7p protein kinase activation domains of Dbf4p collaborate to form an active Cdc7p/Dbf4p complex and function during S phase in S. cerevisiae. It is shown that Rad53p phosphorylates the Cdc7p/Dbf4p complex in vitro and that this phosphorylation greatly inhibits the kinase activity of Cdc7p/Dbf4p. This result suggests that Rad53p controls the initiation of chromosomal DNA replication by regulating the protein kinase activity associated with the Cdc7p/Dbf4p complex.  相似文献   

9.
The Dbf4/Cdc7 kinase (DDK) plays an essential role in stimulating DNA replication by phosphorylating subunits of the Mcm2-7 helicase complex at origins. This kinase complex is itself phosphorylated and removed from chromatin in a Rad53-dependent manner when an S phase checkpoint is triggered. Comparison of Dbf4 sequence across a variety of eukaryotic species has revealed three conserved regions that have been termed motifs N, M and C. The most highly conserved of the three, motif C, encodes a zinc finger, which are known to mediate protein-protein and protein-DNA interactions. Mutation of conserved motif C cysteines and histidines disrupted the association of Dbf4 with ARS1 origin DNA and Mcm2, but not other known ligands including Cdc7, Rad53 or the origin recognition complex subunit Orc2. Furthermore, these mutations impaired the ability of Dbf4 to phosphorylate Mcm2. Budding yeast strains for which the single genomic DBF4 copy was replaced with these motif C mutant alleles were compromised for entry into and progression through S phase, indicating that the observed weakening of the Mcm2 interaction prevents DDK from efficiently stimulating the initiation of DNA replication. Following initiation, Mcm2-7 migrates with the replication fork. Interestingly, the motif C mutants were sensitive to long-term, but not short-term exposure to the genotoxic agents hydroxyurea and methyl methanesulfonate. These results support a model whereby DDK interaction with Mcm2 is important to stabilize and/or restart replication forks during conditions where a prolonged S-phase checkpoint is triggered.  相似文献   

10.
In response to DNA damage and replication pausing, eukaryotes activate checkpoint pathways that prevent genomic instability by coordinating cell cycle progression with DNA repair. The intra-S-phase checkpoint has been proposed to protect stalled replication forks from pathological rearrangements that could result from unscheduled recombination. On the other hand, recombination may be needed to cope with either stalled forks or double-strand breaks resulting from hydroxyurea treatment. We have exploited fission yeast to elucidate the relationship between replication fork stalling, loading of replication and recombination proteins onto DNA, and the intra-S checkpoint. Here, we show that a functional recombination machinery is not essential for recovery from replication fork arrest and instead can lead to nonfunctional fork structures. We find that Rad22-containing foci are rare in S-phase cells, but peak in G2 phase cells after a perturbed S phase. Importantly, we find that the intra-S checkpoint is necessary to avoid aberrant strand-exchange events during a hydroxyurea block.  相似文献   

11.
The initiation of eukaryotic DNA replication requires the assembly of active CMG (Cdc45‐MCM‐GINS) helicases at replication origins by a set of conserved and essential firing factors. This process is controlled during the cell cycle by cyclin‐dependent kinase (CDK) and Dbf4‐dependent kinase (DDK), and in response to DNA damage by the checkpoint kinase Rad53/Chk1. Here we show that Sld3, previously shown to be an essential CDK and Rad53 substrate, is recruited to the inactive MCM double hexamer in a DDK‐dependent manner. Sld3 binds specifically to DDK‐phosphorylated peptides from two MCM subunits (Mcm4, 6) and then recruits Cdc45. MCM mutants that cannot bind Sld3 or Sld3 mutants that cannot bind phospho‐MCM or Cdc45 do not support replication. Moreover, phosphomimicking mutants in Mcm4 and Mcm6 bind Sld3 without DDK and facilitate DDK‐independent replication. Thus, Sld3 is an essential “reader” of DDK phosphorylation, integrating signals from three distinct protein kinase pathways to coordinate DNA replication during S phase.  相似文献   

12.
When inappropriate DNA structures arise, they are sensed by DNA structure-dependent checkpoint pathways and subsequently repaired. Recruitment of checkpoint proteins to such structures precedes recruitment of proteins involved in DNA metabolism. Thus, checkpoints can regulate DNA metabolism. We show that fission yeast Rad9, a 9-1-1 heterotrimeric checkpoint-clamp component, is phosphorylated by Hsk1(Cdc7), the Schizosaccharomyces pombe?Dbf4-dependent kinase (DDK) homolog, in response to replication-induced DNA damage. Phosphorylation of Rad9 disrupts its interaction with replication protein A (RPA) and is dependent on 9-1-1 chromatin loading, the Rad9-associated protein Rad4/Cut5(TopBP1), and prior phosphorylation by Rad3(ATR). rad9 mutants defective in DDK phosphorylation show wild-type checkpoint responses but abnormal DNA repair protein foci and decreased viability after replication stress. We propose that Rad9 phosphorylation by DDK releases Rad9 from DNA damage sites to facilitate DNA repair.  相似文献   

13.
Principally characterized for its requirement in the initiation of DNA replication, compelling evidence from two yeast model organisms now points to a central role for the Dbf4/Cdc7 kinase complex in S-phase checkpoint responses. Among the key findings supporting this view are observations that orthologs Dfp1 (Schizosaccharomyces pombe) and Dbf4 (Saccharomyces cerevisiae) interact with equivalent checkpoint kinases Cds1 and Rad53, respectively, and that mutants for Dbf4 and Cdc7 in these species are sensitive to genotoxic agents. Recently, these findings have been extended through mutational analyses of conserved regions in both Dfp1 and Dbf4, leading to the identification of distinct motifs which mediate cellular responses to DNA damage and replication fork arrest. The present review is a comparative survey of data obtained from studies conducted with S. pombe and S. cerevisae, and a consideration of models for the role played by Dbf4/Cdc7 in checkpoint responses.  相似文献   

14.
Forkhead-associated (FHA) and BRCA1 C-terminal (BRCT) domains are overrepresented in DNA damage and replication stress response proteins. They function primarily as phosphoepitope recognition modules but can also mediate non-canonical interactions. The latter are rare, and only a few have been studied at a molecular level. We have identified a crucial non-canonical interaction between the N-terminal FHA1 domain of the checkpoint effector kinase Rad53 and the BRCT domain of the regulatory subunit of the Dbf4-dependent kinase that is critical to suppress late origin firing and to stabilize stalled forks during replication stress. The Rad53-Dbf4 interaction is phosphorylation-independent and involves a novel non-canonical interface on the FHA1 domain. Mutations within this surface result in hypersensitivity to genotoxic stress. Importantly, this surface is not conserved in the FHA2 domain of Rad53, suggesting that the FHA domains of Rad53 gain specificity by engaging additional interaction interfaces beyond their phosphoepitope-binding site. In general, our results point to FHA domains functioning as complex logic gates rather than mere phosphoepitope-targeting modules.  相似文献   

15.
Dbf4/Cdc7 is required for DNA replication in Saccharomyces cerevisiae and appears to be a target in the S-phase checkpoint. Previously, a 186-amino-acid Dbf4 region that mediates interactions with both the origin recognition complex and Rad53 was identified. We now show this domain also mediates the association between Dbf4 and Mcm2, a key Dbf4/Cdc7 phosphorylation target. Two conserved sequences, the N and M motifs, have been identified within this Dbf4 region. Removing motif M (Dbf4DeltaM) impairs the ability of Dbf4 to support normal cell cycle progression and abrogates the Dbf4-Mcm2 association but has no effect on the Dbf4-Rad53 interaction. In contrast, deleting motif N (Dbf4DeltaN) does not affect the essential function of Dbf4, disrupts the Dbf4-Rad53 interaction, largely preserves the Dbf4-Mcm2 association, and renders the cells hypersensitive to genotoxic agents. Surprisingly, Dbf4DeltaM interacts strongly with Orc2, while Dbf4DeltaN does not. The DBF4 allele dna52-1 was cloned and sequenced, revealing a single point mutation within the M motif. This mutant is unable to maintain interactions with either Mcm2 or Orc2 at the semipermissive temperature of 30 degrees C, while the interaction with Rad53 is preserved. Furthermore, this mutation confers increased resistance to genotoxic agents, which we propose is more likely due to a role for Dbf4 in the resumption of fork progression following checkpoint-induced arrest than prevention of late origin firing. Thus, the alteration of the M motif may facilitate the role of Dbf4 as a checkpoint target.  相似文献   

16.
Saccharomyces cerevisiae Rad53 is a protein kinase central to the DNA damage and DNA replication checkpoint signaling pathways. In addition to its catalytic domain, Rad53 contains two forkhead homology-associated (FHA) domains (FHA1 and FHA2), which are phosphopeptide binding domains. The Rad53 FHA domains are proposed to mediate the interaction of Rad53 with both upstream and downstream branches of the DNA checkpoint signaling pathways. Here we show that concurrent mutation of Rad53 FHA1 and FHA2 causes DNA checkpoint defects approaching that of inactivation or loss of RAD53 itself. Both FHA1 and FHA2 are required for the robust activation of Rad53 by the RAD9-dependent DNA damage checkpoint pathway, while an intact FHA1 or FHA2 allows the activation of Rad53 in response to replication block. Mutation of Rad53 FHA1 causes the persistent activation of the RAD9-dependent DNA damage checkpoint pathway in response to replicational stress, suggesting that the RAD53-dependent stabilization of stalled replication forks functions through FHA1. Rad53 FHA1 is also required for the phosphorylation-dependent association of Rad53 with the chromatin assembly factor Asf1, although Asf1 itself is apparently not required for the prevention of DNA damage in response to replication block.  相似文献   

17.
Saccharomyces cerevisiae Rad53 is a protein kinase central to the DNA damage and DNA replication checkpoint signaling pathways. In addition to its catalytic domain, Rad53 contains two forkhead homology-associated (FHA) domains (FHA1 and FHA2), which are phosphopeptide binding domains. The Rad53 FHA domains are proposed to mediate the interaction of Rad53 with both upstream and downstream branches of the DNA checkpoint signaling pathways. Here we show that concurrent mutation of Rad53 FHA1 and FHA2 causes DNA checkpoint defects approaching that of inactivation or loss of RAD53 itself. Both FHA1 and FHA2 are required for the robust activation of Rad53 by the RAD9-dependent DNA damage checkpoint pathway, while an intact FHA1 or FHA2 allows the activation of Rad53 in response to replication block. Mutation of Rad53 FHA1 causes the persistent activation of the RAD9-dependent DNA damage checkpoint pathway in response to replicational stress, suggesting that the RAD53-dependent stabilization of stalled replication forks functions through FHA1. Rad53 FHA1 is also required for the phosphorylation-dependent association of Rad53 with the chromatin assembly factor Asf1, although Asf1 itself is apparently not required for the prevention of DNA damage in response to replication block.  相似文献   

18.
Eukaryotic cells coordinate chromosome duplication by assembly of protein complexes at origins of DNA replication and by activation of cyclin-dependent kinase and Cdc7p-Dbf4p kinase. We show in Saccharomyces cerevisiae that although Cdc7p levels are constant during the cell division cycle, Dbf4p and Cdc7p-Dbf4p kinase activity fluctuate. Dbf4p binds to chromatin near the G(1)/S-phase boundary well after binding of the minichromosome maintenance (Mcm) proteins, and it is stabilized at the non-permissive temperature in mutants of the anaphase-promoting complex, suggesting that Dbf4p is targeted for destruction by ubiquitin-mediated proteolysis. Arresting cells with hydroxyurea (HU) or with mutations in genes encoding DNA replication proteins results in a more stable, hyper-phosphorylated form of Dbf4p and an attenuated kinase activity. The Dbf4p phosphorylation in response to HU is RAD53 dependent. This suggests that an S-phase checkpoint function regulates Cdc7p-Dbf4p kinase activity. Cdc7p may also play a role in adapting from the checkpoint response since deletion of CDC7 results in HU hypersensitivity. Recombinant Cdc7p-Dbf4p kinase was purified and both subunits were autophosphorylated. Cdc7p-Dbf4p efficiently phosphorylates several proteins that are required for the initiation of DNA replication, including five of the six Mcm proteins and the p180 subunit of DNA polymerase alpha-primase.  相似文献   

19.
Saccharomyces cerevisiae dbf4 and cdc7 cell cycle mutants block initiation of DNA synthesis (i.e., are iDS mutants) at 37 degrees C and arrest the cell cycle with a 1C DNA content. Surprisingly, certain dbf4 and cdc7 strains divide their chromatin at 37 degrees C. We found that the activation of the Cdc28 mitotic protein kinase and the Dbf2 kinase occurred with the correct relative timing with respect to each other and the observed division of the unreplicated chromatin. Furthermore, the division of unreplicated chromatin depended on a functional spindle. Therefore, the observed nuclear division resembled a normal mitosis, suggesting that S. cerevisiae commits to M phase in late G1 independently of S phase. Genetic analysis of dbf4 and cdc7 strains showed that the ability to restrain mitosis during a late G1 block depended on the genetic background of the strain concerned, since the dbf4 and cdc7 alleles examined showed the expected mitotic restraint in other backgrounds. This restraint was genetically dominant to lack of restraint, indicating that an active arrest mechanism, or checkpoint, was involved. However, none of the previously described mitotic checkpoint pathways were defective in the iDS strains that carry out mitosis without replicated DNA, therefore indicating that the checkpoint pathway that arrests mitosis in iDS mutants is novel. Thus, spontaneous strain differences have revealed that S. cerevisiae commits itself to mitosis in late G1 independently of entry into S phase and that a novel checkpoint mechanism can restrain mitosis if cells are blocked in late G1. We refer to this as the G1/M-phase checkpoint since it acts in G1 to restrain mitosis.  相似文献   

20.
T Tanaka  K Nasmyth 《The EMBO journal》1998,17(17):5182-5191
Eukaryotic cells use multiple replication origins to replicate their large genomes. Some origins fire early during S phase whereas others fire late. In Saccharomyces cerevisiae, initiator sequences (ARSs) are bound by the origin recognition complex (ORC). Cdc6p synthesized at the end of mitosis joins ORC and facilitates recruitment of Mcm proteins, which renders origins competent to fire. However, origins fire only upon the subsequent activation of S phase cyclin-dependent kinases (S-CDKs) and Dbf4/Cdc7 at the G1/S boundary. We have used a chromatin immunoprecipitation assay to measure the association with ARS sequences of DNA primase and the single-stranded DNA binding replication protein A (RPA) when fork movement is inhibited by hydroxyurea (HU). RPA's association with origins requires S-CDKs, Dbf4/Cdc7 kinase and an Mcm protein. The recruitment of DNA primase depends on RPA. Furthermore, early- and late-firing origins differ not in the timing of their recruitment of an Mcm protein, but in the timing of RPA's recruitment. RPA is recruited to early but not to late origins in HU. We also show that Rad53 kinase is required to prevent RPA association with a late origin in HU. Our data suggest that the origin unwinding accompanied by RPA association is a key step, regulated by S-CDKs, Dbf4/Cdc7 and Rad53p. Thus, in the presence of active S-CDKs and Dbf4/Cdc7, Mcms may open origins and thereby facilitate the loading of RPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号