首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In this paper we introduce methods to build a SOM that can be used as an isometric map for mobile robots. That is, given a dataset of sensor readings collected at points uniformly distributed with respect to the ground, we wish to build a SOM whose neurons (prototype vectors in sensor space) correspond to points uniformly distributed on the ground. Manifold learning techniques have already been used for dimensionality reduction of sensor space in navigation systems. Our focus is on the isometric property of the SOM. For reliable path-planning and information sharing between several robots, it is desirable that the robots build an internal representation of the sensor manifold, a map, that is isometric with the environment. We show experimentally that standard Non-Linear Dimensionality Reduction (NLDR) algorithms do not provide isometric maps for range data and bearing data. However, the auxiliary low dimensional manifolds created can be used to improve the distribution of the neurons of a SOM (that is, make the neurons more evenly distributed with respect to the ground). We also describe a method to create an isometric map from a sensor readings collected along a polygonal line random walk.  相似文献   

2.
The self-organizing map (SOM), as a kind of unsupervised neural network, has been used for both static data management and dynamic data analysis. To further exploit its search abilities, in this paper we propose an SOM-based algorithm (SOMS) for optimization problems involving both static and dynamic functions. Furthermore, a new SOM weight updating rule is proposed to enhance the learning efficiency; this may dynamically adjust the neighborhood function for the SOM in learning system parameters. As a demonstration, the proposed SOMS is applied to function optimization and also dynamic trajectory prediction, and its performance compared with that of the genetic algorithm (GA) due to the similar ways both methods conduct searches.  相似文献   

3.
A neural model proposes how entorhinal grid cells and hippocampal place cells may develop as spatial categories in a hierarchy of self-organizing maps (SOMs). The model responds to realistic rat navigational trajectories by learning both grid cells with hexagonal grid firing fields of multiple spatial scales, and place cells with one or more firing fields, that match neurophysiological data about their development in juvenile rats. Both grid and place cells can develop by detecting, learning and remembering the most frequent and energetic co-occurrences of their inputs. The model''s parsimonious properties include: similar ring attractor mechanisms process linear and angular path integration inputs that drive map learning; the same SOM mechanisms can learn grid cell and place cell receptive fields; and the learning of the dorsoventral organization of multiple spatial scale modules through medial entorhinal cortex to hippocampus (HC) may use mechanisms homologous to those for temporal learning through lateral entorhinal cortex to HC (‘neural relativity’). The model clarifies how top-down HC-to-entorhinal attentional mechanisms may stabilize map learning, simulates how hippocampal inactivation may disrupt grid cells, and explains data about theta, beta and gamma oscillations. The article also compares the three main types of grid cell models in the light of recent data.  相似文献   

4.
The Self-organizing map (SOM) is an unsupervised learning method based on the neural computation, which has found wide applications. However, the learning process sometime takes multi-stable states, within which the map is trapped to an undesirable disordered state including topological defects on the map. These topological defects critically aggravate the performance of the SOM. In order to overcome this problem, we propose to introduce an asymmetric neighborhood function for the SOM algorithm. Compared with the conventional symmetric one, the asymmetric neighborhood function accelerates the ordering process even in the presence of the defect. However, this asymmetry tends to generate a distorted map. This can be suppressed by an improved method of the asymmetric neighborhood function. In the case of one-dimensional SOM, it is found that the required steps for perfect ordering is numerically shown to be reduced from O(N 3) to O(N 2). We also discuss the ordering process of a twisted state in two-dimensional SOM, which can not be rectified by the ordinary symmetric neighborhood function.  相似文献   

5.
 In this paper, we propose a modification of Kohonen's self-organization map (SOM) algorithm. When the input signal space is not convex, some reference vectors of SOM can protrude from it. The input signal space must be convex to keep all the reference vectors fixed on it for any updates. Thus, we introduce a projection learning method that fixes the reference vectors onto the input signal space. This version of SOM can be applied to a non-convex input signal space. We applied SOM with projection learning to a direction map observed in the primary visual cortex of area 17 of ferrets, and area 18 of cats. Neurons in those areas responded selectively to the orientation of edges or line segments, and their directions of motion. Some iso-orientation domains were subdivided into selective regions for the opposite direction of motion. The abstract input signal space of the direction map described in the manner proposed by Obermayer and Blasdel [(1993) J Neurosci 13: 4114–4129] is not convex. We successfully used SOM with projection learning to reproduce a direction-orientation joint map. Received: 29 September 2000 / Accepted: 7 March 2001  相似文献   

6.
The utility of machine learning in understanding the motor system is promising a revolution in how to collect, measure, and analyze data. The field of movement science already elegantly incorporates theory and engineering principles to guide experimental work, and in this review we discuss the growing use of machine learning: from pose estimation, kinematic analyses, dimensionality reduction, and closed-loop feedback, to its use in understanding neural correlates and untangling sensorimotor systems. We also give our perspective on new avenues, where markerless motion capture combined with biomechanical modeling and neural networks could be a new platform for hypothesis-driven research.  相似文献   

7.
 In this paper, we study the combined dynamics of the neural activity and the synaptic efficiency changes in a fully connected network of biologically realistic neurons with simple synaptic plasticity dynamics including both potentiation and depression. Using a mean-field of technique, we analyzed the equilibrium states of neural networks with dynamic synaptic connections and found a class of bistable networks. For this class of networks, one of the stable equilibrium states shows strong connectivity and coherent responses to external input. In the other stable equilibrium, the network is loosely connected and responds non coherently to external input. Transitions between the two states can be achieved by positively or negatively correlated external inputs. Such networks can therefore switch between their phases according to the statistical properties of the external input. Non-coherent input can only “rcad” the state of the network, while a correlated one can change its state. We speculate that this property, specific for plastic neural networks, can give a clue to understand fully unsupervised learning models. Received: 8 August 1999 / Accepted in revised form: 16 March 2000  相似文献   

8.
In this paper, an improved and much stronger RNH-QL method based on RBF network and heuristic Q-learning was put forward for route searching in a larger state space. Firstly, it solves the problem of inefficiency of reinforcement learning if a given problem’s state space is increased and there is a lack of prior information on the environment. Secondly, RBF network as weight updating rule, reward shaping can give an additional feedback to the agent in some intermediate states, which will help to guide the agent towards the goal state in a more controlled fashion. Meanwhile, with the process of Q-learning, it is accessible to the underlying dynamic knowledge, instead of the need of background knowledge of an upper level RBF network. Thirdly, it improves the learning efficiency by incorporating the greedy exploitation strategy to train the neural network, which has been testified by the experimental results.  相似文献   

9.
Analysis of gene expression data using self-organizing maps.   总被引:29,自引:0,他引:29  
DNA microarray technologies together with rapidly increasing genomic sequence information is leading to an explosion in available gene expression data. Currently there is a great need for efficient methods to analyze and visualize these massive data sets. A self-organizing map (SOM) is an unsupervised neural network learning algorithm which has been successfully used for the analysis and organization of large data files. We have here applied the SOM algorithm to analyze published data of yeast gene expression and show that SOM is an excellent tool for the analysis and visualization of gene expression profiles.  相似文献   

10.
An unsupervised neural network is proposed to learn and recall complex robot trajectories. Two cases are considered: (i) A single trajectory in which a particular arm configuration (state) may occur more than once, and (ii) trajectories sharing states with each other. Ambiguities occur in both cases during recall of such trajectories. The proposed model consists of two groups of synaptic weights trained by competitive and Hebbian learning laws. They are responsible for encoding spatial and temporal features of the input sequences, respectively. Three mechanisms allow the network to deal with repeated or shared states: local and global context units, neurons disabled from learning, and redundancy. The network reproduces the current and the next state of the learned sequences and is able to resolve ambiguities. The model was simulated over various sets of robot trajectories in order to evaluate learning and recall, trajectory sampling effects and robustness.  相似文献   

11.
Building an accurate disease risk prediction model is an essential step in the modern quest for precision medicine. While high-dimensional genomic data provides valuable data resources for the investigations of disease risk, their huge amount of noise and complex relationships between predictors and outcomes have brought tremendous analytical challenges. Deep learning model is the state-of-the-art methods for many prediction tasks, and it is a promising framework for the analysis of genomic data. However, deep learning models generally suffer from the curse of dimensionality and the lack of biological interpretability, both of which have greatly limited their applications. In this work, we have developed a deep neural network (DNN) based prediction modeling framework. We first proposed a group-wise feature importance score for feature selection, where genes harboring genetic variants with both linear and non-linear effects are efficiently detected. We then designed an explainable transfer-learning based DNN method, which can directly incorporate information from feature selection and accurately capture complex predictive effects. The proposed DNN-framework is biologically interpretable, as it is built based on the selected predictive genes. It is also computationally efficient and can be applied to genome-wide data. Through extensive simulations and real data analyses, we have demonstrated that our proposed method can not only efficiently detect predictive features, but also accurately predict disease risk, as compared to many existing methods.  相似文献   

12.
Predicting future species invasions presents significant challenges to researchers and government agencies. Simply considering the vast number of potential species that could invade an area can be insurmountable. One method, recently suggested, which can analyse large datasets of invasive species simultaneously is that of a self organising map (SOM), a form of artificial neural network which can rank species by establishment likelihood. We used this method to analyse the worldwide distribution of 486 fungal pathogens and then validated the method by creating a virtual world of invasive species in which to test the SOM. This novel validation method allowed us to test SOM's ability to rank those species that can establish above those that can't. Overall, we found the SOM highly effective, having on average, a 96-98% success rate (depending on the virtual world parameters). We also found that regions with fewer species present (i.e. 1-10 species) were more difficult for the SOM to generate an accurately ranked list, with success rates varying from 100% correct down to 0% correct. However, we were able to combine the numbers of species present in a region with clustering patterns in the SOM, to further refine confidence in lists generated from these sparsely populated regions. We then used the results from the virtual world to determine confidences for lists generated from the fungal pathogen dataset. Specifically, for lists generated for Australia and its states and territories, the reliability scores were between 84-98%. We conclude that a SOM analysis is a reliable method for analysing a large dataset of potential invasive species and could be used by biosecurity agencies around the world resulting in a better overall assessment of invasion risk.  相似文献   

13.
When the dimensionality of a neural circuit is substantially larger than the dimensionality of the variable it encodes, many different degenerate network states can produce the same output. In this review I will discuss three different neural systems that are linked by this theme. The pyloric network of the lobster, the song control system of the zebra finch, and the odor encoding system of the locust, while different in design, all contain degeneracies between their internal parameters and the outputs they encode. Indeed, although the dynamics of song generation and odor identification are quite different, computationally, odor recognition can be thought of as running the song generation circuitry backwards. In both of these systems, degeneracy plays a vital role in mapping a sparse neural representation devoid of correlations onto external stimuli (odors or song structure) that are strongly correlated. I argue that degeneracy between input and output states is an inherent feature of many neural systems, which can be exploited as a fault-tolerant method of reliably learning, generating, and discriminating closely related patterns.  相似文献   

14.
This review covers original articles using deep learning in the biophotonic field published in the last years. In these years deep learning, which is a subset of machine learning mostly based on artificial neural network geometries, was applied to a number of biophotonic tasks and has achieved state‐of‐the‐art performances. Therefore, deep learning in the biophotonic field is rapidly growing and it will be utilized in the next years to obtain real‐time biophotonic decision‐making systems and to analyze biophotonic data in general. In this contribution, we discuss the possibilities of deep learning in the biophotonic field including image classification, segmentation, registration, pseudostaining and resolution enhancement. Additionally, we discuss the potential use of deep learning for spectroscopic data including spectral data preprocessing and spectral classification. We conclude this review by addressing the potential applications and challenges of using deep learning for biophotonic data.  相似文献   

15.
Successful adaptation relies on the ability to learn the consequence of our actions in different environments. However, understanding the neural bases of this ability still represents one of the great challenges of system neuroscience. In fact, the neuronal plasticity changes occurring during learning cannot be fully controlled experimentally and their evolution is hidden. Our approach is to provide hypotheses about the structure and dynamics of the hidden plasticity changes using behavioral learning theory. In fact, behavioral models of animal learning provide testable predictions about the hidden learning representations by formalizing their relation with the observables of the experiment (stimuli, actions and outcomes). Thus, we can understand whether and how the predicted learning processes are represented at the neural level by estimating their evolution and correlating them with neural data. Here, we present a bayesian model approach to estimate the evolution of the internal learning representations from the observations of the experiment (state estimation), and to identify the set of models' parameters (parameter estimation) and the class of behavioral model (model selection) that are most likely to have generated a given sequence of actions and outcomes. More precisely, we use Sequential Monte Carlo methods for state estimation and the maximum likelihood principle (MLP) for model selection and parameter estimation. We show that the method recovers simulated trajectories of learning sessions on a single-trial basis and provides predictions about the activity of different categories of neurons that should participate in the learning process. By correlating the estimated evolutions of the learning variables, we will be able to test the validity of different models of instrumental learning and possibly identify the neural bases of learning.  相似文献   

16.
It is well accepted that the brain''s computation relies on spatiotemporal activity of neural networks. In particular, there is growing evidence of the importance of continuously and precisely timed spiking activity. Therefore, it is important to characterize memory states in terms of spike-timing patterns that give both reliable memory of firing activities and precise memory of firing timings. The relationship between memory states and spike-timing patterns has been studied empirically with large-scale recording of neuron population in recent years. Here, by using a recurrent neural network model with dynamics at two time scales, we construct a dynamical memory network model which embeds both fast neural and synaptic variation and slow learning dynamics. A state vector is proposed to describe memory states in terms of spike-timing patterns of neural population, and a distance measure of state vector is defined to study several important phenomena of memory dynamics: partial memory recall, learning efficiency, learning with correlated stimuli. We show that the distance measure can capture the timing difference of memory states. In addition, we examine the influence of network topology on learning ability, and show that local connections can increase the network''s ability to embed more memory states. Together theses results suggest that the proposed system based on spike-timing patterns gives a productive model for the study of detailed learning and memory dynamics.  相似文献   

17.
We have built a computational model for individual aging trajectories of health and survival, which contains physical, functional, and biological variables, and is conditioned on demographic, lifestyle, and medical background information. We combine techniques of modern machine learning with an interpretable interaction network, where health variables are coupled by explicit pair-wise interactions within a stochastic dynamical system. Our dynamic joint interpretable network (DJIN) model is scalable to large longitudinal data sets, is predictive of individual high-dimensional health trajectories and survival from baseline health states, and infers an interpretable network of directed interactions between the health variables. The network identifies plausible physiological connections between health variables as well as clusters of strongly connected health variables. We use English Longitudinal Study of Aging (ELSA) data to train our model and show that it performs better than multiple dedicated linear models for health outcomes and survival. We compare our model with flexible lower-dimensional latent-space models to explore the dimensionality required to accurately model aging health outcomes. Our DJIN model can be used to generate synthetic individuals that age realistically, to impute missing data, and to simulate future aging outcomes given arbitrary initial health states.  相似文献   

18.
Cells interact mechanically with their surroundings by exerting and sensing forces. Traction force microscopy (TFM), purported to map cell-generated forces or stresses, represents an important tool that has powered the rapid advances in mechanobiology. However, to solve the ill-posed mathematical problem, conventional TFM involved compromises in accuracy and/or resolution. Here, we applied neural network-based deep learning as an alternative approach for TFM. We modified a neural network designed for image processing to predict the vector field of stress from displacements. Furthermore, we adapted a mathematical model for cell migration to generate large sets of simulated stresses and displacements for training and testing the neural network. We found that deep learning-based TFM yielded results that resemble those using conventional TFM but at a higher accuracy than several conventional implementations tested. In addition, a trained neural network is appliable to a wide range of conditions, including cell size, shape, substrate stiffness, and traction output. The performance of deep learning-based TFM makes it an appealing alternative to conventional methods for characterizing mechanical interactions between adherent cells and the environment.  相似文献   

19.
A neural network program with efficient learning ability for bioprocess variable estimation and state prediction was developed. A 3 layer, feed-forward neural network architecture was used, and the program was written in Quick C ver 2.5 for an IBM compatible computer with a 80486/33 MHz processor. A back propagation training algorithm was used based on learning by pattern and momentum in a combination as used to adjust the connection of weights of the neurons in adjacent layers. The delta rule was applied in a gradient descent search technique to minimize a cost function equal to the mean square difference between the target and the network output. A non-linear, sigmoidal logistic transfer function was used in squashing the weighted sum of the inputs of each neuron to a limited range output. A good neural network prediction model was obtained by training with a sequence of past time course data of a typical bioprocess. The well trained neural network estimated accurately and rapidly the state variables with or without noise even under varying process dynamics.  相似文献   

20.
Humans and animals are able to learn complex behaviors based on a massive stream of sensory information from different modalities. Early animal studies have identified learning mechanisms that are based on reward and punishment such that animals tend to avoid actions that lead to punishment whereas rewarded actions are reinforced. However, most algorithms for reward-based learning are only applicable if the dimensionality of the state-space is sufficiently small or its structure is sufficiently simple. Therefore, the question arises how the problem of learning on high-dimensional data is solved in the brain. In this article, we propose a biologically plausible generic two-stage learning system that can directly be applied to raw high-dimensional input streams. The system is composed of a hierarchical slow feature analysis (SFA) network for preprocessing and a simple neural network on top that is trained based on rewards. We demonstrate by computer simulations that this generic architecture is able to learn quite demanding reinforcement learning tasks on high-dimensional visual input streams in a time that is comparable to the time needed when an explicit highly informative low-dimensional state-space representation is given instead of the high-dimensional visual input. The learning speed of the proposed architecture in a task similar to the Morris water maze task is comparable to that found in experimental studies with rats. This study thus supports the hypothesis that slowness learning is one important unsupervised learning principle utilized in the brain to form efficient state representations for behavioral learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号